Knowledge

Green's function for the three-variable Laplace equation

Source 📝

3039:, National Bureau of Standards Applied Mathematics Series 19, 1952. Look specifically on pages 228-263. The article by Chester Snow, "Magnetic Fields of Cylindrical Coils and Annular Coils" (National Bureau of Standards, Applied Mathematical Series 38, December 30, 1953), clearly shows the relationship between the free-space Green's function in cylindrical coordinates and the Q-function expression. Likewise, see another one of Snow's pieces of work, titled "Formulas for Computing Capacitance and Inductance", National Bureau of Standards Circular 544, September 10, 1954, pp 13–41. Indeed, not much has been published recently on the subject of toroidal functions and their applications in engineering or physics. However, a number of engineering applications do exist. One application was published; the article was written by J.P. Selvaggi, S. Salon, O. Kwon, and M.V.K. Chari, "Calculating the External Magnetic Field From Permanent Magnets in Permanent-Magnet Motors-An Alternative Method," IEEE Transactions on Magnetics, Vol. 40, No. 5, September 2004. These authors have done extensive work with Legendre functions of the second kind and half-integral degree or toroidal functions of zeroth order. They have solved numerous problems which exhibit circular cylindrical symmetry employing the toroidal functions. 3021: 25: 2344:. There are many expansions in terms of special functions for the Green's function. In the case of a boundary put at infinity with the boundary condition setting the solution to zero at infinity, then one has an infinite-extent Green's function. For the three-variable Laplace operator, one can for instance expand it in the rotationally invariant coordinate systems which allow 2735: 3271: 878: 3592: 2519: 3042:
The above expressions for the Green's function for the three-variable Laplace operator are examples of single summation expressions for this Green's function. There are also single-integral expressions for this Green's function. Examples of these can be seen to exist in rotational cylindrical
2118: 770: 3016:{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {x'} |}}={\sqrt {\frac {\pi }{2RR'(\chi ^{2}-1)^{1/2}}}}\sum _{m=-\infty }^{\infty }{\frac {\left(-1\right)^{m}}{\Gamma (m+1/2)}}P_{-{\frac {1}{2}}}^{m}{\left({\frac {\chi }{\sqrt {\chi ^{2}-1}}}\right)}e^{im(\varphi -\varphi ')}} 1203: 3050: 1442: 3368: 2324: 1646: 2351: 516: 963: 1550: 697: 3034:
in volume 18, 1947 pages 562-577 shows N.G. De Bruijn and C.J. Boukamp knew of the above relationship. In fact, virtually all the mathematics found in recent papers was already done by Chester Snow. This is found in his book titled
2628: 42: 1977: 1958: 1108: 3601:
Green's function expansions exist in all of the rotationally invariant coordinate systems which are known to yield solutions to the three-variable Laplace equation through the separation of variables technique.
1115: 775: 205: 741: 873:{\displaystyle {\begin{aligned}\mathbf {E} &=-\mathbf {\nabla } \phi (\mathbf {x} )\\{\boldsymbol {\nabla }}\cdot \mathbf {E} &={\frac {\rho (\mathbf {x} )}{\varepsilon _{0}}}\end{aligned}}} 1294: 1247: 564: 2217: 1350: 889: 2222: 1555: 2677: 425: 3266:{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {x'} |}}=\int _{0}^{\infty }J_{0}{\left(k{\sqrt {R^{2}+{R'}^{2}-2RR'\cos(\varphi -\varphi ')}}\right)}e^{-k(z_{>}-z_{<})}\,dk,} 2156: 1692: 1471: 1345: 996: 618: 3587:{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {x'} |}}={\frac {2}{\pi }}\int _{0}^{\infty }K_{0}{\left(k{\sqrt {R^{2}+{R'}^{2}-2RR'\cos(\varphi -\varphi ')}}\right)}\cos\,dk.} 3314: 1043: 613: 265: 2336:
in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable
420: 389: 327: 296: 2719: 586: 354: 232: 2514:{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {x'} |}}={\frac {1}{\pi {\sqrt {RR'}}}}\sum _{m=-\infty }^{\infty }e^{im(\varphi -\varphi ')}Q_{m-{\frac {1}{2}}}(\chi )} 2328:
The free-space circular cylindrical Green's function (see below) is given in terms of the reciprocal distance between two points. The expression is derived in Jackson's
1763: 89: 61: 3359: 2176: 1712: 68: 1772: 3334: 2524: 1314: 1048: 1016: 3030:, published by Howard Cohl and Joel Tohline. The above-mentioned formula is also known in the engineering community. For instance, a paper written in the 75: 2158:. The less than (greater than) notation means, take the primed or unprimed spherical radius depending on which is less than (greater than) the other. The 57: 3753: 152: 2341: 2113:{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {x'} |}}=\sum _{l=0}^{\infty }{\frac {r_{<}^{l}}{r_{>}^{l+1}}}P_{l}(\cos \gamma ),} 1962:
Many expansion formulas are possible, given the algebraic expression for the Green's function. One of the most well-known of these, the
82: 3365:
of the difference of vertical heights whose kernel is given in terms of the order-zero modified Bessel function of the second kind as
108: 3617: 46: 3047:
in the difference of vertical heights whose kernel is given in terms of the order-zero Bessel function of the first kind as
998:
to this equation for an arbitrary charge distribution by temporarily considering the distribution created by a point charge
2683:
of the second kind, which is a toroidal harmonic. Here the expansion has been written in terms of cylindrical coordinates
1252: 1198:{\displaystyle -{\frac {\varepsilon _{0}}{q}}\mathbf {\nabla } ^{2}\phi (\mathbf {x} )=\delta (\mathbf {x} -\mathbf {x'} )} 3675: 3622: 1963: 146: 702: 3647: 3642: 1208: 525: 2181: 2633: 3657: 3361:. Similarly, the Green's function for the three-variable Laplace equation can be given as a Fourier integral 3652: 3637: 3607: 2345: 35: 2123: 1651: 1437:{\displaystyle \phi (\mathbf {x} )=\int G(\mathbf {x} ,\mathbf {x'} )\rho (\mathbf {x'} )\,d\mathbf {x} '} 1316:. Therefore, from the discussion above, if we can find the Green's function of this operator, we can find 958:{\displaystyle -\mathbf {\nabla } ^{2}\phi (\mathbf {x} )={\frac {\rho (\mathbf {x} )}{\varepsilon _{0}}}} 2319:{\displaystyle \cos \gamma =\cos \theta \cos \theta '+\sin \theta \sin \theta '\cos(\varphi -\varphi ').} 1641:{\displaystyle G(\mathbf {x} ,\mathbf {x'} )=-{\frac {1}{4\pi \left|\mathbf {x} -\mathbf {x'} \right|}},} 1319: 970: 3627: 3612: 3276: 1766: 1460:
in three variables is given in terms of the reciprocal distance between two points and is known as the "
357: 883: 142: 391:
to a general system of this type can be written as an integral over a distribution of source given by
241: 3632: 2722: 1971: 1967: 1715: 744: 394: 363: 301: 270: 128: 2686: 3670: 1465: 1453: 1021: 591: 519: 138: 569: 3037:
Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory
2337: 760: 332: 210: 1728: 511:{\displaystyle u(\mathbf {x} )=\int G(\mathbf {x} ,\mathbf {x'} )f(\mathbf {x'} )d\mathbf {x} '} 3730: 3044: 2680: 1725:
of the Green's function for the three-variable Laplace operator, apart from the constant term
2161: 1697: 3722: 3362: 2729: 2333: 2332:. Using the Green's function for the three-variable Laplace operator, one can integrate the 1545:{\displaystyle \nabla ^{2}G(\mathbf {x} ,\mathbf {x'} )=\delta (\mathbf {x} -\mathbf {x'} )} 1457: 692:{\displaystyle \nabla ^{2}G(\mathbf {x} ,\mathbf {x'} )=\delta (\mathbf {x} -\mathbf {x'} )} 235: 3711:"A Compact Cylindrical Green's Function Expansion for the Solution of Potential Problems" 3339: 3319: 1299: 1001: 764: 756: 3747: 3026:
This formula was used in 1999 for astrophysical applications in a paper published in
1461: 3710: 759:. In such a system, the electric field is expressed as the negative gradient of the 134: 2732:
for toroidal harmonics we can obtain an alternative form of the Green's function
3597:
Rotationally invariant Green's functions for the three-variable Laplace operator
24: 133:
is used to describe the response of a particular type of physical system to a
3734: 1953:{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {x'} |}}=\left^{-{1}/{2}}.} 2623:{\displaystyle \chi ={\frac {R^{2}+{R'}^{2}+\left(z-z'\right)^{2}}{2RR'}}} 1103:{\displaystyle \rho (\mathbf {x} )=q\,\delta (\mathbf {x} -\mathbf {x'} )} 1694:
are the standard Cartesian coordinates in a three-dimensional space, and
122: 3726: 1966:
for the three-variable Laplace equation, is given in terms of the
3596: 18: 755:
One physical system of this type is a charge distribution in
131:) for the Laplacian (or Laplace operator) in three variables 200:{\displaystyle \nabla ^{2}u(\mathbf {x} )=f(\mathbf {x} )} 58:"Green's function for the three-variable Laplace equation" 2120:
which has been written in terms of spherical coordinates
1296:
will give the response of the system to the point charge
2178:
represents the angle between the two arbitrary vectors
1289:{\textstyle -{\frac {\varepsilon _{0}}{q}}\nabla ^{2}} 1255: 3371: 3342: 3322: 3279: 3053: 2738: 2689: 2636: 2527: 2354: 2225: 2184: 2164: 2126: 1980: 1775: 1731: 1700: 1654: 1558: 1474: 1353: 1322: 1302: 1211: 1118: 1051: 1024: 1004: 973: 892: 773: 705: 621: 594: 572: 528: 428: 397: 366: 335: 304: 273: 244: 213: 155: 3023:
in terms for a toroidal harmonic of the first kind.
736:{\displaystyle \delta (\mathbf {x} -\mathbf {x'} )} 49:. Unsourced material may be challenged and removed. 3586: 3353: 3328: 3308: 3265: 3015: 2713: 2671: 2622: 2513: 2318: 2211: 2170: 2150: 2112: 1952: 1757: 1706: 1686: 1640: 1544: 1436: 1339: 1308: 1288: 1241: 1197: 1102: 1037: 1010: 990: 957: 872: 735: 691: 607: 580: 566:describes the response of the system at the point 558: 510: 414: 383: 348: 321: 290: 259: 226: 199: 1468:". That is to say, the solution of the equation 3709:Cohl, Howard S.; Tohline, Joel E. (1999-12-10). 1242:{\displaystyle G(\mathbf {x} ,\mathbf {x'} )} 559:{\displaystyle G(\mathbf {x} ,\mathbf {x'} )} 8: 2212:{\displaystyle (\mathbf {x} ,\mathbf {x'} )} 2672:{\displaystyle Q_{m-{\frac {1}{2}}}(\chi )} 141:arises in systems that can be described by 3574: 3482: 3472: 3462: 3456: 3447: 3441: 3431: 3426: 3412: 3401: 3391: 3383: 3378: 3372: 3370: 3341: 3321: 3297: 3284: 3278: 3253: 3242: 3229: 3215: 3154: 3144: 3134: 3128: 3119: 3113: 3103: 3098: 3083: 3073: 3065: 3060: 3054: 3052: 2984: 2960: 2950: 2945: 2939: 2928: 2924: 2906: 2884: 2865: 2859: 2845: 2827: 2823: 2807: 2779: 2768: 2758: 2750: 2745: 2739: 2737: 2688: 2648: 2641: 2635: 2595: 2561: 2551: 2541: 2534: 2526: 2490: 2483: 2450: 2440: 2426: 2404: 2395: 2384: 2374: 2366: 2361: 2355: 2353: 2224: 2196: 2188: 2183: 2163: 2125: 2086: 2068: 2063: 2053: 2048: 2042: 2036: 2025: 2010: 2000: 1992: 1987: 1981: 1979: 1940: 1935: 1930: 1926: 1915: 1881: 1847: 1805: 1795: 1787: 1782: 1776: 1774: 1738: 1730: 1699: 1655: 1653: 1617: 1609: 1592: 1573: 1565: 1557: 1529: 1521: 1499: 1491: 1479: 1473: 1425: 1420: 1407: 1388: 1380: 1360: 1352: 1329: 1321: 1301: 1280: 1265: 1259: 1254: 1226: 1218: 1210: 1182: 1174: 1157: 1145: 1140: 1128: 1122: 1117: 1087: 1079: 1072: 1058: 1050: 1025: 1023: 1003: 980: 972: 947: 934: 925: 914: 902: 897: 891: 858: 845: 836: 824: 816: 804: 793: 778: 774: 772: 720: 712: 704: 676: 668: 646: 638: 626: 620: 595: 593: 573: 571: 543: 535: 527: 499: 482: 463: 455: 435: 427: 404: 396: 373: 365: 340: 334: 329:is the solution to the equation. Because 311: 303: 280: 272: 251: 247: 246: 243: 218: 212: 189: 172: 160: 154: 109:Learn how and when to remove this message 3686: 298:is the source term of the system, and 882:Combining these expressions gives us 7: 2342:linear partial differential equation 2151:{\displaystyle (r,\theta ,\varphi )} 1687:{\displaystyle \mathbf {x} =(x,y,z)} 47:adding citations to reliable sources 3316:are the greater (lesser) variables 1444:for a general charge distribution. 1340:{\displaystyle \phi (\mathbf {x} )} 991:{\displaystyle \phi (\mathbf {x} )} 3432: 3309:{\displaystyle z_{>}(z_{<})} 3104: 2891: 2860: 2855: 2441: 2436: 2037: 1476: 1277: 1141: 898: 794: 623: 337: 215: 157: 14: 3698:(3rd ed.). pp. 125–127. 699:and the point source is given by 522:for Laplacian in three variables 3393: 3384: 3075: 3066: 2760: 2751: 2376: 2367: 2198: 2189: 2002: 1993: 1797: 1788: 1656: 1619: 1610: 1575: 1566: 1531: 1522: 1501: 1492: 1426: 1409: 1390: 1381: 1361: 1330: 1228: 1219: 1184: 1175: 1158: 1089: 1080: 1059: 1027: 981: 935: 915: 846: 825: 817: 805: 779: 722: 713: 678: 669: 648: 639: 597: 574: 545: 536: 500: 484: 465: 456: 436: 405: 374: 312: 281: 260:{\displaystyle \mathbb {R} ^{3}} 190: 173: 23: 2679:is the odd-half-integer degree 415:{\displaystyle f(\mathbf {x} )} 384:{\displaystyle u(\mathbf {x} )} 322:{\displaystyle u(\mathbf {x} )} 291:{\displaystyle f(\mathbf {x} )} 34:needs additional citations for 3754:Partial differential equations 3618:Prolate spheroidal coordinates 3571: 3568: 3551: 3545: 3528: 3511: 3402: 3379: 3303: 3290: 3248: 3222: 3200: 3183: 3084: 3061: 3008: 2991: 2914: 2894: 2820: 2800: 2769: 2746: 2714:{\displaystyle (R,\varphi ,z)} 2708: 2690: 2666: 2660: 2508: 2502: 2474: 2457: 2385: 2362: 2310: 2293: 2206: 2185: 2145: 2127: 2104: 2092: 2011: 1988: 1806: 1783: 1752: 1743: 1681: 1663: 1583: 1562: 1539: 1518: 1509: 1488: 1417: 1404: 1398: 1377: 1365: 1357: 1334: 1326: 1236: 1215: 1192: 1171: 1162: 1154: 1097: 1076: 1063: 1055: 985: 977: 939: 931: 919: 911: 850: 842: 809: 801: 767:in differential form applies: 730: 709: 686: 665: 656: 635: 553: 532: 492: 479: 473: 452: 440: 432: 409: 401: 378: 370: 316: 308: 285: 277: 194: 186: 177: 169: 16:Partial differential equations 1: 3648:Flat-disk cyclide coordinates 3643:Flat-ring cyclide coordinates 3623:Oblate spheroidal coordinates 1038:{\displaystyle \mathbf {x'} } 608:{\displaystyle \mathbf {x'} } 588:to a point source located at 147:partial differential equation 581:{\displaystyle \mathbf {x} } 3043:coordinates as an integral 349:{\displaystyle \nabla ^{2}} 227:{\displaystyle \nabla ^{2}} 3770: 3032:Journal of Applied Physics 1758:{\displaystyle -1/(4\pi )} 3715:The Astrophysical Journal 3696:Classical Electrodynamics 3028:The Astrophysical Journal 2330:Classical Electrodynamics 967:We can find the solution 1769:shall be referred to as 3658:Cap-cyclide coordinates 3638:Bispherical coordinates 3608:cylindrical coordinates 2346:separation of variables 2171:{\displaystyle \gamma } 1707:{\displaystyle \delta } 1448:Mathematical exposition 3653:Bi-cyclide coordinates 3588: 3355: 3330: 3310: 3267: 3017: 2864: 2715: 2673: 2624: 2515: 2445: 2320: 2213: 2172: 2152: 2114: 2041: 1954: 1759: 1708: 1688: 1642: 1546: 1438: 1341: 1310: 1290: 1243: 1199: 1104: 1039: 1012: 992: 959: 874: 737: 693: 609: 582: 560: 512: 416: 385: 350: 323: 292: 261: 228: 201: 137:. In particular, this 3628:Parabolic coordinates 3613:spherical coordinates 3589: 3356: 3331: 3311: 3268: 3018: 2841: 2716: 2674: 2625: 2516: 2422: 2321: 2214: 2173: 2153: 2115: 2021: 1955: 1767:Cartesian coordinates 1760: 1709: 1689: 1643: 1547: 1439: 1342: 1311: 1291: 1244: 1200: 1105: 1040: 1013: 993: 960: 875: 738: 694: 610: 583: 561: 513: 417: 386: 358:differential operator 351: 324: 293: 262: 229: 202: 127:Green's function (or 3633:Toroidal coordinates 3369: 3340: 3320: 3277: 3051: 2736: 2723:Toroidal coordinates 2721:. See for instance 2687: 2634: 2525: 2352: 2223: 2182: 2162: 2124: 1978: 1972:Legendre polynomials 1773: 1729: 1723:algebraic expression 1716:Dirac delta function 1698: 1652: 1556: 1472: 1351: 1320: 1300: 1253: 1209: 1116: 1049: 1022: 1002: 971: 890: 771: 745:Dirac delta function 703: 619: 592: 570: 526: 426: 395: 364: 333: 302: 271: 242: 211: 153: 129:fundamental solution 43:improve this article 3671:Newtonian potential 3436: 3108: 2944: 2079: 2058: 1968:generating function 1466:Newtonian potential 3584: 3422: 3354:{\displaystyle z'} 3351: 3326: 3306: 3263: 3094: 3013: 2920: 2711: 2669: 2620: 2511: 2338:coordinate systems 2316: 2209: 2168: 2148: 2110: 2059: 2044: 1950: 1755: 1704: 1684: 1638: 1542: 1434: 1337: 1306: 1286: 1239: 1195: 1100: 1035: 1008: 988: 955: 884:Poisson's equation 870: 868: 761:electric potential 733: 689: 605: 578: 556: 508: 412: 381: 346: 319: 288: 257: 224: 197: 149:(PDE) of the form 143:Poisson's equation 3676:Laplace expansion 3531: 3420: 3407: 3329:{\displaystyle z} 3203: 3089: 3045:Laplace transform 2973: 2972: 2936: 2918: 2839: 2838: 2774: 2728:Using one of the 2681:Legendre function 2656: 2618: 2498: 2420: 2417: 2390: 2348:. For instance: 2080: 2016: 1964:Laplace expansion 1811: 1633: 1309:{\displaystyle q} 1274: 1205:which shows that 1137: 1011:{\displaystyle q} 953: 864: 119: 118: 111: 93: 3761: 3739: 3738: 3706: 3700: 3699: 3691: 3593: 3591: 3590: 3585: 3567: 3538: 3537: 3533: 3532: 3527: 3504: 3487: 3486: 3481: 3480: 3467: 3466: 3457: 3446: 3445: 3435: 3430: 3421: 3413: 3408: 3406: 3405: 3400: 3399: 3387: 3382: 3373: 3363:cosine transform 3360: 3358: 3357: 3352: 3350: 3335: 3333: 3332: 3327: 3315: 3313: 3312: 3307: 3302: 3301: 3289: 3288: 3272: 3270: 3269: 3264: 3252: 3251: 3247: 3246: 3234: 3233: 3210: 3209: 3205: 3204: 3199: 3176: 3159: 3158: 3153: 3152: 3139: 3138: 3129: 3118: 3117: 3107: 3102: 3090: 3088: 3087: 3082: 3081: 3069: 3064: 3055: 3022: 3020: 3019: 3014: 3012: 3011: 3007: 2979: 2978: 2974: 2965: 2964: 2955: 2951: 2943: 2938: 2937: 2929: 2919: 2917: 2910: 2889: 2888: 2883: 2879: 2866: 2863: 2858: 2840: 2837: 2836: 2835: 2831: 2812: 2811: 2799: 2781: 2780: 2775: 2773: 2772: 2767: 2766: 2754: 2749: 2740: 2730:Whipple formulae 2720: 2718: 2717: 2712: 2678: 2676: 2675: 2670: 2659: 2658: 2657: 2649: 2629: 2627: 2626: 2621: 2619: 2617: 2616: 2601: 2600: 2599: 2594: 2590: 2589: 2566: 2565: 2560: 2559: 2546: 2545: 2535: 2520: 2518: 2517: 2512: 2501: 2500: 2499: 2491: 2478: 2477: 2473: 2444: 2439: 2421: 2419: 2418: 2416: 2405: 2396: 2391: 2389: 2388: 2383: 2382: 2370: 2365: 2356: 2334:Poisson equation 2325: 2323: 2322: 2317: 2309: 2286: 2260: 2218: 2216: 2215: 2210: 2205: 2204: 2192: 2177: 2175: 2174: 2169: 2157: 2155: 2154: 2149: 2119: 2117: 2116: 2111: 2091: 2090: 2081: 2078: 2067: 2057: 2052: 2043: 2040: 2035: 2017: 2015: 2014: 2009: 2008: 1996: 1991: 1982: 1959: 1957: 1956: 1951: 1946: 1945: 1944: 1939: 1934: 1925: 1921: 1920: 1919: 1914: 1910: 1909: 1886: 1885: 1880: 1876: 1875: 1852: 1851: 1846: 1842: 1841: 1812: 1810: 1809: 1804: 1803: 1791: 1786: 1777: 1764: 1762: 1761: 1756: 1742: 1713: 1711: 1710: 1705: 1693: 1691: 1690: 1685: 1659: 1647: 1645: 1644: 1639: 1634: 1632: 1631: 1627: 1626: 1625: 1613: 1593: 1582: 1581: 1569: 1551: 1549: 1548: 1543: 1538: 1537: 1525: 1508: 1507: 1495: 1484: 1483: 1458:Laplace operator 1454:Green's function 1443: 1441: 1440: 1435: 1433: 1429: 1416: 1415: 1397: 1396: 1384: 1364: 1346: 1344: 1343: 1338: 1333: 1315: 1313: 1312: 1307: 1295: 1293: 1292: 1287: 1285: 1284: 1275: 1270: 1269: 1260: 1248: 1246: 1245: 1240: 1235: 1234: 1222: 1204: 1202: 1201: 1196: 1191: 1190: 1178: 1161: 1150: 1149: 1144: 1138: 1133: 1132: 1123: 1109: 1107: 1106: 1101: 1096: 1095: 1083: 1062: 1044: 1042: 1041: 1036: 1034: 1033: 1017: 1015: 1014: 1009: 997: 995: 994: 989: 984: 964: 962: 961: 956: 954: 952: 951: 942: 938: 926: 918: 907: 906: 901: 879: 877: 876: 871: 869: 865: 863: 862: 853: 849: 837: 828: 820: 808: 797: 782: 742: 740: 739: 734: 729: 728: 716: 698: 696: 695: 690: 685: 684: 672: 655: 654: 642: 631: 630: 614: 612: 611: 606: 604: 603: 587: 585: 584: 579: 577: 565: 563: 562: 557: 552: 551: 539: 520:Green's function 517: 515: 514: 509: 507: 503: 491: 490: 472: 471: 459: 439: 421: 419: 418: 413: 408: 390: 388: 387: 382: 377: 355: 353: 352: 347: 345: 344: 328: 326: 325: 320: 315: 297: 295: 294: 289: 284: 266: 264: 263: 258: 256: 255: 250: 236:Laplace operator 233: 231: 230: 225: 223: 222: 206: 204: 203: 198: 193: 176: 165: 164: 139:Green's function 114: 107: 103: 100: 94: 92: 51: 27: 19: 3769: 3768: 3764: 3763: 3762: 3760: 3759: 3758: 3744: 3743: 3742: 3708: 3707: 3703: 3693: 3692: 3688: 3684: 3667: 3662: 3599: 3560: 3520: 3497: 3473: 3471: 3458: 3452: 3448: 3437: 3392: 3377: 3367: 3366: 3343: 3338: 3337: 3318: 3317: 3293: 3280: 3275: 3274: 3238: 3225: 3211: 3192: 3169: 3145: 3143: 3130: 3124: 3120: 3109: 3074: 3059: 3049: 3048: 3000: 2980: 2956: 2946: 2890: 2872: 2868: 2867: 2819: 2803: 2792: 2785: 2759: 2744: 2734: 2733: 2685: 2684: 2637: 2632: 2631: 2609: 2602: 2582: 2575: 2571: 2570: 2552: 2550: 2537: 2536: 2523: 2522: 2479: 2466: 2446: 2409: 2400: 2375: 2360: 2350: 2349: 2302: 2279: 2253: 2221: 2220: 2197: 2180: 2179: 2160: 2159: 2122: 2121: 2082: 2001: 1986: 1976: 1975: 1902: 1895: 1891: 1890: 1868: 1861: 1857: 1856: 1834: 1827: 1823: 1822: 1821: 1817: 1816: 1796: 1781: 1771: 1770: 1727: 1726: 1696: 1695: 1650: 1649: 1618: 1608: 1604: 1597: 1574: 1554: 1553: 1530: 1500: 1475: 1470: 1469: 1452:The free-space 1450: 1424: 1408: 1389: 1349: 1348: 1318: 1317: 1298: 1297: 1276: 1261: 1251: 1250: 1227: 1207: 1206: 1183: 1139: 1124: 1114: 1113: 1088: 1047: 1046: 1026: 1020: 1019: 1000: 999: 969: 968: 943: 927: 896: 888: 887: 867: 866: 854: 838: 829: 813: 812: 783: 769: 768: 753: 721: 701: 700: 677: 647: 622: 617: 616: 596: 590: 589: 568: 567: 544: 524: 523: 498: 483: 464: 424: 423: 393: 392: 362: 361: 360:, the solution 336: 331: 330: 300: 299: 269: 268: 245: 240: 239: 214: 209: 208: 156: 151: 150: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 3767: 3765: 3757: 3756: 3746: 3745: 3741: 3740: 3727:10.1086/308062 3701: 3685: 3683: 3680: 3679: 3678: 3673: 3666: 3663: 3661: 3660: 3655: 3650: 3645: 3640: 3635: 3630: 3625: 3620: 3615: 3610: 3604: 3598: 3595: 3583: 3580: 3577: 3573: 3570: 3566: 3563: 3559: 3556: 3553: 3550: 3547: 3544: 3541: 3536: 3530: 3526: 3523: 3519: 3516: 3513: 3510: 3507: 3503: 3500: 3496: 3493: 3490: 3485: 3479: 3476: 3470: 3465: 3461: 3455: 3451: 3444: 3440: 3434: 3429: 3425: 3419: 3416: 3411: 3404: 3398: 3395: 3390: 3386: 3381: 3376: 3349: 3346: 3325: 3305: 3300: 3296: 3292: 3287: 3283: 3262: 3259: 3256: 3250: 3245: 3241: 3237: 3232: 3228: 3224: 3221: 3218: 3214: 3208: 3202: 3198: 3195: 3191: 3188: 3185: 3182: 3179: 3175: 3172: 3168: 3165: 3162: 3157: 3151: 3148: 3142: 3137: 3133: 3127: 3123: 3116: 3112: 3106: 3101: 3097: 3093: 3086: 3080: 3077: 3072: 3068: 3063: 3058: 3010: 3006: 3003: 2999: 2996: 2993: 2990: 2987: 2983: 2977: 2971: 2968: 2963: 2959: 2954: 2949: 2942: 2935: 2932: 2927: 2923: 2916: 2913: 2909: 2905: 2902: 2899: 2896: 2893: 2887: 2882: 2878: 2875: 2871: 2862: 2857: 2854: 2851: 2848: 2844: 2834: 2830: 2826: 2822: 2818: 2815: 2810: 2806: 2802: 2798: 2795: 2791: 2788: 2784: 2778: 2771: 2765: 2762: 2757: 2753: 2748: 2743: 2710: 2707: 2704: 2701: 2698: 2695: 2692: 2668: 2665: 2662: 2655: 2652: 2647: 2644: 2640: 2615: 2612: 2608: 2605: 2598: 2593: 2588: 2585: 2581: 2578: 2574: 2569: 2564: 2558: 2555: 2549: 2544: 2540: 2533: 2530: 2510: 2507: 2504: 2497: 2494: 2489: 2486: 2482: 2476: 2472: 2469: 2465: 2462: 2459: 2456: 2453: 2449: 2443: 2438: 2435: 2432: 2429: 2425: 2415: 2412: 2408: 2403: 2399: 2394: 2387: 2381: 2378: 2373: 2369: 2364: 2359: 2315: 2312: 2308: 2305: 2301: 2298: 2295: 2292: 2289: 2285: 2282: 2278: 2275: 2272: 2269: 2266: 2263: 2259: 2256: 2252: 2249: 2246: 2243: 2240: 2237: 2234: 2231: 2228: 2208: 2203: 2200: 2195: 2191: 2187: 2167: 2147: 2144: 2141: 2138: 2135: 2132: 2129: 2109: 2106: 2103: 2100: 2097: 2094: 2089: 2085: 2077: 2074: 2071: 2066: 2062: 2056: 2051: 2047: 2039: 2034: 2031: 2028: 2024: 2020: 2013: 2007: 2004: 1999: 1995: 1990: 1985: 1949: 1943: 1938: 1933: 1929: 1924: 1918: 1913: 1908: 1905: 1901: 1898: 1894: 1889: 1884: 1879: 1874: 1871: 1867: 1864: 1860: 1855: 1850: 1845: 1840: 1837: 1833: 1830: 1826: 1820: 1815: 1808: 1802: 1799: 1794: 1790: 1785: 1780: 1754: 1751: 1748: 1745: 1741: 1737: 1734: 1703: 1683: 1680: 1677: 1674: 1671: 1668: 1665: 1662: 1658: 1637: 1630: 1624: 1621: 1616: 1612: 1607: 1603: 1600: 1596: 1591: 1588: 1585: 1580: 1577: 1572: 1568: 1564: 1561: 1541: 1536: 1533: 1528: 1524: 1520: 1517: 1514: 1511: 1506: 1503: 1498: 1494: 1490: 1487: 1482: 1478: 1449: 1446: 1432: 1428: 1423: 1419: 1414: 1411: 1406: 1403: 1400: 1395: 1392: 1387: 1383: 1379: 1376: 1373: 1370: 1367: 1363: 1359: 1356: 1336: 1332: 1328: 1325: 1305: 1283: 1279: 1273: 1268: 1264: 1258: 1238: 1233: 1230: 1225: 1221: 1217: 1214: 1194: 1189: 1186: 1181: 1177: 1173: 1170: 1167: 1164: 1160: 1156: 1153: 1148: 1143: 1136: 1131: 1127: 1121: 1112:In this case, 1099: 1094: 1091: 1086: 1082: 1078: 1075: 1071: 1068: 1065: 1061: 1057: 1054: 1032: 1029: 1007: 987: 983: 979: 976: 950: 946: 941: 937: 933: 930: 924: 921: 917: 913: 910: 905: 900: 895: 861: 857: 852: 848: 844: 841: 835: 832: 830: 827: 823: 819: 815: 814: 811: 807: 803: 800: 796: 792: 789: 786: 784: 781: 777: 776: 757:electrostatics 752: 749: 732: 727: 724: 719: 715: 711: 708: 688: 683: 680: 675: 671: 667: 664: 661: 658: 653: 650: 645: 641: 637: 634: 629: 625: 602: 599: 576: 555: 550: 547: 542: 538: 534: 531: 506: 502: 497: 494: 489: 486: 481: 478: 475: 470: 467: 462: 458: 454: 451: 448: 445: 442: 438: 434: 431: 411: 407: 403: 400: 380: 376: 372: 369: 343: 339: 318: 314: 310: 307: 287: 283: 279: 276: 254: 249: 221: 217: 196: 192: 188: 185: 182: 179: 175: 171: 168: 163: 159: 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 3766: 3755: 3752: 3751: 3749: 3736: 3732: 3728: 3724: 3721:(1): 86–101. 3720: 3716: 3712: 3705: 3702: 3697: 3690: 3687: 3681: 3677: 3674: 3672: 3669: 3668: 3664: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3606: 3605: 3603: 3594: 3581: 3578: 3575: 3564: 3561: 3557: 3554: 3548: 3542: 3539: 3534: 3524: 3521: 3517: 3514: 3508: 3505: 3501: 3498: 3494: 3491: 3488: 3483: 3477: 3474: 3468: 3463: 3459: 3453: 3449: 3442: 3438: 3427: 3423: 3417: 3414: 3409: 3396: 3388: 3374: 3364: 3347: 3344: 3323: 3298: 3294: 3285: 3281: 3260: 3257: 3254: 3243: 3239: 3235: 3230: 3226: 3219: 3216: 3212: 3206: 3196: 3193: 3189: 3186: 3180: 3177: 3173: 3170: 3166: 3163: 3160: 3155: 3149: 3146: 3140: 3135: 3131: 3125: 3121: 3114: 3110: 3099: 3095: 3091: 3078: 3070: 3056: 3046: 3040: 3038: 3033: 3029: 3024: 3004: 3001: 2997: 2994: 2988: 2985: 2981: 2975: 2969: 2966: 2961: 2957: 2952: 2947: 2940: 2933: 2930: 2925: 2921: 2911: 2907: 2903: 2900: 2897: 2885: 2880: 2876: 2873: 2869: 2852: 2849: 2846: 2842: 2832: 2828: 2824: 2816: 2813: 2808: 2804: 2796: 2793: 2789: 2786: 2782: 2776: 2763: 2755: 2741: 2731: 2726: 2724: 2705: 2702: 2699: 2696: 2693: 2682: 2663: 2653: 2650: 2645: 2642: 2638: 2613: 2610: 2606: 2603: 2596: 2591: 2586: 2583: 2579: 2576: 2572: 2567: 2562: 2556: 2553: 2547: 2542: 2538: 2531: 2528: 2505: 2495: 2492: 2487: 2484: 2480: 2470: 2467: 2463: 2460: 2454: 2451: 2447: 2433: 2430: 2427: 2423: 2413: 2410: 2406: 2401: 2397: 2392: 2379: 2371: 2357: 2347: 2343: 2339: 2335: 2331: 2326: 2313: 2306: 2303: 2299: 2296: 2290: 2287: 2283: 2280: 2276: 2273: 2270: 2267: 2264: 2261: 2257: 2254: 2250: 2247: 2244: 2241: 2238: 2235: 2232: 2229: 2226: 2201: 2193: 2165: 2142: 2139: 2136: 2133: 2130: 2107: 2101: 2098: 2095: 2087: 2083: 2075: 2072: 2069: 2064: 2060: 2054: 2049: 2045: 2032: 2029: 2026: 2022: 2018: 2005: 1997: 1983: 1973: 1969: 1965: 1960: 1947: 1941: 1936: 1931: 1927: 1922: 1916: 1911: 1906: 1903: 1899: 1896: 1892: 1887: 1882: 1877: 1872: 1869: 1865: 1862: 1858: 1853: 1848: 1843: 1838: 1835: 1831: 1828: 1824: 1818: 1813: 1800: 1792: 1778: 1768: 1765:expressed in 1749: 1746: 1739: 1735: 1732: 1724: 1719: 1717: 1701: 1678: 1675: 1672: 1669: 1666: 1660: 1635: 1628: 1622: 1614: 1605: 1601: 1598: 1594: 1589: 1586: 1578: 1570: 1559: 1534: 1526: 1515: 1512: 1504: 1496: 1485: 1480: 1467: 1463: 1462:Newton kernel 1459: 1455: 1447: 1445: 1430: 1421: 1412: 1401: 1393: 1385: 1374: 1371: 1368: 1354: 1323: 1303: 1281: 1271: 1266: 1262: 1256: 1231: 1223: 1212: 1187: 1179: 1168: 1165: 1151: 1146: 1134: 1129: 1125: 1119: 1110: 1092: 1084: 1073: 1069: 1066: 1052: 1030: 1005: 974: 965: 948: 944: 928: 922: 908: 903: 893: 885: 880: 859: 855: 839: 833: 831: 821: 798: 790: 787: 785: 766: 762: 758: 750: 748: 746: 725: 717: 706: 681: 673: 662: 659: 651: 643: 632: 627: 600: 548: 540: 529: 521: 504: 495: 487: 476: 468: 460: 449: 446: 443: 429: 398: 367: 359: 341: 305: 274: 252: 237: 219: 183: 180: 166: 161: 148: 144: 140: 136: 132: 130: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 3718: 3714: 3704: 3695: 3689: 3600: 3041: 3036: 3031: 3027: 3025: 2727: 2329: 2327: 1961: 1722: 1720: 1451: 1111: 966: 881: 754: 356:is a linear 135:point source 126: 120: 105: 99:October 2012 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1018:located at 765:Gauss's law 3682:References 751:Motivation 518:where the 69:newspapers 3735:0004-637X 3694:Jackson. 3558:− 3543:⁡ 3522:φ 3518:− 3515:φ 3509:⁡ 3489:− 3433:∞ 3424:∫ 3418:π 3389:− 3236:− 3217:− 3194:φ 3190:− 3187:φ 3181:⁡ 3161:− 3105:∞ 3096:∫ 3071:− 3002:φ 2998:− 2995:φ 2967:− 2958:χ 2953:χ 2926:− 2892:Γ 2874:− 2861:∞ 2856:∞ 2853:− 2843:∑ 2814:− 2805:χ 2783:π 2756:− 2700:φ 2664:χ 2646:− 2580:− 2529:χ 2506:χ 2488:− 2468:φ 2464:− 2461:φ 2442:∞ 2437:∞ 2434:− 2424:∑ 2402:π 2372:− 2304:φ 2300:− 2297:φ 2291:⁡ 2281:θ 2277:⁡ 2271:θ 2268:⁡ 2255:θ 2251:⁡ 2245:θ 2242:⁡ 2233:γ 2230:⁡ 2219:given by 2166:γ 2143:φ 2137:θ 2102:γ 2099:⁡ 2038:∞ 2023:∑ 1998:− 1928:− 1900:− 1866:− 1832:− 1793:− 1750:π 1733:− 1702:δ 1615:− 1602:π 1590:− 1527:− 1516:δ 1477:∇ 1402:ρ 1372:∫ 1355:ϕ 1324:ϕ 1278:∇ 1263:ε 1257:− 1180:− 1169:δ 1152:ϕ 1142:∇ 1126:ε 1120:− 1085:− 1074:δ 1053:ρ 975:ϕ 945:ε 929:ρ 909:ϕ 899:∇ 894:− 856:ε 840:ρ 822:⋅ 818:∇ 799:ϕ 795:∇ 791:− 718:− 707:δ 674:− 663:δ 624:∇ 447:∫ 338:∇ 216:∇ 158:∇ 3748:Category 3665:See also 3565:′ 3525:′ 3502:′ 3478:′ 3397:′ 3348:′ 3197:′ 3174:′ 3150:′ 3079:′ 3005:′ 2797:′ 2764:′ 2614:′ 2587:′ 2557:′ 2471:′ 2414:′ 2380:′ 2340:for the 2307:′ 2284:′ 2258:′ 2202:′ 2006:′ 1907:′ 1873:′ 1839:′ 1801:′ 1623:′ 1579:′ 1535:′ 1505:′ 1456:for the 1431:′ 1413:′ 1394:′ 1232:′ 1188:′ 1093:′ 1031:′ 726:′ 682:′ 652:′ 601:′ 549:′ 505:′ 488:′ 469:′ 1714:is the 234:is the 123:physics 83:scholar 3733:  3273:where 2521:where 1648:where 1464:" or " 1347:to be 763:, and 743:, the 207:where 125:, the 85:  78:  71:  64:  56:  90:JSTOR 76:books 3731:ISSN 3336:and 3299:< 3286:> 3244:< 3231:> 2630:and 2065:> 2050:< 1970:for 1721:The 1249:for 145:, a 62:news 3723:doi 3719:527 3540:cos 3506:cos 3178:cos 2288:cos 2274:sin 2265:sin 2248:cos 2239:cos 2227:cos 2096:cos 1552:is 238:in 121:In 45:by 3750:: 3729:. 3717:. 3713:. 2725:. 1974:, 1718:. 1045:: 886:: 747:. 615:: 422:: 267:, 3737:. 3725:: 3582:. 3579:k 3576:d 3572:] 3569:) 3562:z 3555:z 3552:( 3549:k 3546:[ 3535:) 3529:) 3512:( 3499:R 3495:R 3492:2 3484:2 3475:R 3469:+ 3464:2 3460:R 3454:k 3450:( 3443:0 3439:K 3428:0 3415:2 3410:= 3403:| 3394:x 3385:x 3380:| 3375:1 3345:z 3324:z 3304:) 3295:z 3291:( 3282:z 3261:, 3258:k 3255:d 3249:) 3240:z 3227:z 3223:( 3220:k 3213:e 3207:) 3201:) 3184:( 3171:R 3167:R 3164:2 3156:2 3147:R 3141:+ 3136:2 3132:R 3126:k 3122:( 3115:0 3111:J 3100:0 3092:= 3085:| 3076:x 3067:x 3062:| 3057:1 3009:) 2992:( 2989:m 2986:i 2982:e 2976:) 2970:1 2962:2 2948:( 2941:m 2934:2 2931:1 2922:P 2915:) 2912:2 2908:/ 2904:1 2901:+ 2898:m 2895:( 2886:m 2881:) 2877:1 2870:( 2850:= 2847:m 2833:2 2829:/ 2825:1 2821:) 2817:1 2809:2 2801:( 2794:R 2790:R 2787:2 2777:= 2770:| 2761:x 2752:x 2747:| 2742:1 2709:) 2706:z 2703:, 2697:, 2694:R 2691:( 2667:) 2661:( 2654:2 2651:1 2643:m 2639:Q 2611:R 2607:R 2604:2 2597:2 2592:) 2584:z 2577:z 2573:( 2568:+ 2563:2 2554:R 2548:+ 2543:2 2539:R 2532:= 2509:) 2503:( 2496:2 2493:1 2485:m 2481:Q 2475:) 2458:( 2455:m 2452:i 2448:e 2431:= 2428:m 2411:R 2407:R 2398:1 2393:= 2386:| 2377:x 2368:x 2363:| 2358:1 2314:. 2311:) 2294:( 2262:+ 2236:= 2207:) 2199:x 2194:, 2190:x 2186:( 2146:) 2140:, 2134:, 2131:r 2128:( 2108:, 2105:) 2093:( 2088:l 2084:P 2076:1 2073:+ 2070:l 2061:r 2055:l 2046:r 2033:0 2030:= 2027:l 2019:= 2012:| 2003:x 1994:x 1989:| 1984:1 1948:. 1942:2 1937:/ 1932:1 1923:] 1917:2 1912:) 1904:z 1897:z 1893:( 1888:+ 1883:2 1878:) 1870:y 1863:y 1859:( 1854:+ 1849:2 1844:) 1836:x 1829:x 1825:( 1819:[ 1814:= 1807:| 1798:x 1789:x 1784:| 1779:1 1753:) 1747:4 1744:( 1740:/ 1736:1 1682:) 1679:z 1676:, 1673:y 1670:, 1667:x 1664:( 1661:= 1657:x 1636:, 1629:| 1620:x 1611:x 1606:| 1599:4 1595:1 1587:= 1584:) 1576:x 1571:, 1567:x 1563:( 1560:G 1540:) 1532:x 1523:x 1519:( 1513:= 1510:) 1502:x 1497:, 1493:x 1489:( 1486:G 1481:2 1427:x 1422:d 1418:) 1410:x 1405:( 1399:) 1391:x 1386:, 1382:x 1378:( 1375:G 1369:= 1366:) 1362:x 1358:( 1335:) 1331:x 1327:( 1304:q 1282:2 1272:q 1267:0 1237:) 1229:x 1224:, 1220:x 1216:( 1213:G 1193:) 1185:x 1176:x 1172:( 1166:= 1163:) 1159:x 1155:( 1147:2 1135:q 1130:0 1098:) 1090:x 1081:x 1077:( 1070:q 1067:= 1064:) 1060:x 1056:( 1028:x 1006:q 986:) 982:x 978:( 949:0 940:) 936:x 932:( 923:= 920:) 916:x 912:( 904:2 860:0 851:) 847:x 843:( 834:= 826:E 810:) 806:x 802:( 788:= 780:E 731:) 723:x 714:x 710:( 687:) 679:x 670:x 666:( 660:= 657:) 649:x 644:, 640:x 636:( 633:G 628:2 598:x 575:x 554:) 546:x 541:, 537:x 533:( 530:G 501:x 496:d 493:) 485:x 480:( 477:f 474:) 466:x 461:, 457:x 453:( 450:G 444:= 441:) 437:x 433:( 430:u 410:) 406:x 402:( 399:f 379:) 375:x 371:( 368:u 342:2 317:) 313:x 309:( 306:u 286:) 282:x 278:( 275:f 253:3 248:R 220:2 195:) 191:x 187:( 184:f 181:= 178:) 174:x 170:( 167:u 162:2 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Green's function for the three-variable Laplace equation"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
physics
fundamental solution
point source
Green's function
Poisson's equation
partial differential equation
Laplace operator
differential operator
Green's function
Dirac delta function
electrostatics
electric potential
Gauss's law
Poisson's equation
Green's function
Laplace operator
Newton kernel
Newtonian potential
Dirac delta function

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.