Knowledge (XXG)

Graph pebbling

Source 📝

72:
For example, on a graph with 2 vertices and 1 edge connecting them, the pebbling number is 2. No matter how the two pebbles are placed on the vertices of the graph it is always possible to arrive at the desired result of the chosen vertex having a pebble; if the initial configuration is the
146: − 1 pebbles to put on the graph, then we could put one pebble on each vertex except the target. As no vertex has two or more pebbles, no moves are possible, so it is impossible to place a pebble on the target. Thus, the pebbling number must be greater than 154:
pebbles, there are two possible cases. If each vertex has one pebble, no moves are required. If any vertex is bare, at least one other vertex must have two pebbles on it, and one pebbling move allows a pebble to be added to any target vertex in the complete graph.
45:. 'Game play' is composed of a series of pebbling moves. A pebbling move on a graph consists of choosing a vertex with at least two pebbles, removing two pebbles from it, and adding one to an adjacent vertex (the second removed pebble is discarded from play). π( 498:
According to the stacking theorem, the initial configuration of pebbles that requires the most pebbles to be cover solved happens when all pebbles are placed on a single vertex. Based on this observation, define
582: 486:), is the minimum number of pebbles needed so that from any initial arrangement of the pebbles, after a series of pebbling moves, the graph is covered: there is at least one pebble on 779: 73:
configuration with one pebble per vertex, then the objective is trivially accomplished with zero pebbling moves. One of the central questions of graph pebbling is the value of π(
863: 691: 302: 68:
pebbles on the graph, it is possible, after a possibly-empty series of pebbling moves, to reach a new configuration in which the designated root vertex has one or more pebbles.
381: 210: 890: 806: 718: 408: 329: 237: 84:
Other topics in pebbling include cover pebbling, optimal pebbling, domination cover pebbling, bounds, and thresholds for pebbling numbers, as well as deep graphs.
437: 1011:
Pleanmani, Nopparat (2019). "Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph".
1303:
Proceedings of the Twenty-Sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995)
1276:
Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999)
1295: 1054:
Crull, Betsy; Cundiff, Tammy; Feltman, Paul; Hurlbert, Glenn H.; Pudwell, Lara; Szaniszlo, Zsuzsanna; Tuza, Zsolt (2005),
112: 38: 505: 455: 1175:
Watson, Nathaniel G.; Yerger, Carl R. (2006). "Cover pebbling numbers and bounds for certain families of graphs".
1335: 434:
Is the pebbling number of a Cartesian product of graphs at most the product of the pebbling number of the graphs?
729: 608: 1113:
Vuong, Annalies; Wyckoff, M. Ian (October 18, 2004). "Conditions for Weighted Cover Pebbling of Graphs".
817: 645: 252: 42: 1055: 458:
is at most equal to the product of the pebbling numbers of the factors. This has come to be known as
88: 344: 173: 1268: 1135: 1255: 1229: 1184: 1114: 1096: 1070: 1036: 17: 34: 1239: 1147: 1080: 1020: 972: 490:
vertex. A result called the stacking theorem finds the cover pebbling number for any graph.
1310: 1283: 1251: 1198: 1161: 1092: 1032: 984: 868: 784: 696: 386: 307: 215: 1306: 1279: 1247: 1194: 1157: 1088: 1028: 980: 1314: 911: 240: 131: 54: 1329: 1040: 447: 116: 1291: 1259: 1100: 92: 1217: 906: 411: 64:
Given any target or 'root' vertex in the graph and any initial configuration of
1243: 1084: 478:
introduced the concept of cover pebbling. The cover pebbling number of a graph
1024: 451: 332: 960: 123:
introduced the concept in the literature and defined the pebbling number, π(
120: 639:
The cover pebbling number is known for the following families of graphs:
108: 426: 1234: 1189: 1119: 1075: 976: 932: 167:
The pebbling number is known for the following families of graphs:
1152: 87:
One application of pebbling games is in the security analysis of
1177:
Bulletin of the Institute of Combinatorics and Its Applications
1305:. Congressus Numerantium. Vol. 107. pp. 65–80. 1278:. Congressus Numerantium. Vol. 139. pp. 41–64. 934:
High Parallel Complexity Graphs and Memory-Hard Functions
462:. It remains unsolved, although special cases are known. 1220:; Godbole, Anant P. (2008). "Improved pebbling bounds". 871: 820: 787: 732: 699: 648: 508: 389: 347: 310: 255: 218: 176: 884: 857: 800: 773: 712: 685: 576: 402: 375: 323: 296: 231: 204: 1013:Discrete Mathematics, Algorithms and Applications 619:. Then the cover pebbling number is the largest 577:{\displaystyle s(v)=\sum _{u\in V(G)}2^{d(u,v)}} 115:, as a tool for solving a particular problem in 470:) — the cover pebbling number of a graph 8: 107:The game of pebbling was first suggested by 1294:; Snevily, Hunter S.; Voxman, Bill (1995). 931:Alwen, Joël; Serbinenko, Vladimir (2014), 60:that satisfies the following condition: 1233: 1188: 1151: 1118: 1074: 876: 870: 831: 819: 792: 786: 759: 743: 731: 704: 698: 659: 647: 553: 528: 507: 394: 388: 358: 346: 315: 309: 282: 266: 254: 223: 217: 187: 175: 41:with zero or more pebbles on each of its 103:) — the pebbling number of a graph 955: 953: 951: 949: 923: 438:(more unsolved problems in mathematics) 774:{\displaystyle \gamma (P_{n})=2^{n}-1} 1056:"The cover pebbling number of graphs" 998: 443: 7: 965:SIAM Journal on Discrete Mathematics 1140:Electronic Journal of Combinatorics 858:{\displaystyle \gamma (W_{n})=4n-9} 686:{\displaystyle \gamma (K_{n})=2n-1} 422: 297:{\displaystyle \pi (P_{n})=2^{n-1}} 27:Mathematical game played on a graph 963:(1989). "Pebbling in hypercubes". 138:vertices is easily verified to be 49:), the pebbling number of a graph 25: 18:Graham's pebbling conjecture 429:Unsolved problem in mathematics 837: 824: 749: 736: 665: 652: 569: 557: 544: 538: 518: 512: 454:that the pebbling number of a 364: 351: 272: 259: 193: 180: 1: 376:{\displaystyle \pi (W_{n})=n} 205:{\displaystyle \pi (K_{n})=n} 1269:"A survey of graph pebbling" 1136:"The cover pebbling theorem" 460:Graham's pebbling conjecture 423:Graham's pebbling conjecture 1267:Hurlbert, Glenn H. (1999). 456:Cartesian product of graphs 1352: 1244:10.1016/j.disc.2006.06.032 1085:10.1016/j.disc.2005.03.009 130:The pebbling number for a 1134:Sjöstrand, Jonas (2005). 1025:10.1142/s179383091950068x 635:) for families of graphs 163:) for families of graphs 1001:, question 3, page 472. 720:is a complete graph on 150: − 1. Given 886: 859: 802: 775: 714: 687: 578: 404: 377: 325: 298: 233: 206: 70: 887: 885:{\displaystyle W_{n}} 860: 803: 801:{\displaystyle P_{n}} 776: 715: 713:{\displaystyle K_{n}} 688: 579: 405: 403:{\displaystyle W_{n}} 378: 326: 324:{\displaystyle P_{n}} 299: 234: 232:{\displaystyle K_{n}} 207: 89:memory-hard functions 62: 1296:"On pebbling graphs" 1222:Discrete Mathematics 1063:Discrete Mathematics 892:is a wheel graph on 869: 818: 785: 730: 697: 646: 506: 494:The stacking theorem 387: 345: 308: 253: 216: 174: 77:) for a given graph 808:is a path graph on 882: 855: 798: 771: 710: 683: 574: 548: 400: 373: 321: 294: 229: 202: 1228:(11): 2301–2306. 1019:(6): 1950068, 7. 587:for every vertex 524: 35:mathematical game 16:(Redirected from 1343: 1336:Graph invariants 1321: 1319: 1313:. Archived from 1300: 1287: 1273: 1263: 1237: 1203: 1202: 1192: 1172: 1166: 1165: 1155: 1131: 1125: 1124: 1122: 1110: 1104: 1103: 1078: 1060: 1051: 1045: 1044: 1008: 1002: 995: 989: 988: 961:Chung, Fan R. K. 957: 944: 943: 942: 941: 928: 891: 889: 888: 883: 881: 880: 864: 862: 861: 856: 836: 835: 807: 805: 804: 799: 797: 796: 780: 778: 777: 772: 764: 763: 748: 747: 719: 717: 716: 711: 709: 708: 692: 690: 689: 684: 664: 663: 627:) that results. 583: 581: 580: 575: 573: 572: 547: 430: 409: 407: 406: 401: 399: 398: 382: 380: 379: 374: 363: 362: 330: 328: 327: 322: 320: 319: 303: 301: 300: 295: 293: 292: 271: 270: 238: 236: 235: 230: 228: 227: 211: 209: 208: 203: 192: 191: 53:, is the lowest 21: 1351: 1350: 1346: 1345: 1344: 1342: 1341: 1340: 1326: 1325: 1324: 1317: 1298: 1290: 1271: 1266: 1216: 1212: 1210:Further reading 1207: 1206: 1174: 1173: 1169: 1133: 1132: 1128: 1112: 1111: 1107: 1058: 1053: 1052: 1048: 1010: 1009: 1005: 996: 992: 977:10.1137/0402041 959: 958: 947: 939: 937: 930: 929: 925: 920: 903: 872: 867: 866: 827: 816: 815: 788: 783: 782: 755: 739: 728: 727: 700: 695: 694: 655: 644: 643: 637: 549: 504: 503: 496: 472: 441: 440: 435: 432: 428: 425: 390: 385: 384: 354: 343: 342: 311: 306: 305: 278: 262: 251: 250: 219: 214: 213: 183: 172: 171: 165: 105: 28: 23: 22: 15: 12: 11: 5: 1349: 1347: 1339: 1338: 1328: 1327: 1323: 1322: 1320:on 2015-11-25. 1288: 1264: 1213: 1211: 1208: 1205: 1204: 1167: 1126: 1105: 1046: 1003: 990: 971:(4): 467–472. 945: 922: 921: 919: 916: 915: 914: 912:Proof of space 909: 902: 899: 898: 897: 879: 875: 854: 851: 848: 845: 842: 839: 834: 830: 826: 823: 813: 795: 791: 770: 767: 762: 758: 754: 751: 746: 742: 738: 735: 725: 707: 703: 682: 679: 676: 673: 670: 667: 662: 658: 654: 651: 636: 629: 607:) denotes the 585: 584: 571: 568: 565: 562: 559: 556: 552: 546: 543: 540: 537: 534: 531: 527: 523: 520: 517: 514: 511: 495: 492: 471: 464: 436: 433: 427: 424: 421: 420: 419: 397: 393: 372: 369: 366: 361: 357: 353: 350: 340: 318: 314: 291: 288: 285: 281: 277: 274: 269: 265: 261: 258: 248: 241:complete graph 226: 222: 201: 198: 195: 190: 186: 182: 179: 164: 157: 132:complete graph 104: 97: 55:natural number 31:Graph pebbling 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1348: 1337: 1334: 1333: 1331: 1316: 1312: 1308: 1304: 1297: 1293: 1292:Pachter, Lior 1289: 1285: 1281: 1277: 1270: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1236: 1231: 1227: 1223: 1219: 1215: 1214: 1209: 1200: 1196: 1191: 1186: 1182: 1178: 1171: 1168: 1163: 1159: 1154: 1153:10.37236/1989 1149: 1145: 1141: 1137: 1130: 1127: 1121: 1116: 1109: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1077: 1072: 1068: 1064: 1057: 1050: 1047: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1007: 1004: 1000: 994: 991: 986: 982: 978: 974: 970: 966: 962: 956: 954: 952: 950: 946: 936: 935: 927: 924: 917: 913: 910: 908: 905: 904: 900: 895: 877: 873: 852: 849: 846: 843: 840: 832: 828: 821: 814: 811: 793: 789: 768: 765: 760: 756: 752: 744: 740: 733: 726: 723: 705: 701: 680: 677: 674: 671: 668: 660: 656: 649: 642: 641: 640: 634: 630: 628: 626: 622: 618: 614: 610: 606: 602: 598: 594: 590: 566: 563: 560: 554: 550: 541: 535: 532: 529: 525: 521: 515: 509: 502: 501: 500: 493: 491: 489: 485: 481: 477: 469: 465: 463: 461: 457: 453: 449: 448:Ronald Graham 445: 439: 417: 413: 395: 391: 370: 367: 359: 355: 348: 341: 338: 334: 316: 312: 289: 286: 283: 279: 275: 267: 263: 256: 249: 246: 242: 224: 220: 199: 196: 188: 184: 177: 170: 169: 168: 162: 158: 156: 153: 149: 145: 141: 137: 133: 128: 126: 122: 118: 117:number theory 114: 110: 102: 98: 96: 94: 90: 85: 82: 80: 76: 69: 67: 61: 59: 56: 52: 48: 44: 40: 36: 32: 19: 1315:the original 1302: 1275: 1235:math/0510045 1225: 1221: 1218:Chan, Melody 1190:math/0409321 1180: 1176: 1170: 1143: 1139: 1129: 1120:math/0410410 1108: 1076:math/0406206 1069:(1): 15–23, 1066: 1062: 1049: 1016: 1012: 1006: 999:Chung (1989) 993: 968: 964: 938:, retrieved 933: 926: 893: 809: 721: 638: 632: 624: 620: 616: 612: 604: 600: 596: 592: 588: 586: 497: 487: 483: 479: 475: 473: 467: 459: 444:Chung (1989) 442: 415: 336: 244: 166: 160: 151: 147: 143: 142:: If we had 139: 135: 129: 124: 121:F.R.K. Chung 106: 100: 93:cryptography 86: 83: 78: 74: 71: 65: 63: 57: 50: 46: 37:played on a 30: 29: 1146:: Note 22. 907:Pebble game 412:wheel graph 940:2024-01-15 918:References 452:conjecture 333:path graph 119:. In 1989 1183:: 53–62. 1041:204207428 896:vertices. 850:− 822:γ 812:vertices. 766:− 734:γ 724:vertices. 678:− 650:γ 533:∈ 526:∑ 450:with the 446:credited 418:vertices. 349:π 339:vertices. 287:− 257:π 247:vertices. 178:π 1330:Category 901:See also 865:, where 781:, where 693:, where 609:distance 595:, where 383:, where 304:, where 212:, where 109:Lagarias 43:vertices 1311:1369255 1284:1744229 1260:5501949 1252:2404560 1199:2259702 1162:2180807 1101:5109099 1093:2148478 1033:4044549 985:1018531 1309:  1282:  1258:  1250:  1197:  1160:  1099:  1091:  1039:  1031:  983:  476:et al. 474:Crull 1318:(PDF) 1299:(PDF) 1272:(PDF) 1256:S2CID 1230:arXiv 1185:arXiv 1115:arXiv 1097:S2CID 1071:arXiv 1059:(PDF) 1037:S2CID 611:from 488:every 410:is a 331:is a 239:is a 39:graph 33:is a 997:See 482:, γ( 113:Saks 111:and 1240:doi 1226:308 1148:doi 1081:doi 1067:296 1021:doi 973:doi 615:to 591:in 414:on 335:on 243:on 134:on 127:). 91:in 1332:: 1307:MR 1301:. 1280:MR 1274:. 1254:. 1248:MR 1246:. 1238:. 1224:. 1195:MR 1193:. 1181:48 1179:. 1158:MR 1156:. 1144:12 1142:. 1138:. 1095:, 1089:MR 1087:, 1079:, 1065:, 1061:, 1035:. 1029:MR 1027:. 1017:11 1015:. 981:MR 979:. 967:. 948:^ 631:γ( 466:γ( 159:π( 99:π( 95:. 81:. 1286:. 1262:. 1242:: 1232:: 1201:. 1187:: 1164:. 1150:: 1123:. 1117:: 1083:: 1073:: 1043:. 1023:: 987:. 975:: 969:2 894:n 878:n 874:W 853:9 847:n 844:4 841:= 838:) 833:n 829:W 825:( 810:n 794:n 790:P 769:1 761:n 757:2 753:= 750:) 745:n 741:P 737:( 722:n 706:n 702:K 681:1 675:n 672:2 669:= 666:) 661:n 657:K 653:( 633:G 625:v 623:( 621:s 617:v 613:u 605:v 603:, 601:u 599:( 597:d 593:G 589:v 570:) 567:v 564:, 561:u 558:( 555:d 551:2 545:) 542:G 539:( 536:V 530:u 522:= 519:) 516:v 513:( 510:s 484:G 480:G 468:G 431:: 416:n 396:n 392:W 371:n 368:= 365:) 360:n 356:W 352:( 337:n 317:n 313:P 290:1 284:n 280:2 276:= 273:) 268:n 264:P 260:( 245:n 225:n 221:K 200:n 197:= 194:) 189:n 185:K 181:( 161:G 152:n 148:n 144:n 140:n 136:n 125:G 101:G 79:G 75:G 66:n 58:n 51:G 47:G 20:)

Index

Graham's pebbling conjecture
mathematical game
graph
vertices
natural number
memory-hard functions
cryptography
Lagarias
Saks
number theory
F.R.K. Chung
complete graph
complete graph
path graph
wheel graph
(more unsolved problems in mathematics)
Chung (1989)
Ronald Graham
conjecture
Cartesian product of graphs
distance
Pebble game
Proof of space
High Parallel Complexity Graphs and Memory-Hard Functions




Chung, Fan R. K.
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.