Knowledge (XXG)

Graph minor

Source đź“ť

287: 273: 265: 1284:. Shallow minors interpolate between the theories of graph minors and subgraphs, in that shallow minors with high depth coincide with the usual type of graph minor, while the shallow minors with depth zero are exactly the subgraphs. They also allow the theory of graph minors to be extended to classes of graphs such as the 1081:
The topological minor relation is not a well-quasi-ordering on the set of finite graphs and hence the result of Robertson and Seymour does not apply to topological minors. However it is straightforward to construct finite forbidden topological minor characterizations from finite forbidden minor
1260:: from a drawing of a graph in the plane, with crossings, one can form an immersion minor by replacing each crossing point by a new vertex, and in the process also subdividing each crossed edge into a path. This allows drawing methods for planar graphs to be extended to non-planar graphs. 1244:
The immersion minor relation is a well-quasi-ordering on the set of finite graphs and hence the result of Robertson and Seymour applies to immersion minors. This furthermore means that every immersion minor-closed family is characterized by a finite family of forbidden immersion minors.
209:) it makes more sense to allow the deletion of a cut-edge, and to allow disconnected graphs, but to forbid multigraphs. In this variation of graph minor theory, a graph is always simplified after any edge contraction to eliminate its self-loops and multiple edges. 1647:
is inconsistent about whether to allow self-loops and multiple adjacencies: he writes on p. 76 that "parallel edges and loops are allowed" but on p. 77 he states that "a graph is a forest if and only if it does not contain the triangle
1352:
that represents an adjacency between two subtrees is monochromatic (both its endpoints are the same color). Unlike for the usual kind of graph minors, graphs with forbidden odd minors are not necessarily sparse. The
1518:) time. Thus, by applying the polynomial time algorithm for testing whether a given graph contains any of the forbidden minors, it is theoretically possible to recognize the members of any minor-closed family in 1530:. Furthermore, in order to apply this result constructively, it is necessary to know what the forbidden minors of the graph family are. In some cases, the forbidden minors are known, or can be computed. 3233: 502: 615: 568: 739: 674: 920:
In some cases, the properties of the graphs in a minor-closed family may be closely connected to the properties of their excluded minors. For example a minor-closed graph family
113:; together with the forbidden minor characterization this implies that every graph property preserved by deletions and contractions may be recognized in polynomial time. 167:
by contracting some edges, deleting some edges, and deleting some isolated vertices. The order in which a sequence of such contractions and deletions is performed on
980:-minor-free graphs have a simplified structure theorem in which they are formed as clique-sums of planar graphs and graphs of bounded treewidth. For instance, both 2791: 2689: 2313: 2466:; Hajiaghayi, MohammadTaghi; Thilikos, Dimitrios M. (2002), "1.5-Approximation for treewidth of graphs excluding a graph with one crossing as a minor", 410:
as a minor. The statement of the theorem is itself long and involved, but in short it establishes that such a graph must have the structure of a
2867: 2493: 144:
An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An
282:
by deleting the dashed edges (and the resulting isolated vertex), and then contract the gray edge (merging the two vertices it connects):
1354: 797:
call it "one of the deepest unsolved problems in graph theory." Another result relating the four-color theorem to graph minors is the
745: 125: 2388: 878: 3272: 3127: 3097: 3065: 3013: 2981: 2721: 2505: 2090: 2036: 869:
is a minor-closed family, then (because of the well-quasi-ordering property of minors) among the graphs that do not belong to
3150: 3118: 3088: 3056: 3035: 3004: 2972: 973: 330: 829: 441:, which means that the number of edges is less than some constant multiple of the number of vertices. More specifically, if 325:
can only be minors of each other if they are isomorphic because any nontrivial minor operation removes edges or vertices. A
90: 3385: 3047: 3206: 3158: 3154: 3122: 3092: 3060: 3039: 3008: 2976: 2308: 2304: 2085: 2027: 1523: 1396:
by deleting vertices, deleting edges, and collapsing pairs of vertices that are at distance two from each other along a
460: 334: 576: 529: 3380: 862:
of the embedding; therefore, planar graphs and the graphs embeddable on any fixed surface form minor-closed families.
286: 1217:. There is yet another way of defining immersion minors, which is equivalent to the lifting operation. We say that 2940: 2936: 2924:
Plotkin, Serge; Rao, Satish; Smith, Warren D. (1994), "Shallow excluded minors and improved graph decompositions",
2716: 2023: 1985: 1045: 2220: 2193: 709: 644: 571: 1194:
will now be connected by more than one edge, and hence this operation is intrinsically a multi-graph operation.
97:
exists for every property of graphs that is preserved by deletions and edge contractions. For every fixed graph
2847: 1057: 801:
announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by
622: 78: 2743:
Kostochka, Alexandr V. (1982), "The minimum Hadwiger number for graphs with a given mean degree of vertices",
2843: 1281: 961: 399: 117: 3218:, London Math. Soc. Lecture Note Ser., vol. 267, Cambridge: Cambridge Univ. Press, pp. 201–222, 2712: 2164: 1981: 136:
as a minor of it. Important variants of graph minors include the topological minors and immersion minors.
2786: 2468:
Proc. 5th International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX 2002)
1064:. Every topological minor is also a minor. The converse however is not true in general (for instance the 806: 524: 47: 2757:
Kostochka, Alexandr V. (1984), "Lower bound of the Hadwiger number of graphs by their average degree",
1478:
is fixed, it can be solved in polynomial time. More specifically, the running time for testing whether
1078:
is a minor but not a topological one), but holds for graph with maximum degree not greater than three.
391:
under the minor ordering. This result proved a conjecture formerly known as Wagner's conjecture, after
3242: 2904: 2367: 1522:. This result is not used in practice since the hidden constant is so huge (needing three layers of 1373: 2169: 387:. Another equivalent way of stating this is that any set of graphs can have only a finite number of 1401: 929: 906: 859: 419: 338: 306: 199: 183: 58: 2483: 2379: 2246:
Adler, Isolde; Dorn, Frederic; Fomin, Fedor V.; Sau, Ignasi; Thilikos, Dimitrios M. (2012-09-01).
272: 264: 3315: 3258: 3194: 2960: 2831: 2774: 2658: 2640: 2614: 2595: 2574: 2548: 2451: 2357: 2332: 2278: 2125: 2099: 2001: 1527: 783: 2431: 1321: 3353: 2863: 2489: 2270: 1467: 1053: 156: 198:
are forbidden operations. This point of view has the advantage that edge deletions leave the
3307: 3281: 3250: 3186: 3136: 3106: 3074: 3022: 2990: 2952: 2912: 2855: 2823: 2800: 2766: 2730: 2698: 2650: 2604: 2590: 2558: 2514: 2471: 2443: 2414: 2397: 2322: 2262: 2174: 2109: 2073: 2045: 1993: 1431: 1397: 1348:
within a subtree is properly colored (its endpoints have different colors) and each edge of
145: 94: 51: 24: 3223: 3044:
Graph Structure Theory: Proc. AMS–IMS–SIAM Joint Summer Research Conference on Graph Minors
2877: 2570: 2528: 2344: 2121: 2059: 3219: 2873: 2814:
Mader, Wolfgang (1967), "Homomorphieeigenschaften und mittlere Kantendichte von Graphen",
2586: 2566: 2524: 2340: 2117: 2055: 1519: 1377: 851: 423: 415: 388: 298: 110: 3042:(1993), "Excluding a graph with one crossing", in Robertson, Neil; Seymour, Paul (eds.), 3246: 2908: 2371: 1280:
that were contracted to form the minor form a collection of disjoint subgraphs with low
2536: 2155:
Johnson, David S. (1987). "The NP-completeness column: An ongoing guide (edition 19)".
2081: 1503: 1366: 1285: 1075: 1065: 817: 765: 753: 133: 129: 66: 3162: 3110: 2470:, Lecture Notes in Computer Science, vol. 2462, Springer-Verlag, pp. 67–80, 2401: 2352:
Błasiok, Jarosław; Kamiński, Marcin; Raymond, Jean-Florent; Trunck, Théophile (2015),
3374: 3319: 3262: 3177: 3027: 2995: 2835: 2670: 2631: 2383: 2178: 1413: 1372:
A different parity-based extension of the notion of graph minors is the concept of a
1269: 1253: 1249: 813: 798: 302: 187: 179: 3210: 2943:(2009), "A linear-time algorithm to find a separator in a graph excluding a minor", 2778: 2703: 2662: 2618: 2129: 2005: 3327: 3295: 3198: 2885: 2626: 2578: 2463: 2427: 2421:, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL 2410: 2282: 1538: 1409: 1257: 1002: 953: 847: 438: 392: 206: 62: 20: 2964: 2889: 2805: 2455: 905:
of forbidden minors. The best-known example of a characterization of this type is
828:
Further information on minor-closed graph families, including a list of some:
422:. Thus, their theory establishes fundamental connections between graph minors and 2247: 1001:-free graphs are exactly the 3-clique-sums of planar graphs and the eight-vertex 3356: 1447: 809: 802: 326: 3141: 2735: 2113: 2050: 3254: 2925: 2859: 2654: 2447: 2266: 2019: 1510:; since the original Graph Minors result, this algorithm has been improved to 965: 941: 937: 855: 411: 191: 182:. In this context, it is common to assume that all graphs are connected, with 2916: 2274: 858:, neither the removal of edges nor the contraction of edges can increase the 3361: 3231:
Thomason, Andrew (1984), "An extremal function for contractions of graphs",
2956: 2475: 2300: 2077: 1324:
restricts this definition by adding parity conditions to these subtrees. If
1316:, there exists an edge with its endpoints in the corresponding two trees in 949: 925: 704: 194:
rather than simple graphs); the contraction of a loop and the deletion of a
3286: 3079: 2629:(2003), "Local tree-width, excluded minors, and approximation algorithms", 2519: 2409:
Buchheim, Christoph; Chimani, Markus; Gutwenger, Carsten; JĂĽnger, Michael;
1988:; Wollan, Paul (2011), "The graph minor algorithm with parity conditions", 202:
of a graph unchanged, and edge contractions always reduce the rank by one.
2593:(1988), "Nonconstructive tools for proving polynomial-time decidability", 2562: 1997: 834:
Many families of graphs have the property that every minor of a graph in
395:; Wagner had conjectured it long earlier, but only published it in 1970. 342: 195: 2854:, Algorithms and Combinatorics, vol. 28, Springer, pp. 62–65, 2609: 2553: 968:(a graph that can be made planar by the removal of a single vertex). If 3311: 3190: 2827: 2770: 2336: 1369:
as minors, has also been studied from the point of view of odd minors.
972:
can be drawn in the plane with only a single crossing (that is, it has
3270:
Thomason, Andrew (2001), "The extremal function for complete minors",
278:
The following diagram illustrates this. First construct a subgraph of
2645: 1992:, Institute of Electrical and Electronics Engineers, pp. 27–36, 1012:-free graphs are exactly the 2-clique-sums of planar graphs and  2327: 2362: 398:
In the course of their proof, Seymour and Robertson also prove the
2432:"Diameter and treewidth in minor-closed graph families, revisited" 2104: 1308:
can be represented by a collection of vertex-disjoint subtrees of
1296:
An alternative and equivalent definition of a graph minor is that
2539:(2000), "Diameter and treewidth in minor-closed graph families", 116:
Other results and conjectures involving graph minors include the
2386:(1980), "Hadwiger's conjecture is true for almost every graph", 1340:
whenever it is possible to assign two colors to the vertices of
940:
if and only if its forbidden minors include a disjoint union of
124:
as a minor may be formed by gluing together simpler pieces, and
3234:
Mathematical Proceedings of the Cambridge Philosophical Society
960:
has bounded local treewidth (a functional relationship between
909:
characterizing the planar graphs as the graphs having neither K
363:
of finite graphs is given, then there always exist two indices
2719:(March 2012), "The disjoint paths problem in quadratic time", 2031: 1944: 964:
and treewidth) if and only if its forbidden minors include an
414:
of smaller graphs that are modified in small ways from graphs
305:
on the isomorphism classes of finite undirected graphs: it is
178:
Graph minors are often studied in the more general context of
1990:
52nd Annual IEEE Symposium on Foundations of Computer Science
3330:(1937b), "Ăśber eine Erweiterung des Satzes von Kuratowski", 1933: 1557:
is not fixed, faster algorithms are known in the case where
3095:(2003), "Graph Minors. XVI. Excluding a non-planar graph", 2927:
Proc. 5th ACM–SIAM Symp. on Discrete Algorithms (SODA 1994)
2687:
Hall, Dick Wick (1943), "A note on primitive skew curves",
889:
if and only if it does not contain as a minor any graph in
621:-minor-free graphs have a separator theorem similar to the 511:-minor-free graphs have at least this many edges. Thus, if 3063:(1995), "Graph Minors. XIII. The disjoint paths problem", 2503:
Ding, Guoli (1996), "Excluding a long double path minor",
2142: 2673:(1943), "Ăśber eine Klassifikation der Streckenkomplexe", 1865: 1142:
is an operation on adjacent edges. Given three vertices
1968: 1956: 1526:
to express) as to rule out any application, making it a
680:
into two (possibly disconnected) subgraphs with at most
1442:
as a minor is NP-complete in general; for instance, if
1209:) and then finding an isomorphic subgraph, we say that 3298:(1937a), "Ăśber eine Eigenschaft der ebenen Komplexe", 1789: 1225:
if there exists an injective mapping from vertices in
713: 648: 580: 533: 464: 406:, the rough structure of any graph that does not have 3209:(1999), "Recent excluded minor theorems for graphs", 3011:(1986), "Graph minors. V. Excluding a planar graph", 1082:
characterizations by replacing every branch set with
712: 647: 579: 532: 463: 297:
It is straightforward to verify that the graph minor
2311:(1990), "A separator theorem for nonplanar graphs", 1541:, then we can test in linear time in an input graph 1506:
hides a constant that depends superexponentially on
994:have crossing number one, and as Wagner showed the 695:
vertices per subgraph. Even stronger, for any fixed
2488:(3rd ed.), Berlin, New York: Springer-Verlag, 2032:"On the odd-minor variant of Hadwiger's conjecture" 794: 1380:whenever the starting graph is bipartite. A graph 1110:if it can be obtained from an induced subgraph of 733: 668: 609: 562: 497:{\displaystyle \scriptstyle O(nh{\sqrt {\log h}})} 496: 3125:(2004), "Graph Minors. XX. Wagner's conjecture", 1849: 1746: 610:{\displaystyle \scriptstyle O(h{\sqrt {\log h}})} 563:{\displaystyle \scriptstyle O(h{\sqrt {\log h}})} 120:, according to which the graphs that do not have 1861: 1833: 1817: 1698: 1670: 1617: 1602: 1404:applies for bipartite minors: A bipartite graph 216:is referred to as "minor-monotone" if, whenever 2979:(1983), "Graph minors. I. Excluding a forest", 2890:"Book Review: The Colossal Book of Mathematics" 1750: 1632: 1328:is represented by a collection of subtrees of 952:if and only if its forbidden minors include a 928:if and only if its forbidden minors include a 786:. The Hadwiger conjecture has been proven for 65:if and only if its minors include neither the 2792:Bulletin of the American Mathematical Society 2690:Bulletin of the American Mathematical Society 402:in which they determine, for any fixed graph 337:states that this partial order is actually a 205:In other contexts (such as with the study of 8: 2897:Notices of the American Mathematical Society 2852:Sparsity: Graphs, Structures, and Algorithms 2314:Journal of the American Mathematical Society 1312:, such that if two vertices are adjacent in 1170:is the operation that deletes the two edges 3212:Surveys in combinatorics, 1999 (Canterbury) 3046:, Contemporary Mathematics, vol. 147, 2419:Handbook of Graph Drawing and Visualization 752:does not contain a minor isomorphic to the 734:{\displaystyle \scriptstyle O({\sqrt {n}})} 669:{\displaystyle \scriptstyle O({\sqrt {n}})} 2413:(2014), "Crossings and planarization", in 2143:Kawarabayashi, Kobayashi & Reed (2012) 1090:leaves that has down degree at least two. 877:of minor-minimal graphs. These graphs are 3285: 3273:Journal of Combinatorial Theory, Series B 3140: 3128:Journal of Combinatorial Theory, Series B 3098:Journal of Combinatorial Theory, Series B 3078: 3066:Journal of Combinatorial Theory, Series B 3026: 3014:Journal of Combinatorial Theory, Series B 2994: 2982:Journal of Combinatorial Theory, Series B 2804: 2734: 2722:Journal of Combinatorial Theory, Series B 2702: 2644: 2608: 2552: 2518: 2361: 2326: 2168: 2103: 2049: 1866:Demaine, Hajiaghayi & Thilikos (2002) 1726: 1722: 1657:as a minor", true only for simple graphs. 1288:that are not closed under taking minors. 1233:where the images of adjacent elements of 748:in graph theory proposes that if a graph 720: 711: 655: 646: 590: 578: 543: 531: 477: 462: 1845: 1777: 1754: 1734: 1730: 1205:by a sequence of lifting operations (on 1909: 1897: 1881: 1877: 1666: 1583: 1569: 1162:are edges in the graph, the lifting of 901:-minor-free graphs for some finite set 151:is a minor of another undirected graph 2675:Vierteljschr. Naturforsch. Ges. ZĂĽrich 2354:Induced minors and well-quasi-ordering 1969:NešetĹ™il & Ossona de Mendez (2012) 1957:NešetĹ™il & Ossona de Mendez (2012) 1829: 1801: 1790:Robertson, Seymour & Thomas (1993) 1694: 1682: 1669:, Chapter 12: Minors, Trees, and WQO; 1644: 1628: 1626: 1613: 1611: 1598: 1579: 1384:is a bipartite minor of another graph 1361:-chromatic graphs necessarily contain 897:can be characterized as the family of 793:, but is unknown in the general case. 57:The theory of graph minors began with 2248:"Fast Minor Testing in Planar Graphs" 1766: 1710: 1594: 1592: 893:. That is, every minor-closed family 641:, it is possible to find a subset of 7: 2430:; Hajiaghayi, MohammadTaghi (2004), 1921: 1885: 1805: 1450:with the same number of vertices as 1412:if and only if it does not have the 171:does not affect the resulting graph 2221:"A Tourist Guide through Treewidth" 2194:"A Tourist Guide through Treewidth" 1575: 1573: 795:Bollobás, Catlin & ErdĹ‘s (1980) 457:-minor-free graph can have at most 14: 2389:European Journal of Combinatorics 2236:First paragraph after Theorem 5.3 1747:Alon, Seymour & Thomas (1990) 1276:is a minor in which the edges of 1114:by contracting edges. Otherwise, 625:for planar graphs: for any fixed 101:, it is possible to test whether 1344:in such a way that each edge of 1252:, immersion minors arise as the 1086:outgoing edges by every tree on 812:that requires four colors in an 523:-minor-free graphs have average 285: 271: 263: 251:In the following example, graph 95:forbidden minor characterization 2704:10.1090/S0002-9904-1943-08065-2 2506:Journal of Combinatorial Theory 2091:Journal of Combinatorial Theory 2037:Journal of Combinatorial Theory 1850:Demaine & Hajiaghayi (2004) 1751:Plotkin, Rao & Smith (1994) 1134:is central in a concept called 2945:ACM Transactions on Algorithms 2789:(2006), "Graph minor theory", 1862:Robertson & Seymour (1993) 1834:Robertson & Seymour (1986) 1818:Robertson & Seymour (1983) 1699:Robertson & Seymour (2003) 1671:Robertson & Seymour (2004) 1618:Robertson & Seymour (1995) 1603:Robertson & Seymour (2004) 727: 717: 676:vertices whose removal splits 662: 652: 603: 584: 556: 537: 490: 468: 16:Subgraph with contracted edges 1: 3111:10.1016/S0095-8956(03)00042-X 3048:American Mathematical Society 2806:10.1090/S0273-0979-05-01088-8 2402:10.1016/s0195-6698(80)80001-1 1633:Fellows & Langston (1988) 1498:is the number of vertices in 1201:can be obtained from a graph 842:; such a class is said to be 293:Major results and conjectures 105:is a minor of an input graph 3028:10.1016/0095-8956(86)90030-4 2996:10.1016/0095-8956(83)90079-5 2219:Bodlaender, Hans L. (1993). 2192:Bodlaender, Hans L. (1993). 2179:10.1016/0196-6774(87)90043-5 2088:(2016), "Bipartite minors", 132:to the existence of a large 3163:"Hadwiger's conjecture for 824:Minor-closed graph families 437:-minor-free graphs must be 190:allowed (that is, they are 3402: 3142:10.1016/j.jctb.2004.08.001 2736:10.1016/j.jctb.2011.07.004 2482:Diestel, Reinhard (2005), 2114:10.1016/j.jctb.2015.08.001 2051:10.1016/j.jctb.2008.03.006 1197:In the case where a graph 827: 128:relating the inability to 93:implies that an analogous 3255:10.1017/S0305004100061521 2860:10.1007/978-3-642-27875-4 2848:Ossona de Mendez, Patrice 2655:10.1007/s00493-003-0037-9 2448:10.1007/s00453-004-1106-1 2267:10.1007/s00453-011-9563-9 1832:, Theorem 9, p. 81; 1601:, theorem 4, p. 78; 1524:Knuth's up-arrow notation 1474:is part of the input but 1304:whenever the vertices of 1221:is an immersion minor of 1213:is an immersion minor of 1130:A graph operation called 830:Robertson–Seymour theorem 91:Robertson–Seymour theorem 2917:10.1109/TED.2002.1003756 2030:; Vetta, Adrian (2009), 1400:of the graph. A form of 1241:by edge-disjoint paths. 782:is a restatement of the 703:-minor-free graphs have 623:planar separator theorem 449:vertices, then a simple 79:complete bipartite graph 2957:10.1145/1597036.1597043 2745:Metody Diskret. Analiz. 2713:Kawarabayashi, Ken-ichi 2476:10.1007/3-540-45753-4_8 1982:Kawarabayashi, Ken-ichi 846:. For instance, in any 418:on surfaces of bounded 400:graph structure theorem 309:(a minor of a minor of 118:graph structure theorem 3287:10.1006/jctb.2000.2013 3080:10.1006/jctb.1995.1006 2520:10.1006/jctb.1996.0002 1945:Buchheim et al. (2014) 1755:Reed & Wood (2009) 1422:as a bipartite minor. 873:there is a finite set 854:of a graph on a fixed 735: 670: 611: 564: 498: 424:topological embeddings 2816:Mathematische Annalen 2715:; Kobayashi, Yusuke; 2563:10.1007/s004530010020 2209:See end of Section 5. 2157:Journal of Algorithms 1934:BĹ‚asiok et al. (2015) 1392:can be obtained from 1186:already was present, 1182:. In the case where 1122:-induced minor-free. 885:: a graph belongs to 805:and stating that any 736: 671: 612: 565: 499: 163:can be obtained from 126:Hadwiger's conjecture 3386:Graph theory objects 2591:Langston, Michael A. 1998:10.1109/focs.2011.52 710: 645: 617:. Additionally, the 577: 530: 461: 255:is a minor of graph 3332:Deutsche Mathematik 3247:1983MPCPS..95..261T 2909:2002ITED...49.1084A 2610:10.1145/44483.44491 2587:Fellows, Michael R. 2372:2015arXiv151007135B 1376:, which produces a 1355:Hadwiger conjecture 1336:is an odd minor of 1166:, or equivalent of 856:topological surface 746:Hadwiger conjecture 339:well-quasi-ordering 46:by deleting edges, 42:can be formed from 3381:Graph minor theory 3354:Weisstein, Eric W. 3312:10.1007/BF01594196 3191:10.1007/BF01202354 3050:, pp. 669–675 2930:, pp. 462–470 2844:NešetĹ™il, Jaroslav 2828:10.1007/BF01364272 2771:10.1007/BF02579141 2596:Journal of the ACM 1533:In the case where 1528:galactic algorithm 1178:and adds the edge 1028:Topological minors 784:four color theorem 731: 730: 666: 665: 637:-minor-free graph 607: 606: 560: 559: 494: 493: 2951:(4): Article 39, 2869:978-3-642-27874-7 2495:978-3-540-26183-4 2415:Tamassia, Roberto 2382:; Catlin, P. A.; 2074:Chudnovsky, Maria 2022:; Gerards, Bert; 1553:. In cases where 1468:Hamiltonian cycle 1292:Parity conditions 1258:non-planar graphs 1237:are connected in 1038:topological minor 775:colors. The case 725: 660: 601: 554: 488: 52:contracting edges 3393: 3367: 3366: 3339: 3322: 3290: 3289: 3265: 3226: 3217: 3201: 3174: 3145: 3144: 3123:Seymour, Paul D. 3113: 3093:Seymour, Paul D. 3083: 3082: 3061:Seymour, Paul D. 3051: 3040:Seymour, Paul D. 3031: 3030: 3009:Seymour, Paul D. 2999: 2998: 2967: 2931: 2919: 2903:(9): 1084–1086, 2894: 2880: 2838: 2809: 2808: 2781: 2752: 2739: 2738: 2707: 2706: 2682: 2665: 2648: 2621: 2612: 2581: 2556: 2531: 2522: 2498: 2478: 2464:Demaine, Erik D. 2458: 2428:Demaine, Erik D. 2422: 2404: 2374: 2365: 2347: 2330: 2287: 2286: 2252: 2243: 2237: 2235: 2228:Acta Cybernetica 2225: 2216: 2210: 2208: 2201:Acta Cybernetica 2198: 2189: 2183: 2182: 2172: 2152: 2146: 2140: 2134: 2132: 2107: 2070: 2064: 2062: 2053: 2016: 2010: 2008: 1978: 1972: 1966: 1960: 1954: 1948: 1942: 1936: 1931: 1925: 1919: 1913: 1907: 1901: 1895: 1889: 1875: 1869: 1859: 1853: 1843: 1837: 1827: 1821: 1815: 1809: 1799: 1793: 1787: 1781: 1775: 1769: 1764: 1758: 1744: 1738: 1727:Kostochka (1984) 1723:Kostochka (1982) 1720: 1714: 1708: 1702: 1692: 1686: 1680: 1674: 1664: 1658: 1656: 1642: 1636: 1630: 1621: 1615: 1606: 1596: 1587: 1577: 1486:in this case is 1470:. However, when 1434:whether a graph 1402:Wagner's theorem 1398:peripheral cycle 907:Wagner's theorem 879:forbidden minors 792: 781: 774: 763: 759: 751: 740: 738: 737: 732: 726: 721: 702: 698: 694: 693: 692: 688: 679: 675: 673: 672: 667: 661: 656: 640: 636: 632: 628: 620: 616: 614: 613: 608: 602: 591: 570:and furthermore 569: 567: 566: 561: 555: 544: 522: 518: 514: 510: 504:edges, and some 503: 501: 500: 495: 489: 478: 456: 452: 448: 444: 436: 432: 409: 405: 389:minimal elements 386: 379: 372: 362: 324: 320: 316: 312: 289: 275: 267: 242: 223: 219: 215: 174: 170: 166: 162: 157:graph isomorphic 154: 150: 146:undirected graph 123: 108: 104: 100: 88: 76: 61:that a graph is 59:Wagner's theorem 45: 41: 37: 29: 25:undirected graph 3401: 3400: 3396: 3395: 3394: 3392: 3391: 3390: 3371: 3370: 3352: 3351: 3348: 3343: 3326: 3294: 3269: 3230: 3215: 3205: 3172: 3169: 3151:Robertson, Neil 3149: 3119:Robertson, Neil 3117: 3089:Robertson, Neil 3087: 3057:Robertson, Neil 3055: 3036:Robertson, Neil 3034: 3005:Robertson, Neil 3003: 2973:Robertson, Neil 2971: 2935: 2923: 2892: 2884: 2870: 2842: 2813: 2785: 2756: 2742: 2711: 2697:(12): 935–936, 2686: 2669: 2625: 2585: 2554:math.CO/9907126 2537:Eppstein, David 2535: 2502: 2496: 2481: 2462: 2426: 2408: 2378: 2351: 2328:10.2307/1990903 2299: 2295: 2290: 2250: 2245: 2244: 2240: 2223: 2218: 2217: 2213: 2196: 2191: 2190: 2186: 2170:10.1.1.114.3864 2154: 2153: 2149: 2141: 2137: 2082:Novik, Isabella 2072: 2071: 2067: 2018: 2017: 2013: 1980: 1979: 1975: 1967: 1963: 1955: 1951: 1943: 1939: 1932: 1928: 1920: 1916: 1908: 1904: 1896: 1892: 1876: 1872: 1860: 1856: 1846:Eppstein (2000) 1844: 1840: 1828: 1824: 1816: 1812: 1800: 1796: 1788: 1784: 1778:Hadwiger (1943) 1776: 1772: 1765: 1761: 1745: 1741: 1735:Thomason (2001) 1731:Thomason (1984) 1721: 1717: 1709: 1705: 1693: 1689: 1681: 1677: 1665: 1661: 1655: 1649: 1643: 1639: 1631: 1624: 1616: 1609: 1597: 1590: 1578: 1571: 1567: 1520:polynomial time 1462:if and only if 1430:The problem of 1428: 1421: 1378:bipartite graph 1374:bipartite minor 1367:complete graphs 1332:as above, then 1294: 1286:1-planar graphs 1266: 1229:to vertices in 1128: 1126:Immersion minor 1096: 1073: 1030: 1025: 1018: 1011: 1000: 993: 986: 974:crossing number 916: 912: 832: 826: 810:3-regular graph 787: 776: 769: 766:proper coloring 761: 760:vertices, then 757: 749: 708: 707: 700: 696: 690: 683: 682: 681: 677: 643: 642: 638: 634: 630: 626: 618: 575: 574: 528: 527: 520: 519:vertices, then 516: 512: 509: 505: 459: 458: 454: 453:-vertex simple 450: 446: 442: 434: 430: 407: 403: 385: 381: 378: 374: 364: 360: 353: 346: 322: 318: 314: 310: 295: 249: 225: 221: 217: 213: 172: 168: 164: 160: 152: 148: 142: 121: 111:polynomial time 106: 102: 98: 87: 81: 75: 69: 43: 39: 35: 27: 17: 12: 11: 5: 3399: 3397: 3389: 3388: 3383: 3373: 3372: 3369: 3368: 3347: 3346:External links 3344: 3342: 3341: 3324: 3292: 3280:(2): 318–338, 3267: 3241:(2): 261–265, 3228: 3203: 3185:(3): 279–361, 3167: 3147: 3135:(2): 325–357, 3115: 3085: 3053: 3032: 3001: 2969: 2941:Wood, David R. 2933: 2921: 2882: 2868: 2840: 2822:(4): 265–268, 2811: 2787:Lovász, LászlĂł 2783: 2765:(4): 307–316, 2754: 2747:(in Russian), 2740: 2729:(2): 424–435, 2709: 2684: 2671:Hadwiger, Hugo 2667: 2639:(4): 613–632, 2623: 2603:(3): 727–739, 2583: 2547:(3): 275–291, 2533: 2500: 2494: 2479: 2460: 2442:(3): 211–215, 2424: 2406: 2396:(3): 195–199, 2376: 2349: 2321:(4): 801–808, 2296: 2294: 2291: 2289: 2288: 2238: 2211: 2184: 2163:(2): 285–303. 2147: 2135: 2080:; Nevo, Eran; 2065: 2011: 1973: 1971:, pp. 319–321. 1961: 1949: 1937: 1926: 1914: 1902: 1890: 1882:Wagner (1937b) 1878:Wagner (1937a) 1870: 1854: 1838: 1822: 1810: 1794: 1782: 1770: 1759: 1739: 1715: 1703: 1687: 1675: 1667:Diestel (2005) 1659: 1653: 1637: 1622: 1607: 1588: 1584:Wagner (1937a) 1582:, p. 77; 1568: 1566: 1563: 1549:is a minor of 1504:big O notation 1482:is a minor of 1458:is a minor of 1427: 1424: 1419: 1300:is a minor of 1293: 1290: 1265: 1264:Shallow minors 1262: 1254:planarizations 1127: 1124: 1118:is said to be 1095: 1094:Induced minors 1092: 1076:Petersen graph 1071: 1066:complete graph 1029: 1026: 1024: 1021: 1016: 1009: 998: 991: 984: 976:one) then the 914: 910: 825: 822: 818:Petersen graph 816:must have the 754:complete graph 729: 724: 719: 716: 664: 659: 654: 651: 605: 600: 597: 594: 589: 586: 583: 558: 553: 550: 547: 542: 539: 536: 507: 492: 487: 484: 481: 476: 473: 470: 467: 429:For any graph 383: 380:is a minor of 376: 358: 351: 331:Neil Robertson 313:is a minor of 294: 291: 248: 245: 220:is a minor of 188:multiple edges 180:matroid minors 141: 138: 134:complete graph 85: 73: 67:complete graph 15: 13: 10: 9: 6: 4: 3: 2: 3398: 3387: 3384: 3382: 3379: 3378: 3376: 3364: 3363: 3358: 3357:"Graph Minor" 3355: 3350: 3349: 3345: 3337: 3333: 3329: 3328:Wagner, Klaus 3325: 3321: 3317: 3313: 3309: 3305: 3301: 3297: 3296:Wagner, Klaus 3293: 3288: 3283: 3279: 3275: 3274: 3268: 3264: 3260: 3256: 3252: 3248: 3244: 3240: 3236: 3235: 3229: 3225: 3221: 3214: 3213: 3208: 3207:Thomas, Robin 3204: 3200: 3196: 3192: 3188: 3184: 3180: 3179: 3178:Combinatorica 3171: 3170:-free graphs" 3166: 3160: 3159:Thomas, Robin 3156: 3155:Seymour, Paul 3152: 3148: 3143: 3138: 3134: 3130: 3129: 3124: 3120: 3116: 3112: 3108: 3104: 3100: 3099: 3094: 3090: 3086: 3081: 3076: 3073:(1): 65–110, 3072: 3068: 3067: 3062: 3058: 3054: 3049: 3045: 3041: 3037: 3033: 3029: 3024: 3021:(1): 92–114, 3020: 3016: 3015: 3010: 3006: 3002: 2997: 2992: 2988: 2984: 2983: 2978: 2977:Seymour, Paul 2974: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2942: 2938: 2934: 2929: 2928: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2891: 2887: 2883: 2879: 2875: 2871: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2825: 2821: 2817: 2812: 2807: 2802: 2798: 2794: 2793: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2759:Combinatorica 2755: 2750: 2746: 2741: 2737: 2732: 2728: 2724: 2723: 2718: 2714: 2710: 2705: 2700: 2696: 2692: 2691: 2685: 2680: 2676: 2672: 2668: 2664: 2660: 2656: 2652: 2647: 2642: 2638: 2634: 2633: 2632:Combinatorica 2628: 2627:Grohe, Martin 2624: 2620: 2616: 2611: 2606: 2602: 2598: 2597: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2564: 2560: 2555: 2550: 2546: 2542: 2538: 2534: 2530: 2526: 2521: 2516: 2512: 2508: 2507: 2501: 2497: 2491: 2487: 2486: 2480: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2420: 2416: 2412: 2411:Mutzel, Petra 2407: 2403: 2399: 2395: 2391: 2390: 2385: 2381: 2377: 2373: 2369: 2364: 2359: 2355: 2350: 2346: 2342: 2338: 2334: 2329: 2324: 2320: 2316: 2315: 2310: 2309:Thomas, Robin 2306: 2305:Seymour, Paul 2302: 2298: 2297: 2292: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2249: 2242: 2239: 2233: 2229: 2222: 2215: 2212: 2206: 2202: 2195: 2188: 2185: 2180: 2176: 2171: 2166: 2162: 2158: 2151: 2148: 2144: 2139: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2106: 2101: 2097: 2093: 2092: 2087: 2086:Seymour, Paul 2083: 2079: 2075: 2069: 2066: 2061: 2057: 2052: 2047: 2043: 2039: 2038: 2033: 2029: 2028:Seymour, Paul 2025: 2021: 2015: 2012: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1977: 1974: 1970: 1965: 1962: 1958: 1953: 1950: 1946: 1941: 1938: 1935: 1930: 1927: 1923: 1918: 1915: 1911: 1906: 1903: 1899: 1894: 1891: 1887: 1883: 1879: 1874: 1871: 1867: 1863: 1858: 1855: 1851: 1847: 1842: 1839: 1835: 1831: 1830:Lovász (2006) 1826: 1823: 1819: 1814: 1811: 1807: 1803: 1802:Thomas (1999) 1798: 1795: 1791: 1786: 1783: 1779: 1774: 1771: 1768: 1763: 1760: 1756: 1752: 1748: 1743: 1740: 1736: 1732: 1728: 1724: 1719: 1716: 1712: 1707: 1704: 1700: 1697:, pp. 80–82; 1696: 1695:Lovász (2006) 1691: 1688: 1685:, p. 76. 1684: 1683:Lovász (2006) 1679: 1676: 1672: 1668: 1663: 1660: 1652: 1646: 1645:Lovász (2006) 1641: 1638: 1634: 1629: 1627: 1623: 1619: 1614: 1612: 1608: 1604: 1600: 1599:Lovász (2006) 1595: 1593: 1589: 1585: 1581: 1580:Lovász (2006) 1576: 1574: 1570: 1564: 1562: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1531: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1425: 1423: 1418: 1415: 1414:utility graph 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1370: 1368: 1364: 1360: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1291: 1289: 1287: 1283: 1279: 1275: 1271: 1270:shallow minor 1263: 1261: 1259: 1255: 1251: 1250:graph drawing 1246: 1242: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1195: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1125: 1123: 1121: 1117: 1113: 1109: 1105: 1104:induced minor 1102:is called an 1101: 1093: 1091: 1089: 1085: 1079: 1077: 1070: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1027: 1022: 1020: 1015: 1008: 1004: 997: 990: 983: 979: 975: 971: 967: 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 918: 908: 904: 900: 896: 892: 888: 884: 880: 876: 872: 868: 863: 861: 857: 853: 849: 845: 841: 837: 831: 823: 821: 819: 815: 814:edge coloring 811: 808: 804: 800: 799:snark theorem 796: 790: 785: 779: 772: 767: 755: 747: 742: 722: 714: 706: 687: 657: 649: 624: 598: 595: 592: 587: 581: 573: 551: 548: 545: 540: 534: 526: 485: 482: 479: 474: 471: 465: 440: 433:, the simple 427: 425: 421: 417: 413: 401: 396: 394: 390: 371: 367: 357: 350: 344: 340: 336: 332: 328: 317:itself), and 308: 304: 303:partial order 300: 292: 290: 288: 283: 281: 276: 274: 268: 266: 260: 258: 254: 246: 244: 240: 236: 232: 228: 210: 208: 207:pseudoforests 203: 201: 197: 193: 189: 185: 181: 176: 158: 147: 139: 137: 135: 131: 130:color a graph 127: 119: 114: 112: 96: 92: 84: 80: 72: 68: 64: 60: 55: 53: 49: 34:of the graph 33: 26: 22: 3360: 3335: 3331: 3303: 3299: 3277: 3271: 3238: 3232: 3211: 3182: 3176: 3164: 3132: 3126: 3105:(1): 43–76, 3102: 3096: 3070: 3064: 3043: 3018: 3012: 2989:(1): 39–61, 2986: 2980: 2948: 2944: 2926: 2900: 2896: 2886:Pegg, Ed Jr. 2851: 2819: 2815: 2799:(1): 75–86, 2796: 2790: 2762: 2758: 2748: 2744: 2726: 2720: 2694: 2688: 2678: 2674: 2646:math/0001128 2636: 2630: 2600: 2594: 2544: 2541:Algorithmica 2540: 2513:(1): 11–23, 2510: 2509:, Series B, 2504: 2485:Graph Theory 2484: 2467: 2439: 2436:Algorithmica 2435: 2418: 2393: 2387: 2380:Bollobás, B. 2353: 2318: 2312: 2261:(1): 69–84. 2258: 2255:Algorithmica 2254: 2241: 2231: 2227: 2214: 2204: 2200: 2187: 2160: 2156: 2150: 2138: 2095: 2094:, Series B, 2089: 2068: 2044:(1): 20–29, 2041: 2040:, Series B, 2035: 2014: 1989: 1976: 1964: 1952: 1940: 1929: 1917: 1912:, p. 22 1910:Diestel 2005 1905: 1900:, p. 20 1898:Diestel 2005 1893: 1873: 1857: 1841: 1825: 1813: 1797: 1785: 1773: 1767:Grohe (2003) 1762: 1742: 1718: 1711:Mader (1967) 1706: 1690: 1678: 1662: 1650: 1640: 1558: 1554: 1550: 1546: 1542: 1539:planar graph 1534: 1532: 1515: 1511: 1507: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1463: 1459: 1455: 1451: 1443: 1439: 1435: 1429: 1416: 1410:planar graph 1405: 1393: 1389: 1385: 1381: 1371: 1362: 1358: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1317: 1313: 1309: 1305: 1301: 1297: 1295: 1277: 1273: 1267: 1247: 1243: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1196: 1191: 1187: 1183: 1179: 1175: 1171: 1168:(v,u), (u,w) 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1129: 1119: 1115: 1111: 1107: 1103: 1099: 1097: 1087: 1083: 1080: 1068: 1061: 1049: 1041: 1037: 1036:is called a 1033: 1031: 1013: 1006: 1005:, while the 1003:Wagner graph 995: 988: 981: 977: 969: 957: 954:planar graph 948:has bounded 945: 936:has bounded 933: 924:has bounded 921: 919: 902: 898: 894: 890: 886: 882: 874: 870: 866: 864: 848:planar graph 844:minor-closed 843: 839: 835: 833: 820:as a minor. 788: 777: 770: 743: 685: 428: 397: 393:Klaus Wagner 369: 365: 355: 348: 335:Paul Seymour 296: 284: 279: 277: 269: 261: 256: 252: 250: 238: 234: 230: 226: 211: 204: 177: 143: 115: 82: 70: 56: 31: 30:is called a 21:graph theory 18: 3306:: 570–590, 2937:Reed, Bruce 2717:Reed, Bruce 2384:ErdĹ‘s, Paul 2098:: 219–228, 2024:Reed, Bruce 2020:Geelen, Jim 1986:Reed, Bruce 1922:Ding (1996) 1886:Hall (1943) 1806:Pegg (2002) 1561:is planar. 1537:is a fixed 1466:contains a 1448:cycle graph 1272:of a graph 1106:of a graph 1046:subdivision 1040:of a graph 942:path graphs 917:as minors. 838:is also in 803:W. T. Tutte 426:of graphs. 327:deep result 212:A function 192:multigraphs 140:Definitions 3375:Categories 3300:Math. Ann. 2363:1510.07135 2301:Alon, Noga 2293:References 2078:Kalai, Gil 1426:Algorithms 1136:immersions 1054:isomorphic 1023:Variations 966:apex graph 938:tree-depth 807:bridgeless 629:, and any 572:degeneracy 412:clique-sum 373:such that 307:transitive 224:, one has 184:self-loops 3362:MathWorld 3338:: 280–285 3320:123534907 3263:124801301 2836:120261785 2681:: 133–143 2275:0178-4617 2165:CiteSeerX 2105:1312.0210 1494:), where 1438:contains 1388:whenever 1322:odd minor 950:treewidth 926:pathwidth 852:embedding 850:, or any 705:treewidth 596:⁡ 549:⁡ 483:⁡ 3161:(1993), 2888:(2002), 2850:(2012), 2779:15736799 2663:11751235 2619:16587284 2130:14571660 2006:17385711 1545:whether 1502:and the 1432:deciding 1365:-vertex 1282:diameter 1154:, where 1098:A graph 1058:subgraph 1032:A graph 962:diameter 633:-vertex 416:embedded 343:infinite 341:: if an 301:forms a 299:relation 196:cut-edge 77:nor the 48:vertices 3243:Bibcode 3224:1725004 3199:9608738 2905:Bibcode 2878:2920058 2751:: 37–58 2579:3172160 2571:1759751 2529:1368512 2417:(ed.), 2368:Bibcode 2345:1065053 2337:1990903 2283:6204674 2234:: 1–21. 2207:: 1–21. 2122:3425242 2060:2467815 1454:, then 1357:, that 1140:lifting 1138:. The 1132:lifting 1074:in the 689:⁄ 247:Example 50:and by 3318:  3261:  3222:  3197:  2965:760001 2963:  2876:  2866:  2834:  2777:  2661:  2617:  2577:  2569:  2527:  2492:  2456:390856 2454:  2343:  2335:  2281:  2273:  2167:  2128:  2120:  2058:  2004:  1150:, and 956:, and 930:forest 764:has a 525:degree 439:sparse 89:. The 63:planar 3316:S2CID 3259:S2CID 3216:(PDF) 3195:S2CID 3173:(PDF) 2961:S2CID 2893:(PDF) 2832:S2CID 2775:S2CID 2659:S2CID 2641:arXiv 2615:S2CID 2575:S2CID 2549:arXiv 2452:S2CID 2358:arXiv 2333:JSTOR 2279:S2CID 2251:(PDF) 2224:(PDF) 2197:(PDF) 2126:S2CID 2100:arXiv 2002:S2CID 1565:Notes 1446:is a 1408:is a 1320:. An 1184:(v,w) 1180:(v,w) 1176:(u,w) 1172:(v,u) 1160:(u,w) 1156:(v,u) 1056:to a 1044:if a 913:nor K 860:genus 768:with 420:genus 368:< 345:list 155:if a 32:minor 23:, an 2864:ISBN 2490:ISBN 2271:ISSN 1190:and 1174:and 1158:and 987:and 881:for 744:The 515:has 445:has 361:, …) 333:and 321:and 233:) ≤ 200:rank 186:and 3308:doi 3304:114 3282:doi 3251:doi 3187:doi 3137:doi 3107:doi 3075:doi 3023:doi 2991:doi 2953:doi 2913:doi 2856:doi 2824:doi 2820:174 2801:doi 2767:doi 2731:doi 2727:102 2699:doi 2651:doi 2605:doi 2559:doi 2515:doi 2472:doi 2444:doi 2398:doi 2323:doi 2263:doi 2175:doi 2110:doi 2096:116 2046:doi 1994:doi 1420:3,3 1256:of 1248:In 1164:vuw 1060:of 1052:is 1048:of 1010:3,3 992:3,3 915:3,3 865:If 791:≤ 6 780:= 5 773:– 1 756:on 593:log 546:log 480:log 329:by 270:G. 262:H. 159:to 109:in 86:3,3 38:if 19:In 3377:: 3359:. 3334:, 3314:, 3302:, 3278:81 3276:, 3257:, 3249:, 3239:95 3237:, 3220:MR 3193:, 3183:13 3181:, 3175:, 3157:; 3153:; 3133:92 3131:, 3121:; 3103:89 3101:, 3091:; 3071:63 3069:, 3059:; 3038:; 3019:41 3017:, 3007:; 2987:35 2985:, 2975:; 2959:, 2947:, 2939:; 2911:, 2901:49 2899:, 2895:, 2874:MR 2872:, 2862:, 2846:; 2830:, 2818:, 2797:43 2795:, 2773:, 2761:, 2749:38 2725:, 2695:49 2693:, 2679:88 2677:, 2657:, 2649:, 2637:23 2635:, 2613:, 2601:35 2599:, 2589:; 2573:, 2567:MR 2565:, 2557:, 2545:27 2543:, 2525:MR 2523:, 2511:66 2450:, 2440:40 2438:, 2434:, 2392:, 2366:, 2356:, 2341:MR 2339:, 2331:, 2317:, 2307:; 2303:; 2277:. 2269:. 2259:64 2257:. 2253:. 2232:11 2230:. 2226:. 2205:11 2203:. 2199:. 2173:. 2159:. 2124:, 2118:MR 2116:, 2108:, 2084:; 2076:; 2056:MR 2054:, 2042:99 2034:, 2026:; 2000:, 1984:; 1884:; 1880:; 1864:; 1848:; 1804:; 1753:; 1749:; 1733:; 1729:; 1725:; 1625:^ 1610:^ 1591:^ 1572:^ 1268:A 1146:, 1019:. 944:, 932:, 741:. 699:, 354:, 259:: 243:. 175:. 54:. 3365:. 3340:. 3336:2 3323:. 3310:: 3291:. 3284:: 3266:. 3253:: 3245:: 3227:. 3202:. 3189:: 3168:6 3165:K 3146:. 3139:: 3114:. 3109:: 3084:. 3077:: 3052:. 3025:: 3000:. 2993:: 2968:. 2955:: 2949:5 2932:. 2920:. 2915:: 2907:: 2881:. 2858:: 2839:. 2826:: 2810:. 2803:: 2782:. 2769:: 2763:4 2753:. 2733:: 2708:. 2701:: 2683:. 2666:. 2653:: 2643:: 2622:. 2607:: 2582:. 2561:: 2551:: 2532:. 2517:: 2499:. 2474:: 2459:. 2446:: 2423:. 2405:. 2400:: 2394:1 2375:. 2370:: 2360:: 2348:. 2325:: 2319:3 2285:. 2265:: 2181:. 2177:: 2161:8 2145:. 2133:. 2112:: 2102:: 2063:. 2048:: 2009:. 1996:: 1959:. 1947:. 1924:. 1888:. 1868:. 1852:. 1836:. 1820:. 1808:. 1792:. 1780:. 1757:. 1737:. 1713:. 1701:. 1673:. 1654:3 1651:K 1635:. 1620:. 1605:. 1586:. 1559:G 1555:H 1551:G 1547:H 1543:G 1535:H 1516:n 1514:( 1512:O 1508:H 1500:G 1496:n 1492:n 1490:( 1488:O 1484:G 1480:H 1476:H 1472:G 1464:G 1460:G 1456:H 1452:G 1444:H 1440:H 1436:G 1417:K 1406:G 1394:G 1390:H 1386:G 1382:H 1363:k 1359:k 1350:G 1346:G 1342:G 1338:G 1334:H 1330:G 1326:H 1318:G 1314:H 1310:G 1306:H 1302:G 1298:H 1278:G 1274:G 1239:G 1235:H 1231:G 1227:H 1223:G 1219:H 1215:G 1211:H 1207:G 1203:G 1199:H 1192:w 1188:v 1152:w 1148:u 1144:v 1120:H 1116:G 1112:G 1108:G 1100:H 1088:k 1084:k 1072:5 1069:K 1062:G 1050:H 1042:G 1034:H 1017:5 1014:K 1007:K 999:5 996:K 989:K 985:5 982:K 978:H 970:H 958:F 946:F 934:F 922:F 911:5 903:X 899:X 895:F 891:X 887:F 883:F 875:X 871:F 867:F 840:F 836:F 789:k 778:k 771:k 762:G 758:k 750:G 728:) 723:n 718:( 715:O 701:H 697:H 691:3 686:n 684:2 678:G 663:) 658:n 653:( 650:O 639:G 635:H 631:n 627:H 619:H 604:) 599:h 588:h 585:( 582:O 557:) 552:h 541:h 538:( 535:O 521:H 517:h 513:H 508:h 506:K 491:) 486:h 475:h 472:n 469:( 466:O 455:H 451:n 447:h 443:H 435:H 431:H 408:H 404:H 384:j 382:G 377:i 375:G 370:j 366:i 359:2 356:G 352:1 349:G 347:( 323:H 319:G 315:G 311:G 280:G 257:G 253:H 241:) 239:G 237:( 235:f 231:H 229:( 227:f 222:G 218:H 214:f 173:H 169:G 165:G 161:H 153:G 149:H 122:H 107:G 103:H 99:H 83:K 74:5 71:K 44:G 40:H 36:G 28:H

Index

graph theory
undirected graph
vertices
contracting edges
Wagner's theorem
planar
complete graph
complete bipartite graph
Robertson–Seymour theorem
forbidden minor characterization
polynomial time
graph structure theorem
Hadwiger's conjecture
color a graph
complete graph
undirected graph
graph isomorphic
matroid minors
self-loops
multiple edges
multigraphs
cut-edge
rank
pseudoforests
graph H
graph G
transformation from G to H
relation
partial order
transitive

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑