Knowledge (XXG)

Groundwater flow equation

Source đź“ť

702: 63:
The groundwater flow equation is often derived for a small representative elemental volume (REV), where the properties of the medium are assumed to be effectively constant. A mass balance is done on the water flowing in and out of this small volume, the flux terms in the relationship being expressed
256: 1190:), located at the origin. Both this equation and the Cartesian version above are the fundamental equation in groundwater flow, but to arrive at this point requires considerable simplification. Some of the main assumptions which went into both these equations are: 482: 2089: 1988: 1882: 1796: 1702: 362: 684: 579: 108:. It is simply a statement of accounting, that for a given control volume, aside from sources or sinks, mass cannot be created or destroyed. The conservation of mass states that, for a given increment of time ( 1347:
boundary condition: in addition to solving for the spatial distribution of heads, the location of this surface is also an unknown. This is a non-linear problem, even though the governing equation is linear.
1176: 899: 118: 2112:
in the unconfined case is non-linear, whereas it is linear in the confined case. For unconfined steady-state flow, this non-linearity may be removed by expressing the PDE in terms of the head squared:
1301:, and has many analogs in other fields. The Laplace equation can be solved using techniques, using similar assumptions stated above, but with the additional requirements of a steady-state flow field. 908:
3-D form of the governing groundwater flow equation. However, it has an option to run in a "quasi-3D" mode if the user wishes to do so; in this case the model deals with the vertically averaged
2240: 2173: 1248:
If the aquifer has recharging boundary conditions a steady-state may be reached (or it may be used as an approximation in many cases), and the diffusion equation (above) simplifies to the
1240:
Despite these large assumptions, the groundwater flow equation does a good job of representing the distribution of heads in aquifers due to a transient distribution of sources and sinks.
1544: 1584: 1486: 1393: 1292: 2264: 1422: 112:), the difference between the mass flowing in across the boundaries, the mass flowing out across the boundaries, and the sources within the volume, is the change in storage. 614:) on the right hand side. The hydraulic diffusivity is proportional to the speed at which a finite pressure pulse will propagate through the system (large values of 2245:
This formulation allows us to apply standard methods for solving linear PDEs in the case of unconfined flow. For heterogeneous aquifers with no recharge,
401: 2011: 1917: 1811: 1708: 1614: 290:
to turn the flux across the boundary into a flux over the entire volume, the final form of the groundwater flow equation (in differential form) is:
2698: 2429: 2397: 296: 1899:(length per time), represents the addition of water in the vertical direction (e.g., recharge). By incorporating the correct definitions for 624: 509: 2461: 391:). This equation has both head and flux as unknowns, but Darcy's law relates flux to hydraulic heads, so substituting it in for the flux ( 2410: 961: 734: 251:{\displaystyle {\frac {\Delta M_{stor}}{\Delta t}}={\frac {M_{in}}{\Delta t}}-{\frac {M_{out}}{\Delta t}}-{\frac {M_{gen}}{\Delta t}}} 2271: 1352: 2647: 2311:
Corona, Oliver López; Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis (2014-10-16).
693:, now has the same units but is divided by the appropriate storage term (as defined by the hydraulic diffusivity substitution). 1327:
Steady-state flow to a pumping well (which never truly occurs, but is sometimes a useful approximation) is commonly called the
2688: 2652: 2109: 372: 2703: 2184: 278:(density does not depend on pressure). The mass fluxes across the boundaries then become volume fluxes (as are found in 2530: 2520: 2118: 2657: 2281: 2535: 1502: 1488:, and the aquifer base is at the zero datum, then the unconfined saturated thickness is equal to the head, i.e., 100:, to arrive at the transient groundwater flow equation. This balance is analogous to the energy balance used in 2454: 2515: 1549: 1499:
and the horizontal components of flow are uniform along the entire saturated thickness of the aquifer (i.e.,
1451: 1358: 2606: 2374: 2258: 936: 1258: 2626: 2591: 1496: 488: 1900: 1445: 1425: 2571: 2550: 2499: 1591: 721: 65: 1805:
expression, we obtain the general 2D governing equation for incompressible saturated groundwater flow:
927:. In the quasi-3D mode, flow is calculated between 2D horizontal layers using the concept of leakage. 1398: 1209: 1911:, we can transform this into two unique governing equations for confined and unconfined conditions: 2683: 2566: 2447: 2394: 286:
to represent the in and out flux terms across the boundaries of the control volume, and using the
2693: 2596: 2586: 2433: 947:
axis — causing converging radial flow). Under these conditions the above equation becomes (
368: 287: 41: 1424:
extending from the aquifer base to the unsaturated surface. This distance is referred to as the
1343:, the solution to the 3D form of the equation is complicated by the presence of a free surface 2678: 2581: 2540: 2406: 2352: 2334: 2291: 1305: 1298: 77: 1448:
is defined as the vertical distance between the water table surface and the aquifer base. If
2342: 2324: 1904: 1433: 1351:
An alternative formulation of the groundwater flow equation may be obtained by invoking the
1321: 1249: 1233: 585: 53: 2379:
An excellent beginner's read for groundwater modeling. Covers all the basic concepts, with
2611: 2601: 2576: 2544: 2489: 2401: 1219: 49: 37: 1339:
The above groundwater flow equations are valid for three dimensional flow. In unconfined
2631: 2616: 2347: 2312: 2246: 2102: 1908: 1587: 1309: 1195: 376: 279: 275: 97: 81: 69: 57: 2672: 2621: 283: 105: 101: 45: 2423: 1215:
for the 1D radial problem the pumping well is fully penetrating a non-leaky aquifer,
1802: 1328: 1317: 477:{\displaystyle S_{s}{\frac {\partial h}{\partial t}}=-\nabla \cdot (-K\nabla h)-G.} 73: 17: 2375:
Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods
2084:{\displaystyle S_{y}{\frac {\partial h}{\partial t}}=\nabla \cdot (Kh\nabla h)+N.} 618:
lead to fast propagation of signals). The groundwater flow equation then becomes
2494: 2002: 1344: 29: 25: 2484: 2470: 2384: 1983:{\displaystyle S{\frac {\partial h}{\partial t}}=\nabla \cdot (Kb\nabla h)+N.} 1877:{\displaystyle {\frac {\partial nb}{\partial t}}=\nabla \cdot (Kb\nabla h)+N.} 1791:{\displaystyle Q_{y}=\int _{0}^{b}q_{y}dz=-Kb{\frac {\partial h}{\partial y}}} 1697:{\displaystyle Q_{x}=\int _{0}^{b}q_{x}dz=-Kb{\frac {\partial h}{\partial x}}} 1355:, where it is assumed that heads do not vary in the vertical direction (i.e., 1205: 940: 905: 701: 380: 2338: 1395:). A horizontal water balance is applied to a long vertical column with area 1230: 725: 500: 2356: 499:), it can be taken out of the spatial derivative, simplifying them to the 2276:
A simplification of the groundwater flow equation regarding vertical flow
1892: 1340: 1198:(no change in matrix due to changes in pressure — aka subsidence), 357:{\displaystyle S_{s}{\frac {\partial h}{\partial t}}=-\nabla \cdot q-G.} 1441: 1313: 713: 679:{\displaystyle {\frac {\partial h}{\partial t}}=\alpha \nabla ^{2}h-G.} 267: 33: 2329: 1436:, the saturated thickness is determined by the height of the aquifer, 574:{\displaystyle S_{s}{\frac {\partial h}{\partial t}}=K\nabla ^{2}h-G.} 52:). The steady-state flow of groundwater is described by a form of the 496: 271: 1186:
This equation represents flow to a pumping well (a sink of strength
700: 85: 1440:, and the pressure head is non-zero everywhere. In an unconfined 709:
Especially when using rectangular grid finite-difference models (
1171:{\displaystyle {\frac {\partial h}{\partial t}}=\alpha \left-G.} 894:{\displaystyle {\frac {\partial h}{\partial t}}=\alpha \left-G.} 717: 375:(PDE). This mathematical statement indicates that the change in 2443: 943:
is a line source located at the origin — parallel to the
2439: 2313:"Complex groundwater flow systems as traveling agent models" 2249:
methods may be applied for mixed confined/unconfined cases.
728:
operator becomes (for three-dimensional flow) specifically
1324:, allowing complex geometries to be solved approximately. 705:
Three-dimensional finite difference grid used in MODFLOW
2426:— free groundwater modeling software like MODFLOW 2286:
Groundwater flow equations based on the energy balance
96:
A mass balance must be performed, and used along with
2187: 2121: 2014: 1920: 1814: 1711: 1617: 1552: 1505: 1454: 1401: 1361: 1261: 964: 737: 627: 512: 404: 299: 274:, and under most conditions, water can be considered 121: 495:) is spatially uniform and isotropic (rather than a 2640: 2559: 2508: 2477: 28:relationship which is used to describe the flow of 2235:{\displaystyle \nabla ^{2}h^{2}=-{\frac {2N}{K}}.} 2234: 2167: 2083: 1982: 1876: 1790: 1696: 1578: 1538: 1480: 1416: 1387: 1304:A common method for solution of this equations in 1286: 1201:the water is of constant density (incompressible), 1170: 893: 678: 573: 476: 356: 250: 40:flow of groundwater is described by a form of the 2168:{\displaystyle \nabla \cdot (K\nabla h^{2})=-2N.} 1320:of hydraulic head and the stream function make a 379:with time (left hand side) equals the negative 1297:This equation states that hydraulic head is a 2455: 1312:is to use the graphical technique of drawing 8: 1539:{\displaystyle \partial q_{x}/\partial z=0} 2462: 2448: 2440: 2392:Freeze, R. Allan; Cherry, John A. (1979). 2265:solution of partial differential equations 904:MODFLOW code discretizes and simulates an 2346: 2328: 2214: 2202: 2192: 2186: 2141: 2120: 2025: 2019: 2013: 1924: 1919: 1815: 1813: 1768: 1744: 1734: 1729: 1716: 1710: 1674: 1650: 1640: 1635: 1622: 1616: 1559: 1551: 1519: 1513: 1504: 1461: 1453: 1400: 1368: 1360: 1275: 1260: 1204:any external loads on the aquifer (e.g., 1145: 1127: 1120: 1108: 1090: 1083: 1075: 1066: 1043: 1033: 1021: 1003: 996: 965: 963: 868: 850: 843: 831: 813: 806: 794: 776: 769: 738: 736: 658: 628: 626: 553: 523: 517: 511: 415: 409: 403: 310: 304: 298: 226: 220: 195: 189: 167: 161: 132: 122: 120: 48:to describe the flow of heat in a solid ( 2303: 1579:{\displaystyle \partial K/\partial z=0} 1481:{\displaystyle \partial h/\partial z=0} 1388:{\displaystyle \partial h/\partial z=0} 935:Another useful coordinate system is 3D 1287:{\displaystyle 0=\alpha \nabla ^{2}h} 367:This is known in other fields as the 88:or fractured rocks (i.e. volcanic) 7: 1244:Laplace equation (steady-state flow) 371:or heat equation, it is a parabolic 60:and has analogs in numerous fields. 1218:the groundwater is flowing slowly ( 724:. In these coordinates the general 262:Diffusion equation (transient flow) 2189: 2134: 2122: 2063: 2048: 2036: 2028: 1962: 1947: 1935: 1927: 1856: 1841: 1829: 1818: 1779: 1771: 1685: 1677: 1564: 1553: 1524: 1506: 1466: 1455: 1373: 1362: 1272: 1138: 1124: 1101: 1087: 1054: 1046: 1014: 1000: 976: 968: 861: 847: 824: 810: 787: 773: 749: 741: 655: 639: 631: 550: 534: 526: 456: 441: 426: 418: 336: 321: 313: 239: 208: 177: 149: 125: 72:, which requires that the flow is 14: 697:Rectangular cartesian coordinates 2263:A numerical method used for the 1417:{\displaystyle \delta x\delta y} 1335:Two-dimensional groundwater flow 931:Circular cylindrical coordinates 595:), puts hydraulic diffusivity ( 2699:Partial differential equations 2178:Or, for homogeneous aquifers, 2147: 2128: 2069: 2054: 1968: 1953: 1862: 1847: 462: 447: 80:to incorporate the effect of 76:Other approaches are based on 64:in terms of head by using the 1: 2373:H. F. Wang and M.P. Anderson 2272:Dupuit–Forchheimer assumption 2110:partial differential equation 1353:Dupuit–Forchheimer assumption 373:partial differential equation 1225:the hydraulic conductivity ( 689:Where the sink/source term, 939:(typically where a pumping 266:Mass can be represented as 2720: 2282:Groundwater energy balance 951:being radial distance and 503:, this makes the equation 44:, similar to that used in 2536:Hydrological optimization 2526:Groundwater flow equation 2424:USGS groundwater software 1801:Inserting these into our 22:groundwater flow equation 1194:the aquifer material is 584:Dividing through by the 387:) and the source terms ( 2531:Hazen–Williams equation 2521:Darcy–Weisbach equation 2259:Analytic element method 1590:in terms of integrated 937:cylindrical coordinates 2236: 2169: 2085: 1984: 1878: 1792: 1698: 1592:groundwater discharges 1580: 1540: 1497:hydraulic conductivity 1482: 1418: 1389: 1288: 1172: 895: 706: 680: 575: 489:hydraulic conductivity 478: 358: 252: 2689:Hydraulic engineering 2551:Pipe network analysis 2516:Bernoulli's principle 2500:Hydraulic engineering 2430:Groundwater Hydrology 2237: 2170: 2086: 1985: 1879: 1793: 1699: 1581: 1541: 1483: 1419: 1390: 1289: 1222:less than unity), and 1173: 896: 722:Cartesian coordinates 704: 681: 576: 479: 359: 253: 66:constitutive equation 56:, which is a form of 2185: 2119: 2094:(unconfined), where 2012: 1918: 1812: 1709: 1615: 1550: 1503: 1452: 1399: 1359: 1259: 1210:atmospheric pressure 962: 735: 625: 510: 402: 297: 119: 2704:Transport phenomena 1901:saturated thickness 1895:. The source term, 1739: 1645: 1446:saturated thickness 1426:saturated thickness 2434:MIT OpenCourseware 2400:2020-04-06 at the 2232: 2165: 2081: 1993:(confined), where 1980: 1874: 1788: 1725: 1694: 1631: 1586:), we can express 1576: 1536: 1495:Assuming both the 1478: 1414: 1385: 1284: 1168: 891: 707: 676: 571: 474: 369:diffusion equation 354: 288:divergence theorem 248: 78:Agent Based Models 42:diffusion equation 2666: 2665: 2541:Open-channel flow 2405:. Prentice Hall. 2330:10.7717/peerj.557 2292:Richards equation 2227: 2043: 1942: 1836: 1786: 1692: 1306:civil engineering 1299:harmonic function 1152: 1115: 1081: 1061: 1041: 1028: 983: 875: 838: 801: 756: 646: 606:or equivalently, 541: 433: 328: 246: 215: 184: 156: 104:to arrive at the 84:aquifers such as 2711: 2464: 2457: 2450: 2441: 2361: 2360: 2350: 2332: 2308: 2241: 2239: 2238: 2233: 2228: 2223: 2215: 2207: 2206: 2197: 2196: 2174: 2172: 2171: 2166: 2146: 2145: 2105:of the aquifer. 2090: 2088: 2087: 2082: 2044: 2042: 2034: 2026: 2024: 2023: 1989: 1987: 1986: 1981: 1943: 1941: 1933: 1925: 1905:specific storage 1883: 1881: 1880: 1875: 1837: 1835: 1827: 1816: 1797: 1795: 1794: 1789: 1787: 1785: 1777: 1769: 1749: 1748: 1738: 1733: 1721: 1720: 1703: 1701: 1700: 1695: 1693: 1691: 1683: 1675: 1655: 1654: 1644: 1639: 1627: 1626: 1585: 1583: 1582: 1577: 1563: 1545: 1543: 1542: 1537: 1523: 1518: 1517: 1487: 1485: 1484: 1479: 1465: 1434:confined aquifer 1423: 1421: 1420: 1415: 1394: 1392: 1391: 1386: 1372: 1322:curvilinear grid 1293: 1291: 1290: 1285: 1280: 1279: 1250:Laplace equation 1177: 1175: 1174: 1169: 1158: 1154: 1153: 1151: 1150: 1149: 1136: 1132: 1131: 1121: 1116: 1114: 1113: 1112: 1099: 1095: 1094: 1084: 1082: 1080: 1079: 1067: 1062: 1060: 1052: 1044: 1042: 1034: 1029: 1027: 1026: 1025: 1012: 1008: 1007: 997: 984: 982: 974: 966: 900: 898: 897: 892: 881: 877: 876: 874: 873: 872: 859: 855: 854: 844: 839: 837: 836: 835: 822: 818: 817: 807: 802: 800: 799: 798: 785: 781: 780: 770: 757: 755: 747: 739: 720:), we deal with 685: 683: 682: 677: 663: 662: 647: 645: 637: 629: 586:specific storage 580: 578: 577: 572: 558: 557: 542: 540: 532: 524: 522: 521: 483: 481: 480: 475: 434: 432: 424: 416: 414: 413: 363: 361: 360: 355: 329: 327: 319: 311: 309: 308: 257: 255: 254: 249: 247: 245: 237: 236: 221: 216: 214: 206: 205: 190: 185: 183: 175: 174: 162: 157: 155: 147: 146: 145: 123: 54:Laplace equation 2719: 2718: 2714: 2713: 2712: 2710: 2709: 2708: 2669: 2668: 2667: 2662: 2641:Public networks 2636: 2555: 2545:Manning formula 2504: 2490:Hydraulic fluid 2473: 2468: 2420: 2402:Wayback Machine 2370: 2368:Further reading 2365: 2364: 2310: 2309: 2305: 2300: 2255: 2216: 2198: 2188: 2183: 2182: 2137: 2117: 2116: 2099: 2035: 2027: 2015: 2010: 2009: 2001:is the aquifer 1998: 1934: 1926: 1916: 1915: 1891:is the aquifer 1828: 1817: 1810: 1809: 1778: 1770: 1740: 1712: 1707: 1706: 1684: 1676: 1646: 1618: 1613: 1612: 1606: 1599: 1548: 1547: 1509: 1501: 1500: 1450: 1449: 1397: 1396: 1357: 1356: 1337: 1271: 1257: 1256: 1246: 1220:Reynolds number 1212:) are constant, 1184: 1141: 1137: 1123: 1122: 1104: 1100: 1086: 1085: 1071: 1053: 1045: 1017: 1013: 999: 998: 995: 991: 975: 967: 960: 959: 933: 925: 864: 860: 846: 845: 827: 823: 809: 808: 790: 786: 772: 771: 768: 764: 748: 740: 733: 732: 699: 654: 638: 630: 623: 622: 604: 593: 549: 533: 525: 513: 508: 507: 425: 417: 405: 400: 399: 320: 312: 300: 295: 294: 264: 238: 222: 207: 191: 176: 163: 148: 128: 124: 117: 116: 94: 50:heat conduction 12: 11: 5: 2717: 2715: 2707: 2706: 2701: 2696: 2691: 2686: 2681: 2671: 2670: 2664: 2663: 2661: 2660: 2655: 2650: 2644: 2642: 2638: 2637: 2635: 2634: 2629: 2624: 2619: 2614: 2609: 2604: 2599: 2594: 2589: 2584: 2579: 2574: 2569: 2563: 2561: 2557: 2556: 2554: 2553: 2548: 2538: 2533: 2528: 2523: 2518: 2512: 2510: 2506: 2505: 2503: 2502: 2497: 2492: 2487: 2481: 2479: 2475: 2474: 2469: 2467: 2466: 2459: 2452: 2444: 2438: 2437: 2427: 2419: 2418:External links 2416: 2415: 2414: 2411:978-0133653120 2390: 2389: 2388: 2369: 2366: 2363: 2362: 2302: 2301: 2299: 2296: 2295: 2294: 2289: 2288: 2287: 2279: 2278: 2277: 2269: 2268: 2267: 2254: 2251: 2247:Potential flow 2243: 2242: 2231: 2226: 2222: 2219: 2213: 2210: 2205: 2201: 2195: 2191: 2176: 2175: 2164: 2161: 2158: 2155: 2152: 2149: 2144: 2140: 2136: 2133: 2130: 2127: 2124: 2108:Note that the 2103:specific yield 2097: 2092: 2091: 2080: 2077: 2074: 2071: 2068: 2065: 2062: 2059: 2056: 2053: 2050: 2047: 2041: 2038: 2033: 2030: 2022: 2018: 1996: 1991: 1990: 1979: 1976: 1973: 1970: 1967: 1964: 1961: 1958: 1955: 1952: 1949: 1946: 1940: 1937: 1932: 1929: 1923: 1909:specific yield 1885: 1884: 1873: 1870: 1867: 1864: 1861: 1858: 1855: 1852: 1849: 1846: 1843: 1840: 1834: 1831: 1826: 1823: 1820: 1799: 1798: 1784: 1781: 1776: 1773: 1767: 1764: 1761: 1758: 1755: 1752: 1747: 1743: 1737: 1732: 1728: 1724: 1719: 1715: 1704: 1690: 1687: 1682: 1679: 1673: 1670: 1667: 1664: 1661: 1658: 1653: 1649: 1643: 1638: 1634: 1630: 1625: 1621: 1604: 1597: 1575: 1572: 1569: 1566: 1562: 1558: 1555: 1535: 1532: 1529: 1526: 1522: 1516: 1512: 1508: 1477: 1474: 1471: 1468: 1464: 1460: 1457: 1413: 1410: 1407: 1404: 1384: 1381: 1378: 1375: 1371: 1367: 1364: 1336: 1333: 1329:Thiem solution 1310:soil mechanics 1295: 1294: 1283: 1278: 1274: 1270: 1267: 1264: 1245: 1242: 1238: 1237: 1223: 1216: 1213: 1202: 1199: 1196:incompressible 1183: 1180: 1179: 1178: 1167: 1164: 1161: 1157: 1148: 1144: 1140: 1135: 1130: 1126: 1119: 1111: 1107: 1103: 1098: 1093: 1089: 1078: 1074: 1070: 1065: 1059: 1056: 1051: 1048: 1040: 1037: 1032: 1024: 1020: 1016: 1011: 1006: 1002: 994: 990: 987: 981: 978: 973: 970: 955:being angle), 932: 929: 923: 916:, rather than 902: 901: 890: 887: 884: 880: 871: 867: 863: 858: 853: 849: 842: 834: 830: 826: 821: 816: 812: 805: 797: 793: 789: 784: 779: 775: 767: 763: 760: 754: 751: 746: 743: 716:, made by the 698: 695: 687: 686: 675: 672: 669: 666: 661: 657: 653: 650: 644: 641: 636: 633: 602: 591: 582: 581: 570: 567: 564: 561: 556: 552: 548: 545: 539: 536: 531: 528: 520: 516: 485: 484: 473: 470: 467: 464: 461: 458: 455: 452: 449: 446: 443: 440: 437: 431: 428: 423: 420: 412: 408: 377:hydraulic head 365: 364: 353: 350: 347: 344: 341: 338: 335: 332: 326: 323: 318: 315: 307: 303: 276:incompressible 263: 260: 259: 258: 244: 241: 235: 232: 229: 225: 219: 213: 210: 204: 201: 198: 194: 188: 182: 179: 173: 170: 166: 160: 154: 151: 144: 141: 138: 135: 131: 127: 93: 90: 58:potential flow 13: 10: 9: 6: 4: 3: 2: 2716: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2676: 2674: 2659: 2656: 2654: 2651: 2649: 2646: 2645: 2643: 2639: 2633: 2630: 2628: 2625: 2623: 2620: 2618: 2615: 2613: 2610: 2608: 2607:Power network 2605: 2603: 2600: 2598: 2595: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2564: 2562: 2558: 2552: 2549: 2546: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2519: 2517: 2514: 2513: 2511: 2507: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2482: 2480: 2476: 2472: 2465: 2460: 2458: 2453: 2451: 2446: 2445: 2442: 2435: 2431: 2428: 2425: 2422: 2421: 2417: 2412: 2408: 2404: 2403: 2399: 2396: 2391: 2386: 2382: 2378: 2377: 2376: 2372: 2371: 2367: 2358: 2354: 2349: 2344: 2340: 2336: 2331: 2326: 2322: 2318: 2314: 2307: 2304: 2297: 2293: 2290: 2285: 2284: 2283: 2280: 2275: 2274: 2273: 2270: 2266: 2262: 2261: 2260: 2257: 2256: 2252: 2250: 2248: 2229: 2224: 2220: 2217: 2211: 2208: 2203: 2199: 2193: 2181: 2180: 2179: 2162: 2159: 2156: 2153: 2150: 2142: 2138: 2131: 2125: 2115: 2114: 2113: 2111: 2106: 2104: 2100: 2078: 2075: 2072: 2066: 2060: 2057: 2051: 2045: 2039: 2031: 2020: 2016: 2008: 2007: 2006: 2004: 2000: 1977: 1974: 1971: 1965: 1959: 1956: 1950: 1944: 1938: 1930: 1921: 1914: 1913: 1912: 1910: 1906: 1902: 1898: 1894: 1890: 1871: 1868: 1865: 1859: 1853: 1850: 1844: 1838: 1832: 1824: 1821: 1808: 1807: 1806: 1804: 1782: 1774: 1765: 1762: 1759: 1756: 1753: 1750: 1745: 1741: 1735: 1730: 1726: 1722: 1717: 1713: 1705: 1688: 1680: 1671: 1668: 1665: 1662: 1659: 1656: 1651: 1647: 1641: 1636: 1632: 1628: 1623: 1619: 1611: 1610: 1609: 1607: 1600: 1593: 1589: 1573: 1570: 1567: 1560: 1556: 1533: 1530: 1527: 1520: 1514: 1510: 1498: 1493: 1491: 1475: 1472: 1469: 1462: 1458: 1447: 1443: 1439: 1435: 1431: 1427: 1411: 1408: 1405: 1402: 1382: 1379: 1376: 1369: 1365: 1354: 1349: 1346: 1342: 1334: 1332: 1330: 1325: 1323: 1319: 1318:contour lines 1315: 1311: 1307: 1302: 1300: 1281: 1276: 1268: 1265: 1262: 1255: 1254: 1253: 1251: 1243: 1241: 1235: 1232: 1228: 1224: 1221: 1217: 1214: 1211: 1207: 1203: 1200: 1197: 1193: 1192: 1191: 1189: 1181: 1165: 1162: 1159: 1155: 1146: 1142: 1133: 1128: 1117: 1109: 1105: 1096: 1091: 1076: 1072: 1068: 1063: 1057: 1049: 1038: 1035: 1030: 1022: 1018: 1009: 1004: 992: 988: 985: 979: 971: 958: 957: 956: 954: 950: 946: 942: 938: 930: 928: 926: 919: 915: 911: 907: 888: 885: 882: 878: 869: 865: 856: 851: 840: 832: 828: 819: 814: 803: 795: 791: 782: 777: 765: 761: 758: 752: 744: 731: 730: 729: 727: 723: 719: 715: 712: 703: 696: 694: 692: 673: 670: 667: 664: 659: 651: 648: 642: 634: 621: 620: 619: 617: 613: 609: 605: 598: 594: 587: 568: 565: 562: 559: 554: 546: 543: 537: 529: 518: 514: 506: 505: 504: 502: 498: 494: 490: 471: 468: 465: 459: 453: 450: 444: 438: 435: 429: 421: 410: 406: 398: 397: 396: 394: 390: 386: 383:of the flux ( 382: 378: 374: 370: 351: 348: 345: 342: 339: 333: 330: 324: 316: 305: 301: 293: 292: 291: 289: 285: 284:Taylor series 281: 277: 273: 269: 261: 242: 233: 230: 227: 223: 217: 211: 202: 199: 196: 192: 186: 180: 171: 168: 164: 158: 152: 142: 139: 136: 133: 129: 115: 114: 113: 111: 107: 106:heat equation 103: 102:heat transfer 99: 91: 89: 87: 83: 79: 75: 71: 67: 61: 59: 55: 51: 47: 46:heat transfer 43: 39: 35: 31: 27: 23: 19: 2627:Rescue tools 2592:Drive system 2560:Technologies 2525: 2393: 2383:examples in 2380: 2320: 2316: 2306: 2244: 2177: 2107: 2095: 2093: 1994: 1992: 1896: 1888: 1886: 1803:mass balance 1800: 1602: 1595: 1494: 1489: 1437: 1429: 1350: 1338: 1326: 1303: 1296: 1247: 1239: 1226: 1187: 1185: 952: 948: 944: 934: 921: 917: 913: 909: 903: 710: 708: 690: 688: 615: 611: 607: 600: 596: 589: 583: 492: 486: 392: 388: 384: 366: 265: 109: 95: 92:Mass balance 62: 26:mathematical 21: 18:hydrogeology 15: 2572:Accumulator 2495:Fluid power 2395:Groundwater 2003:storativity 1588:Darcy's law 1345:water table 1182:Assumptions 395:) leads to 280:Darcy's law 98:Darcy's law 70:Darcy's law 32:through an 30:groundwater 2684:Hydraulics 2673:Categories 2658:Manchester 2485:Hydraulics 2471:Hydraulics 2385:FORTRAN 77 2298:References 1206:overburden 906:orthogonal 381:divergence 2694:Hydrology 2648:Liverpool 2567:Machinery 2339:2167-8359 2212:− 2190:∇ 2154:− 2135:∇ 2126:⋅ 2123:∇ 2064:∇ 2052:⋅ 2049:∇ 2037:∂ 2029:∂ 1963:∇ 1951:⋅ 1948:∇ 1936:∂ 1928:∂ 1857:∇ 1845:⋅ 1842:∇ 1830:∂ 1819:∂ 1780:∂ 1772:∂ 1760:− 1727:∫ 1686:∂ 1678:∂ 1666:− 1633:∫ 1565:∂ 1554:∂ 1525:∂ 1507:∂ 1467:∂ 1456:∂ 1409:δ 1403:δ 1374:∂ 1363:∂ 1273:∇ 1269:α 1231:isotropic 1160:− 1139:∂ 1125:∂ 1106:θ 1102:∂ 1088:∂ 1055:∂ 1047:∂ 1015:∂ 1001:∂ 989:α 977:∂ 969:∂ 883:− 862:∂ 848:∂ 825:∂ 811:∂ 788:∂ 774:∂ 762:α 750:∂ 742:∂ 726:Laplacian 668:− 656:∇ 652:α 640:∂ 632:∂ 563:− 551:∇ 535:∂ 527:∂ 501:Laplacian 466:− 457:∇ 451:− 445:⋅ 442:∇ 439:− 427:∂ 419:∂ 346:− 340:⋅ 337:∇ 334:− 322:∂ 314:∂ 282:). Using 240:Δ 218:− 209:Δ 187:− 178:Δ 150:Δ 126:Δ 38:transient 2679:Aquifers 2597:Manifold 2587:Cylinder 2509:Modeling 2478:Concepts 2398:Archived 2357:25337455 2323:: e557. 2253:See also 1893:porosity 1341:aquifers 1316:; where 1314:flownets 1229:) is an 74:laminar. 16:Used in 2582:Circuit 2348:4203025 2101:is the 1442:aquifer 1432:. In a 714:MODFLOW 487:Now if 268:density 86:karstic 82:complex 68:called 34:aquifer 24:is the 2653:London 2409:  2381:simple 2355:  2345:  2337:  1907:, and 1887:Where 1444:, the 1234:scalar 497:tensor 272:volume 270:times 36:. The 20:, the 2612:Press 2602:Motor 2577:Brake 2317:PeerJ 2632:Seal 2617:Pump 2407:ISBN 2353:PMID 2335:ISSN 2005:and 1601:and 1546:and 1308:and 941:well 920:and 912:and 718:USGS 711:e.g. 2622:Ram 2343:PMC 2325:doi 1995:S=S 1490:b=h 612:T/S 601:K/S 2675:: 2351:. 2341:. 2333:. 2319:. 2315:. 1903:, 1608:: 1594:, 1492:. 1428:, 1331:. 1252:. 1208:, 610:= 599:= 110:Δt 2547:) 2543:( 2463:e 2456:t 2449:v 2436:) 2432:( 2413:. 2387:. 2359:. 2327:: 2321:2 2230:. 2225:K 2221:N 2218:2 2209:= 2204:2 2200:h 2194:2 2163:. 2160:N 2157:2 2151:= 2148:) 2143:2 2139:h 2132:K 2129:( 2098:y 2096:S 2079:. 2076:N 2073:+ 2070:) 2067:h 2061:h 2058:K 2055:( 2046:= 2040:t 2032:h 2021:y 2017:S 1999:b 1997:s 1978:. 1975:N 1972:+ 1969:) 1966:h 1960:b 1957:K 1954:( 1945:= 1939:t 1931:h 1922:S 1897:N 1889:n 1872:. 1869:N 1866:+ 1863:) 1860:h 1854:b 1851:K 1848:( 1839:= 1833:t 1825:b 1822:n 1783:y 1775:h 1766:b 1763:K 1757:= 1754:z 1751:d 1746:y 1742:q 1736:b 1731:0 1723:= 1718:y 1714:Q 1689:x 1681:h 1672:b 1669:K 1663:= 1660:z 1657:d 1652:x 1648:q 1642:b 1637:0 1629:= 1624:x 1620:Q 1605:y 1603:Q 1598:x 1596:Q 1574:0 1571:= 1568:z 1561:/ 1557:K 1534:0 1531:= 1528:z 1521:/ 1515:x 1511:q 1476:0 1473:= 1470:z 1463:/ 1459:h 1438:H 1430:b 1412:y 1406:x 1383:0 1380:= 1377:z 1370:/ 1366:h 1282:h 1277:2 1266:= 1263:0 1236:. 1227:K 1188:G 1166:. 1163:G 1156:] 1147:2 1143:z 1134:h 1129:2 1118:+ 1110:2 1097:h 1092:2 1077:2 1073:r 1069:1 1064:+ 1058:r 1050:h 1039:r 1036:1 1031:+ 1023:2 1019:r 1010:h 1005:2 993:[ 986:= 980:t 972:h 953:θ 949:r 945:z 924:s 922:S 918:k 914:S 910:T 889:. 886:G 879:] 870:2 866:z 857:h 852:2 841:+ 833:2 829:y 820:h 815:2 804:+ 796:2 792:x 783:h 778:2 766:[ 759:= 753:t 745:h 691:G 674:. 671:G 665:h 660:2 649:= 643:t 635:h 616:α 608:α 603:s 597:α 592:s 590:S 588:( 569:. 566:G 560:h 555:2 547:K 544:= 538:t 530:h 519:s 515:S 493:K 491:( 472:. 469:G 463:) 460:h 454:K 448:( 436:= 430:t 422:h 411:s 407:S 393:q 389:G 385:q 352:. 349:G 343:q 331:= 325:t 317:h 306:s 302:S 243:t 234:n 231:e 228:g 224:M 212:t 203:t 200:u 197:o 193:M 181:t 172:n 169:i 165:M 159:= 153:t 143:r 140:o 137:t 134:s 130:M

Index

hydrogeology
mathematical
groundwater
aquifer
transient
diffusion equation
heat transfer
heat conduction
Laplace equation
potential flow
constitutive equation
Darcy's law
laminar.
Agent Based Models
complex
karstic
Darcy's law
heat transfer
heat equation
density
volume
incompressible
Darcy's law
Taylor series
divergence theorem
diffusion equation
partial differential equation
hydraulic head
divergence
hydraulic conductivity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑