Knowledge (XXG)

Groupoid object

Source đź“ť

338: 218: 590: 783: 1326: 484: 402: 974: 682: 1433: 1021: 631: 1260: 1108: 1063: 1503: 1199: 1173: 853: 827: 86: 1400: 229: 97: 491: 687: 1293: 1540: 410: 1117:
However, unlike in the previous example with Lie groups, a groupoid object in the category of manifolds is not necessarily a
860: 1438: 1509: 1502:
Behrend, Kai; Conrad, Brian; Edidin, Dan; Fulton, William; Fantechi, Barbara; Göttsche, Lothar; Kresch, Andrew (2006),
1577: 56: 1442: 1110:. When the term "groupoid" can naturally refer to a groupoid object in some particular category in mind, the term 343: 1587: 1122: 910: 60: 1403: 636: 1406: 1287: 1582: 49: 1344: 887:
in the usual sense: a category in which every morphism is an isomorphism. Indeed, given such a category
868: 1142: 979: 597: 1367: 1356: 1223: 1233: 1068: 1026: 1527: 1454: 856: 1549: 880: 1561: 1557: 1217: 1210: 17: 1178: 1152: 832: 806: 65: 1121:, since the maps s and t fail to satisfy further requirements (they are not necessarily 1360: 1373: 1571: 1553: 333:{\displaystyle s\circ e=t\circ e=1_{U},\,s\circ m=s\circ p_{1},t\circ m=t\circ p_{2}} 1523: 1202: 1118: 800: 33: 1333: 21: 864: 213:{\displaystyle s,t:R\to U,\ e:U\to R,\ m:R\times _{U,t,s}R\to R,\ i:R\to R} 1351:
to the category of groupoids. This way, each groupoid object determines a
1352: 884: 89: 32:
which is built on richer structures than sets, and a generalization of a
29: 585:{\displaystyle m\circ (e\circ s,1_{R})=m\circ (1_{R},e\circ t)=1_{R},} 778:{\displaystyle m\circ (1_{R},i)=e\circ s,\,m\circ (i,1_{R})=e\circ t} 1321:{\displaystyle R{\overset {s}{\underset {t}{\rightrightarrows }}}U} 1114:
is used to refer to a groupoid object in the category of sets.
1336:
of the same diagram, if any, is the quotient of the groupoid.
479:{\displaystyle m\circ (1_{R}\times m)=m\circ (m\times 1_{R}),} 1409: 1376: 1296: 1270:
the given action. This determines a groupoid scheme.
1236: 1181: 1155: 1071: 1029: 982: 913: 835: 809: 690: 639: 600: 494: 413: 346: 232: 100: 68: 1534:, Proceedings of the Luminy conference on algebraic 1201:
are necessarily the structure map) is the same as a
36:when the multiplication is only partially defined. 1427: 1394: 1366:The main use of the notion is that it provides an 1320: 1254: 1193: 1167: 1102: 1057: 1015: 968: 847: 821: 777: 676: 625: 584: 478: 396: 332: 212: 80: 1209:, to convey the idea it is a generalization of 803:is a special case of a groupoid object, where 1528:"Intersection theory on algebraic stacks and 8: 1473: 1445:. Conversely, any DM stack is of this form. 397:{\displaystyle p_{i}:R\times _{U,t,s}R\to R} 1408: 1375: 1300: 1295: 1235: 1180: 1154: 1091: 1070: 1049: 1028: 981: 969:{\displaystyle s(x\to y)=x,\,t(x\to y)=y} 941: 912: 834: 808: 754: 734: 704: 689: 658: 638: 617: 599: 573: 545: 520: 493: 464: 427: 412: 367: 351: 345: 324: 293: 270: 261: 231: 223:satisfying the following groupoid axioms 162: 99: 67: 1141:is a groupoid object in the category of 1466: 1328:, if any, is a group object called the 677:{\displaystyle s\circ i=t,\,t\circ i=s} 1485: 1428:{\displaystyle (R\rightrightarrows U)} 1205:. A groupoid scheme is also called an 1355:in groupoids. This prestack is not a 7: 1370:for a stack. More specifically, let 1541:Journal of Pure and Applied Algebra 1339:Each groupoid object in a category 14: 1343:(if any) may be thought of as a 1175:, then a groupoid scheme (where 895:to be the set of all objects in 1441:; in fact, (in a nice case), a 1016:{\displaystyle m(f,g)=g\circ f} 1422: 1416: 1410: 1389: 1383: 1377: 1303: 1081: 1075: 1039: 1033: 998: 986: 957: 951: 945: 929: 923: 917: 907:, the five morphisms given by 861:category of topological spaces 760: 741: 716: 697: 626:{\displaystyle i\circ i=1_{R}} 563: 538: 526: 501: 470: 451: 439: 420: 388: 204: 183: 137: 116: 28:is both a generalization of a 1: 1439:category fibered in groupoids 1554:10.1016/0022-4049(84)90036-7 1145:over some fixed base scheme 1255:{\displaystyle R=U\times G} 1226:from the right on a scheme 1103:{\displaystyle i(f)=f^{-1}} 1604: 1058:{\displaystyle e(x)=1_{x}} 1278:Given a groupoid object ( 903:the set of all arrows in 879:A groupoid object in the 855:. One recovers therefore 1538:-theory (Luminy, 1983), 1216:For example, suppose an 404:are the two projections, 1429: 1396: 1322: 1256: 1195: 1169: 1104: 1059: 1017: 970: 849: 823: 779: 678: 627: 586: 480: 398: 334: 214: 82: 59:consists of a pair of 1443:Deligne–Mumford stack 1430: 1397: 1345:contravariant functor 1332:of the groupoid. The 1323: 1257: 1196: 1170: 1105: 1060: 1018: 971: 869:category of manifolds 850: 824: 780: 679: 628: 587: 481: 399: 335: 215: 83: 1407: 1374: 1294: 1234: 1179: 1153: 1069: 1027: 980: 911: 833: 807: 688: 637: 598: 492: 411: 344: 230: 98: 66: 1402:be the category of 1213:and their actions. 1194:{\displaystyle s=t} 1168:{\displaystyle U=S} 848:{\displaystyle s=t} 822:{\displaystyle R=U} 88:together with five 81:{\displaystyle R,U} 1578:Algebraic geometry 1425: 1392: 1363:to yield a stack. 1318: 1309: 1252: 1207:algebraic groupoid 1191: 1165: 1100: 1055: 1013: 966: 857:topological groups 845: 819: 775: 674: 623: 582: 476: 394: 330: 210: 78: 1455:Simplicial scheme 1313: 1302: 194: 148: 127: 55:admitting finite 1595: 1564: 1548:(2–3): 193–240, 1537: 1531: 1519: 1518: 1517: 1508:, archived from 1505:Algebraic stacks 1489: 1483: 1477: 1474:Algebraic stacks 1471: 1434: 1432: 1431: 1426: 1401: 1399: 1398: 1395:{\displaystyle } 1393: 1327: 1325: 1324: 1319: 1314: 1301: 1266:the projection, 1261: 1259: 1258: 1253: 1211:algebraic groups 1200: 1198: 1197: 1192: 1174: 1172: 1171: 1166: 1129:Groupoid schemes 1109: 1107: 1106: 1101: 1099: 1098: 1064: 1062: 1061: 1056: 1054: 1053: 1022: 1020: 1019: 1014: 975: 973: 972: 967: 881:category of sets 854: 852: 851: 846: 828: 826: 825: 820: 784: 782: 781: 776: 759: 758: 709: 708: 683: 681: 680: 675: 632: 630: 629: 624: 622: 621: 591: 589: 588: 583: 578: 577: 550: 549: 525: 524: 485: 483: 482: 477: 469: 468: 432: 431: 407:(associativity) 403: 401: 400: 395: 384: 383: 356: 355: 339: 337: 336: 331: 329: 328: 298: 297: 266: 265: 219: 217: 216: 211: 192: 179: 178: 146: 125: 87: 85: 84: 79: 1603: 1602: 1598: 1597: 1596: 1594: 1593: 1592: 1588:Category theory 1568: 1567: 1535: 1529: 1522: 1515: 1513: 1501: 1498: 1493: 1492: 1484: 1480: 1472: 1468: 1463: 1451: 1437:. Then it is a 1405: 1404: 1372: 1371: 1292: 1291: 1276: 1232: 1231: 1218:algebraic group 1177: 1176: 1151: 1150: 1131: 1087: 1067: 1066: 1045: 1025: 1024: 978: 977: 909: 908: 883:is precisely a 877: 831: 830: 805: 804: 797: 792: 750: 700: 686: 685: 635: 634: 613: 596: 595: 569: 541: 516: 490: 489: 460: 423: 409: 408: 363: 347: 342: 341: 320: 289: 257: 228: 227: 158: 96: 95: 64: 63: 46:groupoid object 42: 26:groupoid object 18:category theory 12: 11: 5: 1601: 1599: 1591: 1590: 1585: 1580: 1570: 1569: 1566: 1565: 1520: 1497: 1494: 1491: 1490: 1478: 1465: 1464: 1462: 1459: 1458: 1457: 1450: 1447: 1424: 1421: 1418: 1415: 1412: 1391: 1388: 1385: 1382: 1379: 1359:but it can be 1317: 1312: 1308: 1305: 1299: 1275: 1272: 1251: 1248: 1245: 1242: 1239: 1190: 1187: 1184: 1164: 1161: 1158: 1130: 1127: 1097: 1094: 1090: 1086: 1083: 1080: 1077: 1074: 1052: 1048: 1044: 1041: 1038: 1035: 1032: 1012: 1009: 1006: 1003: 1000: 997: 994: 991: 988: 985: 965: 962: 959: 956: 953: 950: 947: 944: 940: 937: 934: 931: 928: 925: 922: 919: 916: 876: 873: 867:by taking the 859:by taking the 844: 841: 838: 818: 815: 812: 796: 793: 791: 788: 787: 786: 774: 771: 768: 765: 762: 757: 753: 749: 746: 743: 740: 737: 733: 730: 727: 724: 721: 718: 715: 712: 707: 703: 699: 696: 693: 673: 670: 667: 664: 661: 657: 654: 651: 648: 645: 642: 620: 616: 612: 609: 606: 603: 592: 581: 576: 572: 568: 565: 562: 559: 556: 553: 548: 544: 540: 537: 534: 531: 528: 523: 519: 515: 512: 509: 506: 503: 500: 497: 486: 475: 472: 467: 463: 459: 456: 453: 450: 447: 444: 441: 438: 435: 430: 426: 422: 419: 416: 405: 393: 390: 387: 382: 379: 376: 373: 370: 366: 362: 359: 354: 350: 327: 323: 319: 316: 313: 310: 307: 304: 301: 296: 292: 288: 285: 282: 279: 276: 273: 269: 264: 260: 256: 253: 250: 247: 244: 241: 238: 235: 221: 220: 209: 206: 203: 200: 197: 191: 188: 185: 182: 177: 174: 171: 168: 165: 161: 157: 154: 151: 145: 142: 139: 136: 133: 130: 124: 121: 118: 115: 112: 109: 106: 103: 77: 74: 71: 57:fiber products 41: 38: 20:, a branch of 13: 10: 9: 6: 4: 3: 2: 1600: 1589: 1586: 1584: 1583:Scheme theory 1581: 1579: 1576: 1575: 1573: 1563: 1559: 1555: 1551: 1547: 1543: 1542: 1533: 1525: 1524:Gillet, Henri 1521: 1512:on 2008-05-05 1511: 1507: 1506: 1500: 1499: 1495: 1487: 1482: 1479: 1475: 1470: 1467: 1460: 1456: 1453: 1452: 1448: 1446: 1444: 1440: 1436: 1419: 1413: 1386: 1380: 1369: 1364: 1362: 1358: 1354: 1350: 1346: 1342: 1337: 1335: 1331: 1330:inertia group 1315: 1310: 1306: 1297: 1289: 1285: 1281: 1274:Constructions 1273: 1271: 1269: 1265: 1249: 1246: 1243: 1240: 1237: 1229: 1225: 1222: 1219: 1214: 1212: 1208: 1204: 1188: 1185: 1182: 1162: 1159: 1156: 1148: 1144: 1140: 1138: 1128: 1126: 1124: 1120: 1115: 1113: 1095: 1092: 1088: 1084: 1078: 1072: 1050: 1046: 1042: 1036: 1030: 1010: 1007: 1004: 1001: 995: 992: 989: 983: 963: 960: 954: 948: 942: 938: 935: 932: 926: 920: 914: 906: 902: 898: 894: 890: 886: 882: 874: 872: 870: 866: 862: 858: 842: 839: 836: 816: 813: 810: 802: 795:Group objects 794: 789: 772: 769: 766: 763: 755: 751: 747: 744: 738: 735: 731: 728: 725: 722: 719: 713: 710: 705: 701: 694: 691: 671: 668: 665: 662: 659: 655: 652: 649: 646: 643: 640: 618: 614: 610: 607: 604: 601: 593: 579: 574: 570: 566: 560: 557: 554: 551: 546: 542: 535: 532: 529: 521: 517: 513: 510: 507: 504: 498: 495: 487: 473: 465: 461: 457: 454: 448: 445: 442: 436: 433: 428: 424: 417: 414: 406: 391: 385: 380: 377: 374: 371: 368: 364: 360: 357: 352: 348: 325: 321: 317: 314: 311: 308: 305: 302: 299: 294: 290: 286: 283: 280: 277: 274: 271: 267: 262: 258: 254: 251: 248: 245: 242: 239: 236: 233: 226: 225: 224: 207: 201: 198: 195: 189: 186: 180: 175: 172: 169: 166: 163: 159: 155: 152: 149: 143: 140: 134: 131: 128: 122: 119: 113: 110: 107: 104: 101: 94: 93: 92: 91: 75: 72: 69: 62: 58: 54: 51: 47: 39: 37: 35: 34:group objects 31: 27: 23: 19: 1545: 1539: 1514:, retrieved 1510:the original 1504: 1481: 1476:, Ch 3. § 1. 1469: 1365: 1348: 1340: 1338: 1329: 1283: 1279: 1277: 1267: 1263: 1230:. Then take 1227: 1220: 1215: 1206: 1203:group scheme 1146: 1136: 1134: 1132: 1119:Lie groupoid 1116: 1112:groupoid set 1111: 904: 900: 896: 892: 888: 878: 801:group object 798: 222: 52: 45: 43: 25: 15: 1532:-varieties" 1486:Gillet 1984 1334:coequalizer 1123:submersions 22:mathematics 1572:Categories 1516:2014-02-11 1496:References 1361:stackified 865:Lie groups 594:(inverse) 340:where the 40:Definition 1417:⇉ 1384:⇉ 1304:⇉ 1288:equalizer 1247:× 1135:groupoid 1093:− 1008:∘ 952:→ 924:→ 875:Groupoids 770:∘ 739:∘ 726:∘ 695:∘ 663:∘ 644:∘ 605:∘ 558:∘ 536:∘ 508:∘ 499:∘ 458:× 449:∘ 434:× 418:∘ 389:→ 365:× 318:∘ 306:∘ 287:∘ 275:∘ 249:∘ 237:∘ 205:→ 184:→ 160:× 138:→ 117:→ 90:morphisms 1526:(1984), 1449:See also 1435:-torsors 1353:prestack 885:groupoid 790:Examples 50:category 30:groupoid 1562:0772058 1286:), the 1143:schemes 1139:-scheme 891:, take 871:, etc. 488:(unit) 61:objects 1560:  193:  147:  126:  1461:Notes 1368:atlas 1357:stack 1347:from 1149:. If 863:, or 48:in a 1224:acts 1065:and 829:and 24:, a 1550:doi 1290:of 1125:). 16:In 1574:: 1558:MR 1556:, 1546:34 1544:, 1282:, 1262:, 1133:A 1023:, 976:, 899:, 799:A 684:, 633:, 44:A 1552:: 1536:K 1530:Q 1488:. 1423:) 1420:U 1414:R 1411:( 1390:] 1387:U 1381:R 1378:[ 1349:C 1341:C 1316:U 1311:s 1307:t 1298:R 1284:U 1280:R 1268:t 1264:s 1250:G 1244:U 1241:= 1238:R 1228:U 1221:G 1189:t 1186:= 1183:s 1163:S 1160:= 1157:U 1147:S 1137:S 1096:1 1089:f 1085:= 1082:) 1079:f 1076:( 1073:i 1051:x 1047:1 1043:= 1040:) 1037:x 1034:( 1031:e 1011:f 1005:g 1002:= 999:) 996:g 993:, 990:f 987:( 984:m 964:y 961:= 958:) 955:y 949:x 946:( 943:t 939:, 936:x 933:= 930:) 927:y 921:x 918:( 915:s 905:C 901:R 897:C 893:U 889:C 843:t 840:= 837:s 817:U 814:= 811:R 785:. 773:t 767:e 764:= 761:) 756:R 752:1 748:, 745:i 742:( 736:m 732:, 729:s 723:e 720:= 717:) 714:i 711:, 706:R 702:1 698:( 692:m 672:s 669:= 666:i 660:t 656:, 653:t 650:= 647:i 641:s 619:R 615:1 611:= 608:i 602:i 580:, 575:R 571:1 567:= 564:) 561:t 555:e 552:, 547:R 543:1 539:( 533:m 530:= 527:) 522:R 518:1 514:, 511:s 505:e 502:( 496:m 474:, 471:) 466:R 462:1 455:m 452:( 446:m 443:= 440:) 437:m 429:R 425:1 421:( 415:m 392:R 386:R 381:s 378:, 375:t 372:, 369:U 361:R 358:: 353:i 349:p 326:2 322:p 315:t 312:= 309:m 303:t 300:, 295:1 291:p 284:s 281:= 278:m 272:s 268:, 263:U 259:1 255:= 252:e 246:t 243:= 240:e 234:s 208:R 202:R 199:: 196:i 190:, 187:R 181:R 176:s 173:, 170:t 167:, 164:U 156:R 153:: 150:m 144:, 141:R 135:U 132:: 129:e 123:, 120:U 114:R 111:: 108:t 105:, 102:s 76:U 73:, 70:R 53:C

Index

category theory
mathematics
groupoid
group objects
category
fiber products
objects
morphisms
group object
topological groups
category of topological spaces
Lie groups
category of manifolds
category of sets
groupoid
Lie groupoid
submersions
schemes
group scheme
algebraic groups
algebraic group
acts
equalizer
coequalizer
contravariant functor
prestack
stack
stackified
atlas
( R U ) {\displaystyle (R\rightrightarrows U)} -torsors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑