Knowledge (XXG)

Hygroscopic cycle

Source đź“ť

1998:. The plant was being forced to reduce its production due to water restrictions during high temperatures in the region (the plant consumed 1200 m3/day using adiabatic air coolers from 25 Â°C onwards of ambient temperature). The Hygroscopic cycle has allowed the plant to cut the cooling consumption for these air coolers, increase the power output by 1%, and increase the availability all around the year. The plant can now operate at 38 Â°C, and even 45 Â°C ambient temperature. The owner of the plant can now reach all the generation premiums of this plant. This increase also helps the province to reach the 31: 1601: 1714:. These hygroscopic compounds are cooled by an air-cooler, where the heat of condensation is dissipated by an air-cooler. Because of the thermal recovery of the boiler blowdown, the hygroscopic reaction in the steam condenser, and the use of an air-cooler to dissipate the heat of condensation, the 1738:
in the evaporator and allowing more liquid to evaporate. In the hygroscopic cycle, the gas absorbed-dissolved into the other fluid is the steam coming from the outlet of the steam turbine. As the steam is absorbed-dissolved into the hygroscopic fluid, more steam can condense, and the reduction in
2025:
The current state of development is being led by Francisco Javier Rubio Serrano, where his research team and company, IMASA INGENIERĂŤA Y PROYECTOS, S.A. are developing other configurations, and researching hygroscopic fluids for each particular application together with their most suitable
1320: 1994:. This is the first industrial reference of this technology. It has a capacity of 12.5 MW and is part of Oleicola el Tejar. The biomass fed is dried olive bones from the olive oil industry surrounding the plant in the 1777:. This means that the temperature of the concentrated hygroscopic fluid entering the absorber can be higher than a non hygroscopic fluid. As a result, the cooling is easier than in a conventional Rankine cycle in the 1826:
Depending on the salts chosen, in particular those with a high dilution capacity (i.e. LiBr), saturation temperature of the hygroscopic fluid can be up to 40 Â°C higher than the steam leaving the turbine.
1822:
are also expensive, require numerous equipment, such as pumps and cooling towers, and expensive water treatment. Thus by reducing the cooling water needed, the operating costs of the plant will be reduced.
1800:
in power plants consume a high amount of fresh water and chemicals, and their alternative, electric air cooled steam condenser consumes part of the power produced in conventional power plants, reducing the
1718:
of the cycle is higher, with a higher electrical output, reduces or eliminates the need for cooling water, reduces the operating costs, and the capital cost of the utility power plant.
1754:
In the steam absorber, steam is absorbed with a concentrated hygroscopic fluid. As the steam is absorbed, the concentration of the hygroscopic fluid decreases, or the salt is
1155: 1100: 1045: 852: 805: 720: 673: 585: 538: 1630: 756: 624: 990: 1812:
much higher than the steam traditionally condensed in the air cooled condenser mentioned earlier, thus reducing the power needed for ventilation, and needing less
2504: 1331: 489: 2010:
The Hygroscopic Cycle is a concept that has evolved recently and is at the heart of intensive research on hygroscopic fluids. Recent developments have been the
1999: 1219: 828: 781: 696: 649: 561: 514: 453: 1309: 2666: 1873:. For the last two cases, water can be easily desorbed in a reversible way, as opposed to the first case, where water cannot be recovered easily ( 1342: 2043: 1880:
The selection of hygroscopic salts have to provide the following strict criteria in order to be of interest of use in the hygroscopic cycle:
912: 2437:"ANESE | IMASA desarrolla una importante tecnología para Oleícola el Tejar que es una herramienta de eficiencia energética muy potente" 1623: 1210: 446: 324: 2014:, but with the actual configuration, it is expected to have an impact in locations with poor access to water, and a good integration with 1739:
vapor pressure is equivalent to a reduction in the condensation pressure at the outlet of the steam turbine. The effect of this is that a
879: 1830:
The salts are concentrated in the boiler, as steam is disengaged from liquid water. Given that the concentration of salts increases, the
2141: 1901:
Non-reactivity with other salts in the cycle and chemically stable over the range of temperatures and pressures in the hygroscopic cycle
262: 2497: 1394: 1368: 889: 343: 2162: 2732: 295: 1447: 2022:, biomass, coal). Here the residual heat of the boiler and hygroscopic fluid leaving the boiler can be used for heating purposes. 918: 317: 2201: 2770: 1616: 2325: 1862: 1547: 79: 1442: 2806: 2490: 2346: 1522: 1295: 272: 1808:
The air-cooler used in the hygroscopic cycle cools a liquid flow with concentrated hygroscopic compound, with an overall
2717: 907: 110: 100: 1755: 115: 105: 1995: 1954:
A hygroscopic cycle demonstration plant has been built, demonstrating the concepts of the cycle, which includes the
2631: 2521: 1437: 1399: 1363: 75: 1734:. In these machines, the refrigerant is absorbed-dissolved into another fluid (a hygroscopic fluid), reducing its 2785: 1967: 1813: 1192: 940: 386: 199: 189: 2067: 2019: 1975: 1866: 1809: 1782: 1695:
with the concentrated hygroscopic compounds is used thermally to pre-heat the steam turbine condensate, and as
2740: 2765: 2750: 2696: 1839: 1727: 1711: 1604: 1432: 1229: 932: 871: 407: 396: 62: 1955: 1853:
are all those substances that attract water in vapour or liquid from their environment, thus their use as
1767: 1537: 1457: 1254: 338: 92: 67: 1966:. The physical and chemical characteristics of the hygroscopic compounds, as well as their impact on the 2611: 2571: 2436: 1819: 1797: 1472: 1049: 362: 208: 57: 2254: 2755: 2086: 2050: 1552: 1477: 1467: 267: 141: 129: 1710:. Here the outlet steam is absorbed by cooled hygroscopic compounds using the same principles as in 2760: 2661: 2513: 2360:
Miranda, Teresa; Esteban, Alberto; Rojas, Sebastián; Montero, Irene; Ruiz, Antonio (4 April 2008).
1648: 1497: 1492: 1259: 281: 247: 242: 155: 2255:"Cooling Water : Watertreatment and chemical conditioning of open and closed cooling systems" 2617: 2411: 1924: 1586: 1249: 1197: 1110: 1055: 1000: 429: 413: 300: 252: 237: 227: 36: 30: 1244: 834: 787: 702: 655: 567: 520: 1706:
Condensation is done in a steam absorber, as opposed to the traditional condenser found in the
2780: 2393: 2340: 2180: 1991: 1687:
generator, where clean steam is released and superheated in order to be expanded and generate
1581: 1542: 1532: 1104: 902: 738: 730: 603: 232: 222: 164: 2116: 2722: 2383: 2373: 2235: 2098: 1912: 1735: 1502: 1487: 1427: 1422: 1239: 1234: 960: 884: 352: 217: 2745: 2015: 1692: 1656: 1452: 1300: 954: 595: 418: 179: 146: 471: 2712: 2671: 2656: 2641: 2576: 2566: 2561: 2536: 2388: 2361: 1895:
lower than water), with easily reversible desorption into water and steam in the boiler
1892: 1870: 1688: 1652: 1507: 1277: 813: 766: 681: 634: 546: 499: 377: 257: 194: 184: 52: 22: 2239: 2102: 2800: 2775: 2691: 2646: 2607: 2581: 2551: 2546: 2282: 2205: 1971: 1963: 1943: 1939: 1935: 1920: 1885: 1831: 1802: 1778: 1771: 1759: 1748: 1740: 1731: 1715: 1707: 1664: 1660: 1576: 894: 463: 424: 136: 2681: 2676: 2651: 2597: 2556: 2011: 1676: 1527: 1512: 1462: 945: 1874: 1482: 290: 2300: 2686: 2461: 1959: 1850: 1835: 1774: 1672: 1571: 1517: 1842:
the boiling point temperature, and the steam temperature that is disengaged.
1794:
reduce, or even eliminate the consumption of cooling water in the power plant
1962:
are recirculated, obtaining condensations with temperatures higher than the
1854: 169: 2397: 1858: 1744: 1285: 1202: 994: 402: 174: 2378: 1671:
as the motive fluid but with the novelty of introducing salts and their
2482: 1987: 391: 1786: 1696: 1680: 2117:"Water for Power Plant Cooling | Union of Concerned Scientists" 1934:
Other advantages are that most of the optimisations used in actual
16:
Thermodynamic cycle converting thermal energy into mechanical power
1970:, and other main equipment of the cycle similar to those found in 1684: 1668: 2226:
Rubio, Francisco Javier (2013). "The Hygroscopic cycle for CSP".
2283:"Rankine Cycle with Absorption Step Using Hygroscopic Compounds" 1916: 1763: 367: 2486: 2440: 2163:"Water Conservation Options for Power Generation Facilities" 1907:
Thermal and physical properties are not degraded over cycles
1911:
Some of the most known salts with similar properties are
1751:
of the turbine, and generates a higher electrical output.
1726:
The hygroscopic effect of salts is well known and used in
1898:
Good solubility in water at low to moderate temperatures
2044:"Water efficient cooling of solar thermal power plants" 1762:
fluids with a high dilution capacity in water, such as
1747:
level at the outlet of the turbine. This increases the
1743:
with a lower outlet pressure can be used, with a lower
1768:
high saturation temperature / low saturation pressure
1113: 1058: 1003: 963: 837: 816: 790: 769: 741: 705: 684: 658: 637: 606: 570: 549: 523: 502: 474: 2181:"Air Cooled Heat Exchangers | Chart Industries" 2731: 2705: 2630: 2590: 2531: 2520: 2412:"Adiabatic Coolers the Sensible Choice for Cooling" 1857:. Many of them react chemically with water such as 1974:have also been proven, together with the overall 1789:concentrated hygroscopic fluid mentioned earlier. 1149: 1094: 1039: 984: 846: 822: 799: 775: 750: 714: 690: 667: 643: 618: 579: 555: 532: 508: 483: 2362:"Combustion Analysis of Different Olive Residues" 1816:and obtaining a lower overall cost of the plant. 1775:fluid can condense vapor at a higher temperature 1986:The hygroscopic cycle has been introduced in a 2498: 1624: 8: 2366:International Journal of Molecular Sciences 2528: 2505: 2491: 2483: 2328:. Archived from the original on 2017-10-15 1631: 1617: 1180: 332: 151: 29: 18: 2387: 2377: 1112: 1057: 1002: 962: 836: 815: 789: 768: 740: 704: 683: 657: 636: 605: 569: 548: 522: 501: 473: 1869:in their crystalline structure, such as 1781:by using an air-cooler to dissipate the 2667:Homogeneous charge compression ignition 2202:"Forced Air Cooling and Fan Technology" 2068:"Think Water when Designing CSP Plants" 2035: 2018:plants, and any thermoelectric plants ( 1938:can be achieved in this Cycle, such as 1834:temperature of the mixture of salts is 1377: 1354: 1308: 1268: 1218: 1183: 376: 351: 280: 207: 154: 21: 2338: 1982:Hygroscopic Cycle industrial reference 1792:With the appropriate salts, this can 7: 2326:"Oleicola el Tejar SCL - Enipedia" 838: 791: 706: 659: 571: 524: 344:Intensive and extensive properties 14: 2301:"Test plant – Hygroscopic Cycle" 2085:Rubio, Francisco Javier (2013). 1930:Refinements of Hygroscopic Cycle 1679:. The salts are desorbed in the 1600: 1599: 919:Table of thermodynamic equations 2087:"The Hygroscopic cycle for CSP" 1990:power plant in the province of 1958:of vapour in an absorber where 1904:Are non-toxic and non flammable 1700: 1395:Maxwell's thermodynamic surface 1884:Highly hygroscopic compounds, 1814:surface area for heat exchange 1129: 1117: 1074: 1062: 1019: 1007: 979: 967: 1: 2240:10.1016/S1755-0084(13)70048-6 2103:10.1016/S1755-0084(13)70048-6 1950:Hygroscopic Cycle Pilot Plant 1296:Mechanical equivalent of heat 908:Onsager reciprocal relations 2572:Stirling (pseudo/adiabatic) 1838:. In most salts, this will 1691:through the steam turbine. 1400:Entropy as energy dispersal 1211:"Perpetual motion" machines 1150:{\displaystyle G(T,p)=H-TS} 1095:{\displaystyle A(T,V)=U-TS} 1040:{\displaystyle H(S,p)=U+pV} 2823: 1891:Less volatile than water ( 847:{\displaystyle \partial T} 800:{\displaystyle \partial V} 715:{\displaystyle \partial p} 668:{\displaystyle \partial V} 580:{\displaystyle \partial T} 533:{\displaystyle \partial S} 2345:: CS1 maint: unfit URL ( 1321:An Inquiry Concerning the 2026:construction materials. 1976:thermodynamic efficiency 1810:volumetric heat capacity 1803:Rankine cycle efficiency 1728:Absorption refrigerators 1712:absorption refrigerators 1334:Heterogeneous Substances 751:{\displaystyle \alpha =} 619:{\displaystyle \beta =-} 1865:. Others trap water as 1730:where heat is used for 1663:. It is similar to the 2228:Renewable Energy Focus 2091:Renewable Energy Focus 1964:saturation temperature 1820:Cooling water circuits 1798:Cooling water circuits 1770:. In other words, the 1151: 1096: 1041: 986: 985:{\displaystyle U(S,V)} 848: 824: 801: 777: 752: 716: 692: 669: 645: 620: 581: 557: 534: 510: 485: 464:Specific heat capacity 68:Quantum thermodynamics 1972:thermoelectric plants 1960:hygroscopic compounds 1851:Hygroscopic compounds 1332:On the Equilibrium of 1152: 1097: 1050:Helmholtz free energy 1042: 987: 849: 825: 802: 778: 753: 717: 693: 670: 646: 621: 582: 558: 535: 511: 486: 2807:Thermodynamic cycles 2756:Regenerative cooling 2634:combustion / thermal 2533:Without phase change 2524:combustion / thermal 2514:Thermodynamic cycles 2305:Hygroscopiccycle.com 2287:Patentscope.wipo.int 1783:heat of condensation 1779:condensation section 1766:usually also show a 1345:Motive Power of Fire 1111: 1056: 1001: 961: 913:Bridgman's equations 890:Fundamental relation 835: 814: 788: 767: 739: 703: 682: 656: 635: 604: 568: 547: 521: 500: 472: 2379:10.3390/ijms9040512 1675:properties for the 1649:thermodynamic cycle 1323:Source ... Friction 1255:Loschmidt's paradox 447:Material properties 325:Conjugate variables 2253:Dr. K. Nachstedt. 2188:Hudsonproducts.com 1925:Copper(II) sulfate 1877:may be required). 1867:water of hydration 1846:Hygroscopic Fluids 1659:by the means of a 1587:Order and disorder 1343:Reflections on the 1250:Heat death paradox 1147: 1092: 1037: 982: 844: 820: 797: 773: 748: 712: 688: 665: 641: 616: 577: 553: 530: 506: 484:{\displaystyle c=} 481: 454:Property databases 430:Reduced properties 414:Chemical potential 378:Functions of state 301:Thermal efficiency 37:Carnot heat engine 2794: 2793: 2771:Vapor-compression 2697:Staged combustion 2626: 2625: 2591:With phase change 2169:. September 2012. 1645:Hygroscopic cycle 1641: 1640: 1582:Self-organization 1407: 1406: 1105:Gibbs free energy 903:Maxwell relations 861: 860: 857: 856: 823:{\displaystyle V} 776:{\displaystyle 1} 731:Thermal expansion 725: 724: 691:{\displaystyle V} 644:{\displaystyle 1} 590: 589: 556:{\displaystyle N} 509:{\displaystyle T} 437: 436: 353:Process functions 339:Property diagrams 318:System properties 308: 307: 273:Endoreversibility 165:Equation of state 2814: 2766:Vapor absorption 2529: 2507: 2500: 2493: 2484: 2477: 2476: 2474: 2472: 2458: 2452: 2451: 2449: 2448: 2439:. Archived from 2433: 2427: 2426: 2424: 2422: 2408: 2402: 2401: 2391: 2381: 2357: 2351: 2350: 2344: 2336: 2334: 2333: 2322: 2316: 2315: 2313: 2311: 2297: 2291: 2290: 2279: 2273: 2272: 2270: 2268: 2259: 2250: 2244: 2243: 2223: 2217: 2216: 2214: 2213: 2204:. Archived from 2198: 2192: 2191: 2185: 2177: 2171: 2170: 2159: 2153: 2152: 2146: 2138: 2132: 2131: 2129: 2127: 2113: 2107: 2106: 2082: 2076: 2075: 2064: 2058: 2057: 2055: 2049:. Archived from 2048: 2040: 2006:State of the art 2000:COP 21 agreement 1996:south of Cordoba 1917:Sodium Hydroxyde 1913:Calcium chloride 1758:. Hygroscopic / 1736:partial pressure 1655:into mechanical 1633: 1626: 1619: 1603: 1602: 1310:Key publications 1291: 1290:("living force") 1240:Brownian ratchet 1235:Entropy and life 1230:Entropy and time 1181: 1156: 1154: 1153: 1148: 1101: 1099: 1098: 1093: 1046: 1044: 1043: 1038: 991: 989: 988: 983: 885:Clausius theorem 880:Carnot's theorem 853: 851: 850: 845: 829: 827: 826: 821: 806: 804: 803: 798: 782: 780: 779: 774: 761: 760: 757: 755: 754: 749: 721: 719: 718: 713: 697: 695: 694: 689: 674: 672: 671: 666: 650: 648: 647: 642: 629: 628: 625: 623: 622: 617: 586: 584: 583: 578: 562: 560: 559: 554: 539: 537: 536: 531: 515: 513: 512: 507: 494: 493: 490: 488: 487: 482: 460: 459: 333: 152: 33: 19: 2822: 2821: 2817: 2816: 2815: 2813: 2812: 2811: 2797: 2796: 2795: 2790: 2727: 2701: 2633: 2622: 2612:Organic Rankine 2586: 2540: 2537:hot air engines 2534: 2523: 2516: 2511: 2481: 2480: 2470: 2468: 2460: 2459: 2455: 2446: 2444: 2435: 2434: 2430: 2420: 2418: 2410: 2409: 2405: 2359: 2358: 2354: 2337: 2331: 2329: 2324: 2323: 2319: 2309: 2307: 2299: 2298: 2294: 2281: 2280: 2276: 2266: 2264: 2257: 2252: 2251: 2247: 2225: 2224: 2220: 2211: 2209: 2200: 2199: 2195: 2183: 2179: 2178: 2174: 2161: 2160: 2156: 2144: 2140: 2139: 2135: 2125: 2123: 2115: 2114: 2110: 2084: 2083: 2079: 2066: 2065: 2061: 2053: 2046: 2042: 2041: 2037: 2032: 2008: 1984: 1952: 1932: 1863:alkaline metals 1848: 1724: 1693:Boiler blowdown 1637: 1592: 1591: 1567: 1559: 1558: 1557: 1417: 1409: 1408: 1387: 1373: 1348: 1344: 1337: 1333: 1326: 1322: 1289: 1282: 1264: 1245:Maxwell's demon 1207: 1178: 1177: 1161: 1160: 1159: 1109: 1108: 1107: 1054: 1053: 1052: 999: 998: 997: 959: 958: 957: 955:Internal energy 950: 935: 925: 924: 899: 874: 864: 863: 862: 833: 832: 812: 811: 786: 785: 765: 764: 737: 736: 701: 700: 680: 679: 654: 653: 633: 632: 602: 601: 596:Compressibility 566: 565: 545: 544: 519: 518: 498: 497: 470: 469: 449: 439: 438: 419:Particle number 372: 331: 320: 310: 309: 268:Irreversibility 180:State of matter 147:Isolated system 132: 122: 121: 120: 95: 85: 84: 80:Non-equilibrium 72: 47: 39: 17: 12: 11: 5: 2820: 2818: 2810: 2809: 2799: 2798: 2792: 2791: 2789: 2788: 2783: 2778: 2773: 2768: 2763: 2758: 2753: 2748: 2743: 2737: 2735: 2729: 2728: 2726: 2725: 2720: 2715: 2709: 2707: 2703: 2702: 2700: 2699: 2694: 2689: 2684: 2679: 2674: 2669: 2664: 2659: 2654: 2649: 2644: 2638: 2636: 2628: 2627: 2624: 2623: 2621: 2620: 2615: 2605: 2600: 2594: 2592: 2588: 2587: 2585: 2584: 2579: 2574: 2569: 2564: 2559: 2554: 2549: 2543: 2541: 2532: 2526: 2518: 2517: 2512: 2510: 2509: 2502: 2495: 2487: 2479: 2478: 2462:"Kalina Cycle" 2453: 2428: 2403: 2372:(4): 512–525. 2352: 2317: 2292: 2274: 2245: 2218: 2193: 2172: 2154: 2133: 2108: 2077: 2059: 2056:on 2013-10-21. 2034: 2033: 2031: 2028: 2016:combined cycle 2007: 2004: 1992:Cordoba, Spain 1983: 1980: 1978:of the cycle. 1951: 1948: 1931: 1928: 1909: 1908: 1905: 1902: 1899: 1896: 1893:vapor pressure 1889: 1871:sodium sulfate 1847: 1844: 1723: 1720: 1701:steam-absorber 1653:thermal energy 1639: 1638: 1636: 1635: 1628: 1621: 1613: 1610: 1609: 1608: 1607: 1594: 1593: 1590: 1589: 1584: 1579: 1574: 1568: 1565: 1564: 1561: 1560: 1556: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1419: 1418: 1415: 1414: 1411: 1410: 1405: 1404: 1403: 1402: 1397: 1389: 1388: 1386: 1385: 1382: 1378: 1375: 1374: 1372: 1371: 1366: 1364:Thermodynamics 1360: 1357: 1356: 1352: 1351: 1350: 1349: 1340: 1338: 1329: 1327: 1318: 1313: 1312: 1306: 1305: 1304: 1303: 1298: 1293: 1281: 1280: 1278:Caloric theory 1274: 1271: 1270: 1266: 1265: 1263: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1226: 1223: 1222: 1216: 1215: 1214: 1213: 1206: 1205: 1200: 1195: 1189: 1186: 1185: 1179: 1176: 1175: 1172: 1168: 1167: 1166: 1163: 1162: 1158: 1157: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1102: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1047: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 992: 981: 978: 975: 972: 969: 966: 951: 949: 948: 943: 937: 936: 931: 930: 927: 926: 923: 922: 915: 910: 905: 898: 897: 892: 887: 882: 876: 875: 870: 869: 866: 865: 859: 858: 855: 854: 843: 840: 830: 819: 808: 807: 796: 793: 783: 772: 758: 747: 744: 734: 727: 726: 723: 722: 711: 708: 698: 687: 676: 675: 664: 661: 651: 640: 626: 615: 612: 609: 599: 592: 591: 588: 587: 576: 573: 563: 552: 541: 540: 529: 526: 516: 505: 491: 480: 477: 467: 458: 457: 456: 450: 445: 444: 441: 440: 435: 434: 433: 432: 427: 422: 411: 400: 381: 380: 374: 373: 371: 370: 365: 359: 356: 355: 349: 348: 347: 346: 341: 322: 321: 316: 315: 312: 311: 306: 305: 304: 303: 298: 293: 285: 284: 278: 277: 276: 275: 270: 265: 260: 258:Free expansion 255: 250: 245: 240: 235: 230: 225: 220: 212: 211: 205: 204: 203: 202: 197: 195:Control volume 192: 187: 185:Phase (matter) 182: 177: 172: 167: 159: 158: 150: 149: 144: 139: 133: 128: 127: 124: 123: 119: 118: 113: 108: 103: 97: 96: 91: 90: 87: 86: 83: 82: 71: 70: 65: 60: 55: 49: 48: 45: 44: 41: 40: 35:The classical 34: 26: 25: 23:Thermodynamics 15: 13: 10: 9: 6: 4: 3: 2: 2819: 2808: 2805: 2804: 2802: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2761:Transcritical 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2741:Hampson–Linde 2739: 2738: 2736: 2734: 2733:Refrigeration 2730: 2724: 2721: 2719: 2716: 2714: 2711: 2710: 2708: 2704: 2698: 2695: 2693: 2690: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2670: 2668: 2665: 2663: 2662:Gas-generator 2660: 2658: 2655: 2653: 2650: 2648: 2647:Brayton/Joule 2645: 2643: 2640: 2639: 2637: 2635: 2629: 2619: 2616: 2613: 2609: 2606: 2604: 2601: 2599: 2596: 2595: 2593: 2589: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2553: 2552:Brayton/Joule 2550: 2548: 2545: 2544: 2542: 2538: 2530: 2527: 2525: 2519: 2515: 2508: 2503: 2501: 2496: 2494: 2489: 2488: 2485: 2467: 2463: 2457: 2454: 2443:on 2017-09-18 2442: 2438: 2432: 2429: 2417: 2416:Icscoolenergy 2413: 2407: 2404: 2399: 2395: 2390: 2385: 2380: 2375: 2371: 2367: 2363: 2356: 2353: 2348: 2342: 2327: 2321: 2318: 2306: 2302: 2296: 2293: 2288: 2284: 2278: 2275: 2263: 2256: 2249: 2246: 2241: 2237: 2233: 2229: 2222: 2219: 2208:on 2013-06-03 2207: 2203: 2197: 2194: 2189: 2182: 2176: 2173: 2168: 2164: 2158: 2155: 2150: 2143: 2137: 2134: 2122: 2118: 2112: 2109: 2104: 2100: 2096: 2092: 2088: 2081: 2078: 2073: 2069: 2063: 2060: 2052: 2045: 2039: 2036: 2029: 2027: 2023: 2021: 2017: 2013: 2005: 2003: 2001: 1997: 1993: 1989: 1981: 1979: 1977: 1973: 1969: 1965: 1961: 1957: 1949: 1947: 1945: 1941: 1937: 1936:Rankine cycle 1929: 1927: 1926: 1922: 1921:sulfuric acid 1918: 1914: 1906: 1903: 1900: 1897: 1894: 1890: 1887: 1883: 1882: 1881: 1878: 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1845: 1843: 1841: 1837: 1833: 1832:boiling point 1828: 1824: 1821: 1817: 1815: 1811: 1806: 1804: 1799: 1795: 1790: 1788: 1784: 1780: 1776: 1773: 1769: 1765: 1761: 1757: 1752: 1750: 1746: 1742: 1741:steam turbine 1737: 1733: 1732:refrigeration 1729: 1721: 1719: 1717: 1713: 1709: 1708:Rankine cycle 1704: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1665:Rankine cycle 1662: 1661:steam turbine 1658: 1654: 1650: 1646: 1634: 1629: 1627: 1622: 1620: 1615: 1614: 1612: 1611: 1606: 1598: 1597: 1596: 1595: 1588: 1585: 1583: 1580: 1578: 1577:Self-assembly 1575: 1573: 1570: 1569: 1563: 1562: 1554: 1551: 1549: 1548:van der Waals 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1473:von Helmholtz 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1420: 1413: 1412: 1401: 1398: 1396: 1393: 1392: 1391: 1390: 1383: 1380: 1379: 1376: 1370: 1367: 1365: 1362: 1361: 1359: 1358: 1353: 1347: 1346: 1339: 1336: 1335: 1328: 1325: 1324: 1317: 1316: 1315: 1314: 1311: 1307: 1302: 1299: 1297: 1294: 1292: 1288: 1284: 1283: 1279: 1276: 1275: 1273: 1272: 1267: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1227: 1225: 1224: 1221: 1217: 1212: 1209: 1208: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1187: 1182: 1173: 1170: 1169: 1165: 1164: 1144: 1141: 1138: 1135: 1132: 1126: 1123: 1120: 1114: 1106: 1103: 1089: 1086: 1083: 1080: 1077: 1071: 1068: 1065: 1059: 1051: 1048: 1034: 1031: 1028: 1025: 1022: 1016: 1013: 1010: 1004: 996: 993: 976: 973: 970: 964: 956: 953: 952: 947: 944: 942: 939: 938: 934: 929: 928: 921: 920: 916: 914: 911: 909: 906: 904: 901: 900: 896: 895:Ideal gas law 893: 891: 888: 886: 883: 881: 878: 877: 873: 868: 867: 841: 831: 817: 810: 809: 794: 784: 770: 763: 762: 759: 745: 742: 735: 732: 729: 728: 709: 699: 685: 678: 677: 662: 652: 638: 631: 630: 627: 613: 610: 607: 600: 597: 594: 593: 574: 564: 550: 543: 542: 527: 517: 503: 496: 495: 492: 478: 475: 468: 465: 462: 461: 455: 452: 451: 448: 443: 442: 431: 428: 426: 425:Vapor quality 423: 421: 420: 415: 412: 410: 409: 404: 401: 398: 394: 393: 388: 385: 384: 383: 382: 379: 375: 369: 366: 364: 361: 360: 358: 357: 354: 350: 345: 342: 340: 337: 336: 335: 334: 330: 326: 319: 314: 313: 302: 299: 297: 294: 292: 289: 288: 287: 286: 283: 279: 274: 271: 269: 266: 264: 263:Reversibility 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 215: 214: 213: 210: 206: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 162: 161: 160: 157: 153: 148: 145: 143: 140: 138: 137:Closed system 135: 134: 131: 126: 125: 117: 114: 112: 109: 107: 104: 102: 99: 98: 94: 89: 88: 81: 77: 74: 73: 69: 66: 64: 61: 59: 56: 54: 51: 50: 43: 42: 38: 32: 28: 27: 24: 20: 2618:Regenerative 2602: 2547:Bell Coleman 2469:. Retrieved 2465: 2456: 2445:. Retrieved 2441:the original 2431: 2419:. Retrieved 2415: 2406: 2369: 2365: 2355: 2330:. Retrieved 2320: 2308:. Retrieved 2304: 2295: 2286: 2277: 2265:. Retrieved 2261: 2248: 2231: 2227: 2221: 2210:. Retrieved 2206:the original 2196: 2187: 2175: 2167:Powermag.com 2166: 2157: 2149:Netl.doe.gov 2148: 2136: 2124:. Retrieved 2120: 2111: 2094: 2090: 2080: 2072:Powermag.com 2071: 2062: 2051:the original 2038: 2024: 2012:Kalina cycle 2009: 1985: 1953: 1944:regeneration 1933: 1910: 1886:deliquescent 1879: 1849: 1829: 1825: 1818: 1807: 1793: 1791: 1772:deliquescent 1760:deliquescent 1753: 1725: 1705: 1677:condensation 1644: 1642: 1438:CarathĂ©odory 1369:Heat engines 1341: 1330: 1319: 1301:Motive power 1286: 946:Free entropy 917: 417: 416: / 406: 405: / 397:introduction 390: 389: / 328: 291:Heat engines 78: / 2786:Ionocaloric 2781:Vuilleumier 2603:Hygroscopic 2262:Mkk.desy.de 2074:. May 2012. 1875:calcination 1673:hygroscopic 1651:converting 1260:Synergetics 941:Free energy 387:Temperature 248:Quasistatic 243:Isenthalpic 200:Instruments 190:Equilibrium 142:Open system 76:Equilibrium 58:Statistical 2751:Pulse tube 2723:Mixed/dual 2466:Google.com 2447:2017-10-15 2332:2017-10-15 2212:2013-06-07 2121:Ucsusa.org 2030:References 1956:absorption 1749:efficiency 1722:Principles 1716:efficiency 1572:Nucleation 1416:Scientists 1220:Philosophy 933:Potentials 296:Heat pumps 253:Polytropic 238:Isentropic 228:Isothermal 2746:Kleemenko 2632:Internal 2267:March 11, 2234:(3): 18. 2097:(3): 18. 1888:materials 1855:desiccant 1553:Waterston 1503:von Mayer 1458:de Donder 1448:Clapeyron 1428:Boltzmann 1423:Bernoulli 1384:Education 1355:Timelines 1139:− 1084:− 872:Equations 839:∂ 792:∂ 743:α 707:∂ 660:∂ 614:− 608:β 572:∂ 525:∂ 233:Adiabatic 223:Isochoric 209:Processes 170:Ideal gas 53:Classical 2801:Category 2713:Combined 2672:Humphrey 2657:Expander 2642:Atkinson 2577:Stoddard 2567:Stirling 2562:Ericsson 2522:External 2471:11 March 2421:11 March 2398:19325766 2341:cite web 2310:11 March 2126:11 March 1859:hydrates 1840:increase 1836:affected 1787:refluxed 1745:enthalpy 1605:Category 1543:Thompson 1453:Clausius 1433:Bridgman 1287:Vis viva 1269:Theories 1203:Gas laws 995:Enthalpy 403:Pressure 218:Isobaric 175:Real gas 63:Chemical 46:Branches 2776:Siemens 2692:Scuderi 2608:Rankine 2389:2635694 1988:biomass 1785:in the 1756:diluted 1699:in the 1528:Smeaton 1523:Rankine 1513:Onsager 1498:Maxwell 1493:Massieu 1198:Entropy 1193:General 1184:History 1174:Culture 1171:History 395: ( 392:Entropy 329:italics 130:Systems 2682:Miller 2677:Lenoir 2652:Diesel 2598:Kalina 2582:Manson 2557:Carnot 2396:  2386:  2142:"Home" 1968:boiler 1940:reheat 1697:reflux 1681:boiler 1667:using 1518:Planck 1508:Nernst 1483:Kelvin 1443:Carnot 733:  598:  466:  408:Volume 323:Note: 282:Cycles 111:Second 101:Zeroth 2706:Mixed 2258:(PDF) 2184:(PDF) 2145:(PDF) 2054:(PDF) 2047:(PDF) 1689:power 1685:steam 1669:water 1657:power 1647:is a 1566:Other 1533:Stahl 1488:Lewis 1478:Joule 1468:Gibbs 1463:Duhem 156:State 116:Third 106:First 2718:HEHC 2687:Otto 2473:2022 2423:2022 2394:PMID 2347:link 2312:2022 2269:2022 2128:2022 1942:and 1923:and 1764:LiBr 1643:The 1538:Tait 368:Heat 363:Work 93:Laws 2384:PMC 2374:doi 2236:doi 2099:doi 2020:CSP 1861:or 1683:or 1381:Art 327:in 2803:: 2464:. 2414:. 2392:. 2382:. 2368:. 2364:. 2343:}} 2339:{{ 2303:. 2285:. 2260:. 2232:14 2230:. 2186:. 2165:. 2147:. 2119:. 2095:14 2093:. 2089:. 2070:. 2002:. 1946:. 1919:, 1915:, 1805:. 1796:. 1703:. 2614:) 2610:( 2539:) 2535:( 2506:e 2499:t 2492:v 2475:. 2450:. 2425:. 2400:. 2376:: 2370:9 2349:) 2335:. 2314:. 2289:. 2271:. 2242:. 2238:: 2215:. 2190:. 2151:. 2130:. 2105:. 2101:: 1632:e 1625:t 1618:v 1145:S 1142:T 1136:H 1133:= 1130:) 1127:p 1124:, 1121:T 1118:( 1115:G 1090:S 1087:T 1081:U 1078:= 1075:) 1072:V 1069:, 1066:T 1063:( 1060:A 1035:V 1032:p 1029:+ 1026:U 1023:= 1020:) 1017:p 1014:, 1011:S 1008:( 1005:H 980:) 977:V 974:, 971:S 968:( 965:U 842:T 818:V 795:V 771:1 746:= 710:p 686:V 663:V 639:1 611:= 575:T 551:N 528:S 504:T 479:= 476:c 399:)

Index

Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric
Isochoric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑