Knowledge (XXG)

Colloid

Source đź“ť

668: 1209: 1194: 2127:
consist of increasing temperature to accelerate destabilisation (below critical temperatures of phase inversion or chemical degradation). Temperature affects not only viscosity, but also interfacial tension in the case of non-ionic surfactants or more generally interactions forces inside the system. Storing a dispersion at high temperatures enables to simulate real life conditions for a product (e.g. tube of sunscreen cream in a car in the summer), but also to accelerate destabilisation processes up to 200 times. Mechanical acceleration including vibration,
1238: 1392:: This is due to interaction between two dipoles that are either permanent or induced. Even if the particles do not have a permanent dipole, fluctuations of the electron density gives rise to a temporary dipole in a particle. This temporary dipole induces a dipole in particles nearby. The temporary dipole and the induced dipoles are then attracted to each other. This is known as van der Waals force, and is always present (unless the refractive indexes of the dispersed and continuous phases are matched), is short-range, and is attractive. 2023: 1303:, personal care and industrial applications, they can provide stabilization, destabilization and separation, gelation, flow control, crystallization control and numerous other effects. Apart from uses of the soluble forms some of the hydrocolloids have additional useful functionality in a dry form if after solubilization they have the water removed - as in the formation of films for breath strips or sausage casings or indeed, wound dressing fibers, some being more compatible with 2111:, is based on measuring the fraction of light that, after being sent through the sample, it backscattered by the colloidal particles. The backscattering intensity is directly proportional to the average particle size and volume fraction of the dispersed phase. Therefore, local changes in concentration caused by sedimentation or creaming, and clumping together of particles caused by aggregation, are detected and monitored. These phenomena are associated with unstable colloids. 1151: 1976:. While these terms are often used interchangeably, for some definitions they have slightly different meanings. For example, coagulation can be used to describe irreversible, permanent aggregation where the forces holding the particles together are stronger than any external forces caused by stirring or mixing. Flocculation can be used to describe reversible aggregation involving weaker attractive forces, and the aggregate is usually called a 55: 31: 1170: 1182: 1261: 681: 4421: 1984: 2055:(the width of the electrical double layer) of the particles. It is also accomplished by changing the pH of a suspension to effectively neutralise the surface charge of the particles in suspension. This removes the repulsive forces that keep colloidal particles separate and allows for aggregation due to van der Waals forces. Minor changes in pH can manifest in significant alteration to the 1414: 1127: 1139: 1295:. Thus becoming effectively "soluble" they change the rheology of water by raising the viscosity and/or inducing gelation. They may provide other interactive effects with other chemicals, in some cases synergistic, in others antagonistic. Using these attributes hydrocolloids are very useful chemicals since in many areas of technology from 1980:. The term precipitation is normally reserved for describing a phase change from a colloid dispersion to a solid (precipitate) when it is subjected to a perturbation. Aggregation causes sedimentation or creaming, therefore the colloid is unstable: if either of these processes occur the colloid will no longer be a suspension. 2118:
the particles. If the apparent size of the particles increases due to them clumping together via aggregation, it will result in slower Brownian motion. This technique can confirm that aggregation has occurred if the apparent particle size is determined to be beyond the typical size range for colloidal particles.
1307:
than others. There are many different types of hydrocolloids each with differences in structure function and utility that generally are best suited to particular application areas in the control of rheology and the physical modification of form and texture. Some hydrocolloids like starch and casein
2074:
Unstable colloidal suspensions of low-volume fraction form clustered liquid suspensions, wherein individual clusters of particles sediment if they are more dense than the suspension medium, or cream if they are less dense. However, colloidal suspensions of higher-volume fraction form colloidal gels
2126:
The kinetic process of destabilisation can be rather long (up to several months or years for some products). Thus, it is often required for the formulator to use further accelerating methods to reach reasonable development time for new product design. Thermal methods are the most commonly used and
2117:
can be used to detect the size of a colloidal particle by measuring how fast they diffuse. This method involves directing laser light towards a colloid. The scattered light will form an interference pattern, and the fluctuation in light intensity in this pattern is caused by the Brownian motion of
1364:
dissolves, and the Na and Cl ions are surrounded by water molecules.  However, in a colloid such as milk, the colloidal particles are globules of fat, rather than individual fat molecules. Because colloid is multiple phases, it has very different properties compared to fully mixed, continuous
2030:
A method called gel network stabilization represents the principal way to produce colloids stable to both aggregation and sedimentation. The method consists in adding to the colloidal suspension a polymer able to form a gel network. Particle settling is hindered by the stiffness of the polymeric
2014:
Steric stabilization consists absorbing a layer of a polymer or surfactant on the particles to prevent them from getting close in the range of attractive forces. The polymer consists of chains that are attached to the particle surface, and the part of the chain that extends out is soluble in the
2327:
of these so-called "colloidal crystals" has emerged as a result of the relatively simple methods that have evolved in the last 20 years for preparing synthetic monodisperse colloids (both polymer and mineral) and, through various mechanisms, implementing and preserving their long-range order
2131:
and agitation are sometimes used. They subject the product to different forces that pushes the particles / droplets against one another, hence helping in the film drainage. Some emulsions would never coalesce in normal gravity, while they do under artificial gravity. Segregation of different
1208: 2062:
Addition of a charged polymer flocculant. Polymer flocculants can bridge individual colloidal particles by attractive electrostatic interactions. For example, negatively charged colloidal silica or clay particles can be flocculated by the addition of a positively charged
2152:. Many of the forces that govern the structure and behavior of matter, such as excluded volume interactions or electrostatic forces, govern the structure and behavior of colloidal suspensions. For example, the same techniques used to model ideal gases can be applied to 1193: 1999:, where the particles are charged on the surface, but then attract counterions (ions of opposite charge) which surround the particle. The electrostatic repulsion between suspended colloidal particles is most readily quantified in terms of the 844:: State of subdivision such that the molecules or polymolecular particles dispersed in a medium have at least one dimension between approximately 1 nm and 1 ÎĽm, or that in a system discontinuities are found at distances of that order. 1386:: Colloidal particles often carry an electrical charge and therefore attract or repel each other. The charge of both the continuous and the dispersed phase, as well as the mobility of the phases are factors affecting this interaction. 769:
is distinguished from colloids by larger particle size). A colloid has a dispersed phase (the suspended particles) and a continuous phase (the medium of suspension). The dispersed phase particles have a diameter of approximately 1
2096: 3276:
Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (10 September 2011).
2865:
Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (2011).
2160:
in colloidal suspensions can be studied in real time using optical techniques, and are analogous to phase transitions in liquids. In many interesting cases optical fluidity is used to control colloid suspensions.
1323:
Hydrocolloids contain some type of gel-forming agent, such as sodium carboxymethylcellulose (NaCMC) and gelatin. They are normally combined with some type of sealant, i.e. polyurethane to 'stick' to the skin.
2390:
Colloidal particles can also serve as transport vector of diverse contaminants in the surface water (sea water, lakes, rivers, fresh water bodies) and in underground water circulating in fissured rocks (e.g.
2087:, flow like liquids under shear, but maintain their shape when shear is removed. It is for this reason that toothpaste can be squeezed from a toothpaste tube, but stays on the toothbrush after it is applied. 1868:
There is an upper size-limit for the diameter of colloidal particles because particles larger than 1 ÎĽm tend to sediment, and thus the substance would no longer be considered a colloidal suspension.
1934:
The stability of a colloidal system is defined by particles remaining suspended in solution and depends on the interaction forces between the particles. These include electrostatic interactions and
4310: 1863: 4124: 1685: 3818:
Greenfield, Elad; Rotschild, Carmel; Szameit, Alexander; Nemirovsky, Jonathan; El-Ganainy, Ramy; Christodoulides, Demetrios N; Saraf, Meirav; Lifshitz, Efrat; Segev, Mordechai (2011).
2296:-like correlations with interparticle separation distances, often being considerably greater than the individual particle diameter. In all of these cases in nature, the same brilliant 1757: 1960:
If the interaction energy is greater than kT, the attractive forces will prevail, and the colloidal particles will begin to clump together. This process is referred to generally as
4026:
Liu, Xuesong; Li, Zejing; Tang, Jianguo; Yu, Bing; Cong, Hailin (9 September 2013). "Current status and future developments in preparation and application of colloidal crystals".
1801: 1497: 5173: 2685:
Hatschek, Emil, The Foundations of Colloid Chemistry, A selection of early papers bearing on the subject, The British Association Committee on Colloid Chemistry, London, 1925
2031:
matrix where particles are trapped, and the long polymeric chains can provide a steric or electrosteric stabilization to dispersed particles. Examples of such substances are
712: 1404:: An attractive entropic force arising from an osmotic pressure imbalance when colloids are suspended in a medium of much smaller particles or polymers called depletants. 1237: 1533: 1561: 4262: 2051:
Removal of the electrostatic barrier that prevents aggregation of the particles. This can be accomplished by the addition of salt to a suspension to reduce the
1711: 1617: 1589: 4875: 3534:
Lemarchand, Caroline; Couvreur, Patrick; Besnard, Madeleine; Costantini, Dominique; Gref, Ruxandra (2003). "Novel polyester-polysaccharide nanoparticles".
4358: 2453:
occurring in dense clay membrane. The question is less clear for small organic colloids often mixed in porewater with truly dissolved organic molecules.
3417:
Comba, Silvia; Sethi (August 2009). "Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum".
4318: 2676:
Selmi, Francesco, Studio intorno alle pseudo-soluzioni degli azzurri di Prussia ed alla influenza dei sali nel guastarle, Bologna: Tipi Sassi, 1847
2059:. When the magnitude of the zeta potential lies below a certain threshold, typically around ± 5mV, rapid coagulation or aggregation tends to occur. 2103:
The most widely used technique to monitor the dispersion state of a product, and to identify and quantify destabilization phenomena, is multiple
4143: 3679:
Snabre, Patrick; Pouligny, Bernard (2008). "Size Segregation in a Fluid-like or Gel-like Suspension Settling under Gravity or in a Centrifuge".
2987: 1995:
Electrostatic stabilization is based on the mutual repulsion of like electrical charges. The charge of colloidal particles is structured in an
705: 1957:. If this is the case, then the colloidal particles will repel or only weakly attract each other, and the substance will remain a suspension. 667: 4168: 4072: 3663: 3366: 3252: 2902: 2848: 2795: 2599: 2564: 2179:
array of particles that can be formed over a very long range (typically on the order of a few millimeters to one centimeter) and that appear
1202:
are semi-solid emulsions of oil and water. Oil-in-water creams are used for cosmetic purpose while water-in-oil creams for medicinal purpose
1150: 4088:
Alonso, U.; T. Missana; A. Patelli; V. Rigato (2007). "Bentonite colloid diffusion through the host rock of a deep geological repository".
2694:
Selmi, Francesco - Sur le soufre pseudosoluble, sa pseudosolution e le soufre mou, Journal de Pharmacie et de Chimie, tome 21, 1852, Paris
3972:
Luck, Werner; Klier, Manfred; Wesslau, Hermann (1963). "Ăśber Bragg-Reflexe mit sichtbarem Licht an monodispersen Kunststofflatices. II".
3715: 3032:
McBride, Samantha A.; Skye, Rachael; Varanasi, Kripa K. (2020). "Differences between Colloidal and Crystalline Evaporative Deposits".
2445:. They have been the subject of detailed studies for many years. However, the mobility of inorganic colloids is very low in compacted 4920: 5249: 4238: 3339: 3209: 3094: 2786:
Richard G. Jones; Edward S. Wilks; W. Val Metanomski; Jaroslav Kahovec; Michael Hess; Robert Stepto; Tatsuki Kitayama, eds. (2009).
698: 685: 3577:
Mengual, O (1999). "Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000".
3499:
Roland, I; Piel, G; Delattre, L; Evrard, B (2003). "Systematic characterisation of oil-in-water emulsions for formulation design".
4868: 2015:
suspension medium. This technique is used to stabilize colloidal particles in all types of solvents, including organic solvents.
2003:. The combined effect of van der Waals attraction and electrostatic repulsion on aggregation is described quantitatively by the 4625: 5010: 4695: 4620: 4351: 1315:
designed to lock moisture in the skin and help the natural healing process of skin to reduce scarring, itching and soreness.
944: 460: 3770: 4807: 4635: 1969: 1308:
are useful foods as well as rheology modifiers, others have limited nutritive value, usually providing a source of fiber.
801: 4690: 4435: 1425:
acts upon colloidal particles. Therefore, if the colloidal particles are denser than the medium of suspension, they will
115: 5244: 5163: 4817: 3390:
Genz, Ulrike; D'Aguanno, Bruno; Mewis, Jan; Klein, Rudolf (1 July 1994). "Structure of Sterically Stabilized Colloids".
1991:
Electrostatic stabilization and steric stabilization are the two main mechanisms for stabilization against aggregation.
635: 34: 3460:
Bean, Elwood L.; Campbell, Sylvester J.; Anspach, Frederick R.; Ockershausen, Richard W.; Peterman, Charles J. (1964).
5093: 4861: 1812: 1945:
A colloid is stable if the interaction energy due to attractive forces between the colloidal particles is less than
5239: 5148: 2877: 2823: 640: 265: 2588:
International Union of Pure and Applied Chemistry. Subcommittee on Polymer Terminology; Jones, Richard G. (2009).
1628: 5040: 4344: 4062: 2301: 1973: 1939: 1906: 1872: 530: 205: 3076: 2919:
de Swaan Arons, J.; Diepen, G. A. M. (2010). "Immiscibility of gases. The system He-Xe: (Short communication)".
2531:
by this difference, and much of the research related to this use of colloids is based on fraudulent research by
2022: 5025: 4960: 4842: 4741: 4371: 3769:
Greenfield, Elad; Nemirovsky, Jonathan; El-Ganainy, Ramy; Christodoulides, Demetri N; Segev, Mordechai (2013).
2508: 2442: 2114: 1716: 1181: 525: 520: 46: 1536: 610: 2242:
and gravitational forces. The periodic arrays of submicrometre spherical particles provide similar arrays of
4980: 4736: 2379: 2375: 2363: 2350: 2176: 1996: 1078: 1027: 1003: 813: 620: 215: 4496: 5078: 5073: 4930: 4761: 4751: 4501: 2765:. Page 183: "As gelatine appears to be its type, it is proposed to designate substances of the class as 2235: 1887: 1333: 1169: 765: 744: 734: 605: 545: 515: 465: 185: 75: 1766: 1454: 5259: 5178: 5158: 3279:"Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)" 1433:(float to the top). Larger particles also have a greater tendency to sediment because they have smaller 1312: 645: 260: 245: 3225: 5254: 4892: 4884: 4680: 4440: 4203: 4097: 3946: 3903: 3868: 3831: 3782: 3426: 3201: 3145: 2955: 2524: 2516: 2512: 2407:
onto colloids suspended in water. Various types of colloids are recognised: inorganic colloids (e.g.
2355: 2282: 2153: 2148:. Micrometre-scale colloidal particles are large enough to be observed by optical techniques such as 1961: 1954: 1935: 1430: 1337: 1050: 998: 235: 125: 3462:"Zeta Potential Measurements in the Control of Coagulation Chemical Doses [with Discussion]" 1398:: A repulsive steric force typically occurring due to adsorbed polymers coating a colloid's surface. 30: 5005: 4975: 4655: 4547: 4537: 4450: 4405: 2867: 2815: 2520: 2496: 2250: 2243: 2149: 1445: 1422: 1389: 475: 285: 135: 4172: 4802: 4731: 4565: 4256: 3919: 3748: 3559: 3481: 3300: 3135: 3057: 2894: 2840: 2756: 2721: 2646: 2264: 1950: 1260: 747:
throughout another substance. Some definitions specify that the particles must be dispersed in a
615: 590: 338: 329: 3122:
van Anders, Greg; Klotsa, Daphne; Ahmed, N. Khalid; Engel, Michael; Glotzer, Sharon C. (2014).
2704:
Tweney, Ryan D. (2006). "Discovering Discovery: How Faraday Found the First Metallic Colloid".
5234: 5183: 5142: 5045: 4832: 4827: 4797: 4756: 4645: 4597: 4582: 4475: 4445: 4244: 4234: 4135: 4068: 4043: 3800: 3740: 3696: 3659: 3551: 3516: 3442: 3372: 3362: 3335: 3258: 3248: 3205: 3173: 3090: 3049: 3014: 2791: 2605: 2595: 2570: 2560: 2504: 2170: 1918: 1229: 585: 430: 320: 240: 3653: 5118: 5113: 4945: 4905: 4787: 4410: 4211: 4194:
Wold, Susanna; Trygve Eriksen (2007). "Diffusion of humic colloids in compacted bentonite".
4105: 4035: 4008: 3981: 3954: 3911: 3876: 3839: 3790: 3730: 3688: 3632: 3586: 3543: 3508: 3473: 3434: 3399: 3327: 3290: 3163: 3153: 3082: 3041: 3004: 2996: 2963: 2928: 2886: 2832: 2748: 2713: 2636: 2371: 2337: 2275: 2254: 2157: 2104: 1899: 1891: 1803:
is the difference in mass density between the colloidal particle and the suspension medium.
1508: 1383: 1223:
it scatters blue light making it appear blue from the side, but orange light shines through.
1199: 1138: 794: 290: 255: 250: 210: 180: 150: 110: 70: 2305: 1546: 1356:, whereas colloidal particles are bigger. For example, in a solution of salt in water, the 5088: 5020: 4985: 4970: 4965: 4950: 4915: 4777: 4630: 4367: 2500: 2480: 2450: 2268: 2207: 2067: 1434: 1401: 1377: 1357: 1300: 1284: 1126: 1088: 1074: 809: 805: 600: 550: 420: 175: 87: 5103: 3771:"Shockwave based nonlinear optical manipulation in densely scattering opaque suspensions" 4207: 4101: 3950: 3907: 3872: 3844: 3835: 3819: 3786: 3430: 3149: 2959: 2423:
substances). When heavy metals or radionuclides form their own pure colloids, the term "
2132:
populations of particles have been highlighted when using centrifugation and vibration.
27:
Mixture of an insoluble substance microscopically dispersed throughout another substance
5153: 5108: 5098: 5015: 4910: 4900: 4575: 4570: 4527: 4460: 4455: 3477: 3331: 3168: 3123: 3009: 2982: 2367: 2359: 2128: 2056: 2000: 1922: 1696: 1602: 1574: 1441: 1395: 1214: 975: 786: 672: 650: 630: 625: 580: 500: 435: 333: 220: 65: 54: 3958: 3590: 3512: 5228: 5198: 5035: 4995: 4940: 4812: 4792: 4715: 4675: 4610: 4542: 4465: 3061: 2760: 2591:
Compendium of polymer terminology and nomenclature : IUPAC recommendations, 2008
2532: 2285: 2231: 1895: 1426: 1373:
The following forces play an important role in the interaction of colloid particles:
1019: 1009: 965: 961: 555: 361: 342: 324: 225: 145: 3999:
Hiltner, P.A.; Krieger, I.M. (1969). "Diffraction of light by ordered suspensions".
3563: 3304: 2898: 2844: 2725: 2650: 2535:. Another difference is that crystalloids generally are much cheaper than colloids. 2019:
A combination of the two mechanisms is also possible (electrosteric stabilization).
1875:
if the rate of sedimentation is equal to the rate of movement from Brownian motion.
5055: 5050: 4837: 4710: 4705: 4700: 4665: 4615: 4532: 3923: 3752: 2511:
in the blood, and therefore, they should theoretically preferentially increase the
2457: 2425: 2412: 2345: 2199: 2108: 2076: 2052: 1965: 1910: 1046: 1023: 914: 763:
refers unambiguously to the overall mixture (although a narrower sense of the word
575: 565: 535: 495: 490: 470: 315: 295: 155: 4134:. Nagra Technical Report 02-14. Institute of Terrestrial Ecology, ETH ZĂĽrich: 47. 1983: 3621:"Stability of colloidal systems - a review of the stability measurements methods" 3438: 3045: 2099:
Measurement principle of multiple light scattering coupled with vertical scanning
2007:. A common method of stabilising a colloid (converting it from a precipitate) is 1713:
is the volume of the colloidal particle, calculated using the volume of a sphere
5208: 5123: 4746: 4640: 4552: 4420: 3620: 2441:. Colloids have been suspected for the long-range transport of plutonium on the 2297: 2239: 2219: 2008: 2004: 1946: 1161: 782: 595: 570: 540: 485: 480: 412: 2870:
and polymerization processes in dispersed systems (IUPAC Recommendations 2011)"
2788:
Compendium of Polymer Terminology and Nomenclature (IUPAC Recommendations 2008)
5203: 5193: 5188: 5065: 4685: 4660: 4587: 4557: 4491: 4470: 4248: 4215: 4109: 3880: 3547: 3086: 3000: 2717: 2309: 2084: 1413: 1157: 989: 985: 926: 892: 790: 775: 505: 347: 140: 17: 4282: 4139: 3985: 3637: 3376: 3295: 3278: 3262: 2932: 2890: 2836: 2641: 2624: 2609: 2574: 1905:
Condensation of small dissolved molecules into larger colloidal particles by
1096:
Homogeneous mixtures with a dispersed phase in this size range may be called
5213: 5168: 5083: 3735: 3158: 2446: 2396: 2392: 2341: 2324: 2278: 2227: 2223: 2203: 2192: 2180: 2080: 1564: 1280: 1251: 940: 771: 737: 560: 510: 383: 230: 130: 4047: 3804: 3744: 3700: 3555: 3520: 3446: 3177: 3053: 3018: 2983:"Hydrocolloids as thickening and gelling agents in food: a critical review" 2752: 4336: 3894:
Sanders, J.V.; Sanders, J. V.; Segnit, E. R. (1964). "Structure of Opal".
3356: 3242: 2589: 2340:
is an important organising principle for compartmentalisation of both the
5030: 4822: 4650: 4287: 3795: 2528: 2476: 2472: 2404: 2036: 1380:: This refers to the impossibility of any overlap between hard particles. 1349: 1288: 1247: 971: 740: 120: 4012: 3652:
Salager, J-L (2000). Françoise Nielloud; Gilberte Marti-Mestres (eds.).
3485: 3461: 3403: 2483:
that vary depending on the chemical conditions of the soil sample, i.e.
5133: 4925: 4782: 4670: 4605: 4522: 4039: 3318:
Park, Soo-Jin; Seo, Min-Kang (1 January 2011). "Intermolecular Force".
2484: 2400: 2320: 2293: 2289: 2184: 2141: 2032: 1361: 1345: 1218: 1070: 1042: 900: 752: 730: 440: 388: 379: 374: 3692: 2967: 4853: 4391: 4311:"Millions of surgery patients at risk in drug research fraud scandal" 3915: 3100: 2420: 2211: 1592: 1341: 1054: 748: 393: 369: 100: 4061:
Frimmel, Fritz H.; Frank von der Kammer; Hans-Curt Flemming (2007).
2246: 2095: 2946:
de Swaan Arons, J.; Diepen, G. A. M. (1966). "Gas—Gas Equilibria".
2230:
and elsewhere, and form these highly ordered arrays after years of
1917:
reactions. Such processes are used in the preparation of colloidal
4955: 4400: 4386: 3140: 2527:. However, there is still controversy to the actual difference in 2469: 2416: 2313: 2257: 2195: 2094: 1982: 1914: 1296: 1292: 993: 936: 922: 910: 824: 398: 95: 3625:
Annales Universitatis Mariae Curie-Sklodowska, sectio AA – Chemia
2354:—similar in importance to compartmentalisation via lipid bilayer 1348:
constitute only one phase. A solute in a solution are individual
3579:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
2663:
Selmi, Francesco "Studi sulla dimulsione di cloruro d'argento".
2465: 2461: 2408: 2260: 2188: 2145: 1440:
The sedimentation or creaming velocity is found by equating the
1304: 1243: 1225: 1066: 981: 955: 918: 751:, while others extend the definition to include substances like 4857: 4340: 1417:
Brownian motion of 350 nm diameter polymer colloidal particles.
4396: 2378:
strongly enhances colloidal phase separation and formation of
2187:
examples of this ordering phenomenon can be found in precious
1890:
of large particles or droplets to the colloidal dimensions by
1353: 1060: 1015: 906: 756: 105: 2300:(or play of colors) can be attributed to the diffraction and 2183:
to their atomic or molecular counterparts. One of the finest
1987:
Examples of a stable and of an unstable colloidal dispersion.
2816:"Dispersity in polymer science (IUPAC Recommendations 2009)" 2769:, and to speak of their peculiar form of aggregation as the 2625:"Dispersity in polymer science (IUPAC Recommendations 2009)" 2263:, particularly when the interstitial spacing is of the same 793:
of light by particles in the colloid. Other colloids may be
3604:
Bru, P.; et al. (2004). T. Provder; J. Texter (eds.).
3358:
Colloid stability : the role of surface forces. Part I
1806:
By rearranging, the sedimentation or creaming velocity is:
1429:(fall to the bottom), or if they are less dense, they will 3764: 3762: 2047:
Destabilization can be accomplished by different methods:
3124:"Understanding shape entropy through local dense packing" 2981:
Saha, Dipjyoti; Bhattacharya, Suvendu (6 November 2010).
2741:
Philosophical Transactions of the Royal Society of London
3974:
Berichte der Bunsengesellschaft fĂĽr Physikalische Chemie
3619:
Matusiak, Jakub; GrzÄ…dka, ElĹĽbieta (8 December 2017).
2449:
and in deep clay formations because of the process of
2107:
coupled with vertical scanning. This method, known as
4125:"Stability and mobility of colloids in Opalinus Clay" 3198:
Colloid Science: Principles, Methods and Applications
2429:" is used to designate pure phases, i.e., pure Tc(OH) 1898:, or application of shear (e.g., shaking, mixing, or 1815: 1769: 1719: 1699: 1631: 1605: 1577: 1549: 1511: 1457: 733:
in which one substance consisting of microscopically
5174:
List of boiling and freezing information of solvents
2665:
Nuovi Annali delle Scienze Naturali di Bologna, 1845
2550: 2548: 2274:
Thus, it has been known for many years that, due to
2156:
the behavior of a hard sphere colloidal suspension.
5132: 5064: 4994: 4891: 4770: 4724: 4596: 4510: 4484: 4428: 4379: 2011:, a process where it is shaken with an electrolyte. 1622:The mass of the colloidal particle is found using: 808:, who called them pseudosolutions, and expanded by 3716:"Colloidal matter: Packing, geometry, and entropy" 1883:There are two principal ways to prepare colloids: 1857: 1795: 1751: 1705: 1679: 1611: 1583: 1555: 1527: 1491: 2515:, whereas other types of volume expanders called 2079:properties. Viscoelastic colloidal gels, such as 3820:"Light-induced self-synchronizing flow patterns" 3075:Lekkerkerker, Henk N.W.; Tuinier, Remco (2011). 2559:(4rd ed.). Burlington, MA: Academic Press. 4196:Physics and Chemistry of the Earth, Parts A/B/C 4123:Voegelin, A.; Kretzschmar, R. (December 2002). 4090:Physics and Chemistry of the Earth, Parts A/B/C 3236: 3234: 3191: 3189: 3187: 2144:, colloids are an interesting model system for 2070:that cause aggregation due to entropic effects. 1858:{\displaystyle v={\frac {m_{A}g}{6\pi \eta r}}} 1228:is a gel in which water is dispersed in silica 829: 4231:Elements of the nature and properties of soils 4169:"Diffusion of colloids in compacted bentonite" 2319:The large number of experiments exploring the 2122:Accelerating methods for shelf life prediction 1938:, because they both contribute to the overall 4869: 4352: 4229:Weil, Ray; Brady, Nyle C. (11 October 2018). 2370:that arise via liquid-liquid or liquid-solid 706: 8: 3937:Darragh, P.J.; et al. (1976). "Opals". 3859:Pieranski, P. (1983). "Colloidal Crystals". 1680:{\displaystyle m_{A}=V(\rho _{1}-\rho _{2})} 2739:"X. Liquid diffusion applied to analysis". 1619:is the sedimentation or creaming velocity. 4876: 4862: 4854: 4359: 4345: 4337: 4276: 4274: 4272: 4261:: CS1 maint: location missing publisher ( 3466:Journal (American Water Works Association) 2921:Recueil des Travaux Chimiques des Pays-Bas 2479:and carry either positive and/or negative 1871:The colloidal particles are said to be in 713: 699: 53: 42: 3843: 3794: 3734: 3636: 3294: 3167: 3157: 3139: 3008: 2809: 2807: 2781: 2779: 2640: 2594:. Cambridge: Royal Society of Chemistry. 2403:). Radionuclides and heavy metals easily 2066:Addition of non-adsorbed polymers called 1829: 1822: 1814: 1787: 1774: 1768: 1752:{\displaystyle V={\frac {4}{3}}\pi r^{3}} 1743: 1726: 1718: 1698: 1668: 1655: 1636: 1630: 1604: 1576: 1548: 1516: 1510: 1462: 1456: 800:Colloidal suspensions are the subject of 3655:Pharmaceutical emulsions and suspensions 2021: 1412: 856: 29: 2790:(2nd ed.). RSC Publ. p. 464. 2623:Stepto, Robert F. T. (1 January 2009). 2544: 1122: 854:Colloids can be classified as follows: 804:. This field of study began in 1845 by 45: 4254: 3501:International Journal of Pharmaceutics 3247:. London: Royal Society of Chemistry. 3078:Colloids and the Depletion Interaction 2988:Journal of Food Science and Technology 2366:has been used to refer to clusters of 1311:The term hydrocolloids also refers to 1291:) that are colloidally dispersible in 4067:(1 ed.). Springer. p. 292. 2191:, in which brilliant regions of pure 2026:Steric and gel network stabilization. 1336:and a continuous phase, whereas in a 859: 7: 4281:Martin, Gregory S. (19 April 2005). 3606:Particle sizing and characterisation 2908:from the original on 9 October 2022. 2854:from the original on 9 October 2022. 4064:Colloidal transport in porous media 3244:Basic principles of colloid science 2304:of visible lightwaves that satisfy 2292:environment can exhibit long-range 1796:{\displaystyle \rho _{1}-\rho _{2}} 1492:{\displaystyle m_{A}g=6\pi \eta rv} 3478:10.1002/j.1551-8833.1964.tb01202.x 3332:10.1016/B978-0-12-375049-5.00001-3 2503:, and can be used for intravenous 25: 4283:"An Update on Intravenous Fluids" 4233:(Fourth ed.). New York, NY. 3959:10.1038/scientificamerican0476-84 2557:Intermolecular and surface forces 891:Helium and xenon are known to be 4419: 3320:Interface Science and Technology 2555:Israelachvili, Jacob N. (2011). 2175:A colloidal crystal is a highly 1259: 1236: 1207: 1192: 1180: 1168: 1149: 1137: 1125: 680: 679: 666: 3714:Manoharan, Vinothan N. (2015). 2308:, in a matter analogous to the 1674: 1648: 945:atmospheric particulate matter 1: 4808:Macroscopic quantum phenomena 4309:Blake, Heidi (3 March 2011). 3845:10.1088/1367-2630/13/5/053021 3591:10.1016/S0927-7757(98)00680-3 3513:10.1016/S0378-5173(03)00364-8 2814:Stepto, Robert F. T. (2009). 2771:colloidal condition of matter 2218:). These spherical particles 1964:, but is also referred to as 1437:to counteract this movement. 1369:Interaction between particles 802:interface and colloid science 5164:Inorganic nonaqueous solvent 4818:Order and disorder (physics) 3439:10.1016/j.watres.2009.05.046 3046:10.1021/acs.langmuir.0c01139 2460:, the colloidal fraction in 3355:Tadros, Tharwat F. (2007). 2507:. Colloids preserve a high 2499:belong to a major group of 2136:As a model system for atoms 1539:of the colloidal particles, 1254:globules dispersed in water 888:No such colloids are known. 5276: 5149:Acid dissociation constant 3283:Pure and Applied Chemistry 3196:Cosgrove, Terence (2010). 2878:Pure and Applied Chemistry 2824:Pure and Applied Chemistry 2629:Pure and Applied Chemistry 2495:Colloid solutions used in 2475:that are less than 1ÎĽm in 2168: 1595:of the colloidal particle, 895:under certain conditions. 266:Spin gapless semiconductor 4417: 4216:10.1016/j.pce.2006.05.002 4132:Technischer Bericht / NTB 4110:10.1016/j.pce.2006.04.021 3881:10.1080/00107518308227471 3658:. CRC press. p. 89. 3087:10.1007/978-94-007-1223-2 3001:10.1007/s13197-010-0162-6 2718:10.1162/posc.2006.14.1.97 2302:constructive interference 2249:, which act as a natural 1873:sedimentation equilibrium 1567:of the suspension medium, 1384:Electrostatic interaction 1378:Excluded volume repulsion 878: 862: 206:Electronic band structure 5250:Condensed matter physics 4843:Thermo-dielectric effect 4742:Enthalpy of vaporization 4436:Bose–Einstein condensate 4028:Chemical Society Reviews 3986:10.1002/bbpc.19630670114 3638:10.17951/aa.2017.72.1.33 3296:10.1351/PAC-REC-10-06-03 3081:. Heidelberg: Springer. 2933:10.1002/recl.19630820810 2891:10.1351/PAC-REC-10-06-03 2868:"Terminology of polymers 2837:10.1351/PAC-REC-08-05-02 2642:10.1351/PAC-REC-08-05-02 2509:colloid osmotic pressure 2443:Nevada Nuclear Test Site 2380:biomolecular condensates 2351:biomolecular condensates 2115:Dynamic light scattering 797:or have a slight color. 116:Bose–Einstein condensate 47:Condensed matter physics 5114:Solubility table (data) 4981:Apparent molar property 4737:Enthalpy of sublimation 3736:10.1126/science.1253751 3548:10.1023/A:1025017502379 3536:Pharmaceutical Research 3361:. Weinheim: Wiley-VCH. 3241:Everett, D. H. (1988). 3226:Preparation of colloids 3159:10.1073/pnas.1418159111 2706:Perspectives on Science 2376:Macromolecular crowding 2364:biomolecular condensate 2316:in crystalline solids. 1997:electrical double layer 1079:biomolecular condensate 1028:biomolecular condensate 1004:biomolecular condensate 5079:Total dissolved solids 5074:Solubility equilibrium 4999:and related quantities 4752:Latent internal energy 4502:Color-glass condensate 3824:New Journal of Physics 3224:Kopeliovich, Dmitri. 3128:Proc Natl Acad Sci USA 2753:10.1098/rstl.1861.0011 2411:particles, silicates, 2100: 2053:Debye screening length 2027: 1988: 1859: 1797: 1753: 1707: 1681: 1613: 1585: 1557: 1529: 1528:{\displaystyle m_{A}g} 1493: 1418: 1409:Sedimentation velocity 1328:Compared with solution 846: 816:, who coined the term 38: 5179:Partition coefficient 5159:Polar aprotic solvent 4562:Magnetically ordered 3202:John Wiley & Sons 2481:electrostatic charges 2415:), organic colloids ( 2206:colloidal spheres of 2098: 2025: 1986: 1860: 1798: 1754: 1708: 1682: 1614: 1586: 1558: 1556:{\displaystyle \eta } 1530: 1494: 1416: 1114:colloidal dispersions 1106:colloidal suspensions 261:Topological insulator 33: 5094:Enthalpy of solution 5021:Volume concentration 5016:Number concentration 4441:Fermionic condensate 4317:. UK. Archived from 3861:Contemporary Physics 3796:10.1364/OE.21.023785 2525:intracellular volume 2513:intravascular volume 2283:electrically charged 2091:Monitoring stability 1955:absolute temperature 1936:van der Waals forces 1813: 1767: 1717: 1697: 1629: 1603: 1575: 1547: 1509: 1455: 1390:van der Waals forces 1187:A dollop of hair gel 999:biological membranes 834:: Short synonym for 761:colloidal suspension 279:Electronic phenomena 126:Fermionic condensate 5245:Colloidal chemistry 5006:Molar concentration 4976:Dilution (equation) 4656:Chemical ionization 4548:Programmable matter 4538:Quantum spin liquid 4406:Supercritical fluid 4208:2007PCE....32..477W 4102:2007PCE....32..469A 4013:10.1021/j100727a049 3951:1976SciAm.234d..84D 3939:Scientific American 3908:1964Natur.204..990J 3873:1983ConPh..24...25P 3836:2011NJPh...13e3021G 3787:2013OExpr..2123785G 3781:(20): 23785–23802. 3431:2009WatRe..43.3717C 3404:10.1021/la00019a029 3150:2014PNAS..111E4812V 3134:(45): E4812–E4821. 3040:(40): 11732–11741. 2960:1966JChPh..44.2322D 2521:interstitial volume 2497:intravenous therapy 2491:Intravenous therapy 2413:iron oxy-hydroxides 2251:diffraction grating 2150:confocal microscopy 1446:gravitational force 1423:gravitational field 1102:colloidal emulsions 286:Quantum Hall effect 37:image of a colloid. 5046:Isotopic abundance 5011:Mass concentration 4885:Chemical solutions 4803:Leidenfrost effect 4732:Enthalpy of fusion 4497:Quark–gluon plasma 4321:on 4 November 2011 4040:10.1039/C3CS60078E 2519:also increase the 2386:In the environment 2265:order of magnitude 2101: 2028: 1989: 1951:Boltzmann constant 1855: 1793: 1749: 1703: 1677: 1609: 1581: 1553: 1537:Archimedean weight 1525: 1489: 1419: 1313:a type of dressing 1098:colloidal aerosols 781:Some colloids are 673:Physics portal 39: 5240:Chemical mixtures 5222: 5221: 4851: 4850: 4833:Superheated vapor 4828:Superconductivity 4798:Equation of state 4646:Flash evaporation 4598:Phase transitions 4583:String-net liquid 4476:Photonic molecule 4446:Degenerate matter 4074:978-3-540-71338-8 4034:(19): 7774–7800. 3729:(6251): 1253751. 3693:10.1021/la802459u 3665:978-0-8247-0304-2 3425:(15): 3717–3726. 3368:978-3-527-63107-0 3289:(12): 2229–2259. 3254:978-1-84755-020-0 2968:10.1063/1.1727043 2885:(12): 2229–2259. 2797:978-0-85404-491-7 2747:: 183–224. 1861. 2601:978-1-84755-942-5 2566:978-0-08-092363-5 2505:fluid replacement 2464:consists of tiny 2171:Colloidal crystal 2158:Phase transitions 1949:, where k is the 1900:high shear mixing 1853: 1734: 1706:{\displaystyle V} 1612:{\displaystyle v} 1584:{\displaystyle r} 1442:Stokes drag force 1279:describe certain 1094: 1093: 723: 722: 431:Granular material 199:Electronic phases 16:(Redirected from 5267: 5119:Solubility chart 4946:Phase separation 4906:Aqueous solution 4878: 4871: 4864: 4855: 4788:Compressed fluid 4423: 4368:States of matter 4361: 4354: 4347: 4338: 4331: 4330: 4328: 4326: 4306: 4300: 4299: 4297: 4295: 4278: 4267: 4266: 4260: 4252: 4226: 4220: 4219: 4202:(1–7): 477–484. 4191: 4185: 4184: 4182: 4180: 4171:. Archived from 4165: 4159: 4158: 4156: 4154: 4148: 4142:. Archived from 4129: 4120: 4114: 4113: 4096:(1–7): 469–476. 4085: 4079: 4078: 4058: 4052: 4051: 4023: 4017: 4016: 3996: 3990: 3989: 3969: 3963: 3962: 3934: 3928: 3927: 3916:10.1038/204990a0 3891: 3885: 3884: 3856: 3850: 3849: 3847: 3815: 3809: 3808: 3798: 3766: 3757: 3756: 3738: 3720: 3711: 3705: 3704: 3687:(23): 13338–47. 3676: 3670: 3669: 3649: 3643: 3642: 3640: 3616: 3610: 3609: 3601: 3595: 3594: 3585:(1–2): 111–123. 3574: 3568: 3567: 3531: 3525: 3524: 3496: 3490: 3489: 3457: 3451: 3450: 3414: 3408: 3407: 3398:(7): 2206–2212. 3387: 3381: 3380: 3352: 3346: 3345: 3315: 3309: 3308: 3298: 3273: 3267: 3266: 3238: 3229: 3222: 3216: 3215: 3193: 3182: 3181: 3171: 3161: 3143: 3119: 3113: 3112: 3110: 3108: 3103:on 14 April 2019 3099:. Archived from 3072: 3066: 3065: 3029: 3023: 3022: 3012: 2978: 2972: 2971: 2943: 2937: 2936: 2916: 2910: 2909: 2907: 2874: 2862: 2856: 2855: 2853: 2820: 2811: 2802: 2801: 2783: 2774: 2764: 2736: 2730: 2729: 2701: 2695: 2692: 2686: 2683: 2677: 2674: 2668: 2661: 2655: 2654: 2644: 2620: 2614: 2613: 2585: 2579: 2578: 2552: 2501:volume expanders 2372:phase separation 2338:phase separation 2105:light scattering 1864: 1862: 1861: 1856: 1854: 1852: 1838: 1834: 1833: 1823: 1802: 1800: 1799: 1794: 1792: 1791: 1779: 1778: 1758: 1756: 1755: 1750: 1748: 1747: 1735: 1727: 1712: 1710: 1709: 1704: 1686: 1684: 1683: 1678: 1673: 1672: 1660: 1659: 1641: 1640: 1618: 1616: 1615: 1610: 1590: 1588: 1587: 1582: 1562: 1560: 1559: 1554: 1534: 1532: 1531: 1526: 1521: 1520: 1498: 1496: 1495: 1490: 1467: 1466: 1402:Depletion forces 1332:A colloid has a 1263: 1240: 1211: 1196: 1184: 1172: 1153: 1141: 1129: 1001: 863:Dispersed phase 857: 715: 708: 701: 688: 683: 682: 675: 671: 670: 291:Spin Hall effect 181:Phase transition 151:Luttinger liquid 88:States of matter 71:Phase transition 57: 43: 21: 5275: 5274: 5270: 5269: 5268: 5266: 5265: 5264: 5225: 5224: 5223: 5218: 5128: 5089:Solvation shell 5060: 4998: 4990: 4986:Miscibility gap 4971:Serial dilution 4966:Supersaturation 4916:Buffer solution 4887: 4882: 4852: 4847: 4778:Baryonic matter 4766: 4720: 4691:Saturated fluid 4631:Crystallization 4592: 4566:Antiferromagnet 4506: 4480: 4424: 4415: 4375: 4365: 4335: 4334: 4324: 4322: 4308: 4307: 4303: 4293: 4291: 4280: 4279: 4270: 4253: 4241: 4228: 4227: 4223: 4193: 4192: 4188: 4178: 4176: 4175:on 4 March 2009 4167: 4166: 4162: 4152: 4150: 4149:on 9 March 2009 4146: 4127: 4122: 4121: 4117: 4087: 4086: 4082: 4075: 4060: 4059: 4055: 4025: 4024: 4020: 3998: 3997: 3993: 3971: 3970: 3966: 3936: 3935: 3931: 3893: 3892: 3888: 3858: 3857: 3853: 3817: 3816: 3812: 3768: 3767: 3760: 3718: 3713: 3712: 3708: 3678: 3677: 3673: 3666: 3651: 3650: 3646: 3618: 3617: 3613: 3603: 3602: 3598: 3576: 3575: 3571: 3533: 3532: 3528: 3498: 3497: 3493: 3459: 3458: 3454: 3416: 3415: 3411: 3389: 3388: 3384: 3369: 3354: 3353: 3349: 3342: 3317: 3316: 3312: 3275: 3274: 3270: 3255: 3240: 3239: 3232: 3223: 3219: 3212: 3195: 3194: 3185: 3121: 3120: 3116: 3106: 3104: 3097: 3074: 3073: 3069: 3031: 3030: 3026: 2980: 2979: 2975: 2945: 2944: 2940: 2918: 2917: 2913: 2905: 2872: 2869: 2864: 2863: 2859: 2851: 2818: 2813: 2812: 2805: 2798: 2785: 2784: 2777: 2738: 2737: 2733: 2703: 2702: 2698: 2693: 2689: 2684: 2680: 2675: 2671: 2662: 2658: 2622: 2621: 2617: 2602: 2587: 2586: 2582: 2567: 2554: 2553: 2546: 2541: 2493: 2451:ultrafiltration 2440: 2436: 2432: 2388: 2334: 2217: 2208:silicon dioxide 2173: 2167: 2138: 2124: 2093: 2045: 2043:Destabilization 1942:of the system. 1932: 1881: 1839: 1825: 1824: 1811: 1810: 1783: 1770: 1765: 1764: 1739: 1715: 1714: 1695: 1694: 1664: 1651: 1632: 1627: 1626: 1601: 1600: 1573: 1572: 1545: 1544: 1512: 1507: 1506: 1458: 1453: 1452: 1435:Brownian motion 1411: 1371: 1358:sodium chloride 1334:dispersed phase 1330: 1321: 1301:pharmaceuticals 1285:polysaccharides 1274: 1267: 1264: 1255: 1241: 1232: 1224: 1222: 1212: 1203: 1197: 1188: 1185: 1176: 1173: 1164: 1154: 1145: 1142: 1133: 1130: 1110:colloidal foams 1089:cranberry glass 1086: 1064: 1040: 1013: 997: 979: 959: 934: 904: 890: 880: 852: 847: 828: 810:Michael Faraday 806:Francesco Selmi 789:, which is the 785:because of the 719: 678: 665: 664: 657: 656: 655: 455: 447: 446: 445: 421:Amorphous solid 415: 405: 404: 403: 382: 364: 354: 353: 352: 341: 339:Antiferromagnet 332: 330:Superparamagnet 323: 310: 309:Magnetic phases 302: 301: 300: 280: 272: 271: 270: 200: 192: 191: 190: 176:Order parameter 170: 169:Phase phenomena 162: 161: 160: 90: 80: 28: 23: 22: 15: 12: 11: 5: 5273: 5271: 5263: 5262: 5257: 5252: 5247: 5242: 5237: 5227: 5226: 5220: 5219: 5217: 5216: 5211: 5206: 5201: 5196: 5191: 5186: 5181: 5176: 5171: 5166: 5161: 5156: 5154:Protic solvent 5151: 5146: 5138: 5136: 5130: 5129: 5127: 5126: 5121: 5116: 5111: 5106: 5101: 5099:Lattice energy 5096: 5091: 5086: 5081: 5076: 5070: 5068: 5062: 5061: 5059: 5058: 5053: 5048: 5043: 5038: 5033: 5028: 5023: 5018: 5013: 5008: 5002: 5000: 4992: 4991: 4989: 4988: 4983: 4978: 4973: 4968: 4963: 4958: 4953: 4951:Eutectic point 4948: 4943: 4938: 4933: 4928: 4923: 4918: 4913: 4911:Solid solution 4908: 4903: 4901:Ideal solution 4897: 4895: 4889: 4888: 4883: 4881: 4880: 4873: 4866: 4858: 4849: 4848: 4846: 4845: 4840: 4835: 4830: 4825: 4820: 4815: 4810: 4805: 4800: 4795: 4790: 4785: 4780: 4774: 4772: 4768: 4767: 4765: 4764: 4759: 4757:Trouton's rule 4754: 4749: 4744: 4739: 4734: 4728: 4726: 4722: 4721: 4719: 4718: 4713: 4708: 4703: 4698: 4693: 4688: 4683: 4678: 4673: 4668: 4663: 4658: 4653: 4648: 4643: 4638: 4633: 4628: 4626:Critical point 4623: 4618: 4613: 4608: 4602: 4600: 4594: 4593: 4591: 4590: 4585: 4580: 4579: 4578: 4573: 4568: 4560: 4555: 4550: 4545: 4540: 4535: 4530: 4528:Liquid crystal 4525: 4520: 4514: 4512: 4508: 4507: 4505: 4504: 4499: 4494: 4488: 4486: 4482: 4481: 4479: 4478: 4473: 4468: 4463: 4461:Strange matter 4458: 4456:Rydberg matter 4453: 4448: 4443: 4438: 4432: 4430: 4426: 4425: 4418: 4416: 4414: 4413: 4408: 4403: 4394: 4389: 4383: 4381: 4377: 4376: 4366: 4364: 4363: 4356: 4349: 4341: 4333: 4332: 4301: 4268: 4239: 4221: 4186: 4160: 4115: 4080: 4073: 4053: 4018: 3991: 3964: 3929: 3902:(4962): 1151. 3886: 3851: 3810: 3775:Optics Express 3758: 3706: 3671: 3664: 3644: 3611: 3596: 3569: 3542:(8): 1284–92. 3526: 3507:(1–2): 85–94. 3491: 3472:(2): 214–227. 3452: 3419:Water Research 3409: 3382: 3367: 3347: 3340: 3310: 3268: 3253: 3230: 3228:. substech.com 3217: 3210: 3183: 3114: 3095: 3067: 3024: 2995:(6): 587–597. 2973: 2938: 2911: 2857: 2831:(2): 351–353. 2803: 2796: 2775: 2731: 2696: 2687: 2678: 2669: 2656: 2635:(2): 351–353. 2615: 2600: 2580: 2565: 2543: 2542: 2540: 2537: 2492: 2489: 2438: 2434: 2430: 2387: 2384: 2374:within cells. 2368:macromolecules 2360:liquid crystal 2348:of cells into 2333: 2330: 2286:macromolecules 2281:interactions, 2215: 2169:Main article: 2166: 2163: 2137: 2134: 2129:centrifugation 2123: 2120: 2092: 2089: 2072: 2071: 2064: 2060: 2057:zeta potential 2044: 2041: 2017: 2016: 2012: 2001:zeta potential 1931: 1928: 1927: 1926: 1903: 1880: 1877: 1866: 1865: 1851: 1848: 1845: 1842: 1837: 1832: 1828: 1821: 1818: 1790: 1786: 1782: 1777: 1773: 1761: 1760: 1746: 1742: 1738: 1733: 1730: 1725: 1722: 1702: 1688: 1687: 1676: 1671: 1667: 1663: 1658: 1654: 1650: 1647: 1644: 1639: 1635: 1608: 1597: 1596: 1580: 1569: 1568: 1552: 1541: 1540: 1524: 1519: 1515: 1500: 1499: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1465: 1461: 1410: 1407: 1406: 1405: 1399: 1393: 1387: 1381: 1370: 1367: 1329: 1326: 1320: 1317: 1273: 1270: 1269: 1268: 1265: 1258: 1256: 1242: 1235: 1233: 1215:Tyndall effect 1213: 1206: 1204: 1198: 1191: 1189: 1186: 1179: 1177: 1174: 1167: 1165: 1155: 1148: 1146: 1143: 1136: 1134: 1131: 1124: 1092: 1091: 1081: 1057: 1035: 1031: 1030: 1006: 976:Liquid crystal 968: 952: 948: 947: 929: 896: 885: 882: 876: 875: 872: 869: 865: 864: 861: 851: 850:Classification 848: 823: 822: 787:Tyndall effect 721: 720: 718: 717: 710: 703: 695: 692: 691: 690: 689: 676: 659: 658: 654: 653: 648: 643: 638: 633: 628: 623: 618: 613: 608: 603: 598: 593: 588: 583: 578: 573: 568: 563: 558: 553: 548: 543: 538: 533: 528: 523: 518: 513: 508: 503: 498: 493: 488: 483: 478: 473: 468: 463: 457: 456: 453: 452: 449: 448: 444: 443: 438: 436:Liquid crystal 433: 428: 423: 417: 416: 411: 410: 407: 406: 402: 401: 396: 391: 386: 377: 372: 366: 365: 362:Quasiparticles 360: 359: 356: 355: 351: 350: 345: 336: 327: 321:Superdiamagnet 318: 312: 311: 308: 307: 304: 303: 299: 298: 293: 288: 282: 281: 278: 277: 274: 273: 269: 268: 263: 258: 253: 248: 246:Thermoelectric 243: 241:Superconductor 238: 233: 228: 223: 221:Mott insulator 218: 213: 208: 202: 201: 198: 197: 194: 193: 189: 188: 183: 178: 172: 171: 168: 167: 164: 163: 159: 158: 153: 148: 143: 138: 133: 128: 123: 118: 113: 108: 103: 98: 92: 91: 86: 85: 82: 81: 79: 78: 73: 68: 62: 59: 58: 50: 49: 26: 24: 18:Hydrocolloidal 14: 13: 10: 9: 6: 4: 3: 2: 5272: 5261: 5258: 5256: 5253: 5251: 5248: 5246: 5243: 5241: 5238: 5236: 5233: 5232: 5230: 5215: 5212: 5210: 5207: 5205: 5202: 5200: 5197: 5195: 5192: 5190: 5187: 5185: 5182: 5180: 5177: 5175: 5172: 5170: 5167: 5165: 5162: 5160: 5157: 5155: 5152: 5150: 5147: 5144: 5140: 5139: 5137: 5135: 5131: 5125: 5122: 5120: 5117: 5115: 5112: 5110: 5107: 5105: 5102: 5100: 5097: 5095: 5092: 5090: 5087: 5085: 5082: 5080: 5077: 5075: 5072: 5071: 5069: 5067: 5063: 5057: 5054: 5052: 5049: 5047: 5044: 5042: 5041:Mass fraction 5039: 5037: 5036:Mole fraction 5034: 5032: 5029: 5027: 5024: 5022: 5019: 5017: 5014: 5012: 5009: 5007: 5004: 5003: 5001: 4997: 4996:Concentration 4993: 4987: 4984: 4982: 4979: 4977: 4974: 4972: 4969: 4967: 4964: 4962: 4959: 4957: 4954: 4952: 4949: 4947: 4944: 4942: 4941:Phase diagram 4939: 4937: 4934: 4932: 4929: 4927: 4924: 4922: 4921:Flory–Huggins 4919: 4917: 4914: 4912: 4909: 4907: 4904: 4902: 4899: 4898: 4896: 4894: 4890: 4886: 4879: 4874: 4872: 4867: 4865: 4860: 4859: 4856: 4844: 4841: 4839: 4836: 4834: 4831: 4829: 4826: 4824: 4821: 4819: 4816: 4814: 4813:Mpemba effect 4811: 4809: 4806: 4804: 4801: 4799: 4796: 4794: 4793:Cooling curve 4791: 4789: 4786: 4784: 4781: 4779: 4776: 4775: 4773: 4769: 4763: 4760: 4758: 4755: 4753: 4750: 4748: 4745: 4743: 4740: 4738: 4735: 4733: 4730: 4729: 4727: 4723: 4717: 4716:Vitrification 4714: 4712: 4709: 4707: 4704: 4702: 4699: 4697: 4694: 4692: 4689: 4687: 4684: 4682: 4681:Recombination 4679: 4677: 4676:Melting point 4674: 4672: 4669: 4667: 4664: 4662: 4659: 4657: 4654: 4652: 4649: 4647: 4644: 4642: 4639: 4637: 4634: 4632: 4629: 4627: 4624: 4622: 4621:Critical line 4619: 4617: 4614: 4612: 4611:Boiling point 4609: 4607: 4604: 4603: 4601: 4599: 4595: 4589: 4586: 4584: 4581: 4577: 4574: 4572: 4569: 4567: 4564: 4563: 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4544: 4543:Exotic matter 4541: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4515: 4513: 4509: 4503: 4500: 4498: 4495: 4493: 4490: 4489: 4487: 4483: 4477: 4474: 4472: 4469: 4467: 4464: 4462: 4459: 4457: 4454: 4452: 4449: 4447: 4444: 4442: 4439: 4437: 4434: 4433: 4431: 4427: 4422: 4412: 4409: 4407: 4404: 4402: 4398: 4395: 4393: 4390: 4388: 4385: 4384: 4382: 4378: 4373: 4369: 4362: 4357: 4355: 4350: 4348: 4343: 4342: 4339: 4320: 4316: 4315:The Telegraph 4312: 4305: 4302: 4290: 4289: 4284: 4277: 4275: 4273: 4269: 4264: 4258: 4250: 4246: 4242: 4240:9780133254594 4236: 4232: 4225: 4222: 4217: 4213: 4209: 4205: 4201: 4197: 4190: 4187: 4174: 4170: 4164: 4161: 4145: 4141: 4137: 4133: 4126: 4119: 4116: 4111: 4107: 4103: 4099: 4095: 4091: 4084: 4081: 4076: 4070: 4066: 4065: 4057: 4054: 4049: 4045: 4041: 4037: 4033: 4029: 4022: 4019: 4014: 4010: 4006: 4002: 4001:J. Phys. Chem 3995: 3992: 3987: 3983: 3979: 3975: 3968: 3965: 3960: 3956: 3952: 3948: 3944: 3940: 3933: 3930: 3925: 3921: 3917: 3913: 3909: 3905: 3901: 3897: 3890: 3887: 3882: 3878: 3874: 3870: 3866: 3862: 3855: 3852: 3846: 3841: 3837: 3833: 3830:(5): 053021. 3829: 3825: 3821: 3814: 3811: 3806: 3802: 3797: 3792: 3788: 3784: 3780: 3776: 3772: 3765: 3763: 3759: 3754: 3750: 3746: 3742: 3737: 3732: 3728: 3724: 3717: 3710: 3707: 3702: 3698: 3694: 3690: 3686: 3682: 3675: 3672: 3667: 3661: 3657: 3656: 3648: 3645: 3639: 3634: 3630: 3626: 3622: 3615: 3612: 3607: 3600: 3597: 3592: 3588: 3584: 3580: 3573: 3570: 3565: 3561: 3557: 3553: 3549: 3545: 3541: 3537: 3530: 3527: 3522: 3518: 3514: 3510: 3506: 3502: 3495: 3492: 3487: 3483: 3479: 3475: 3471: 3467: 3463: 3456: 3453: 3448: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3413: 3410: 3405: 3401: 3397: 3393: 3386: 3383: 3378: 3374: 3370: 3364: 3360: 3359: 3351: 3348: 3343: 3341:9780123750495 3337: 3333: 3329: 3325: 3321: 3314: 3311: 3306: 3302: 3297: 3292: 3288: 3285:(in German). 3284: 3280: 3272: 3269: 3264: 3260: 3256: 3250: 3246: 3245: 3237: 3235: 3231: 3227: 3221: 3218: 3213: 3211:9781444320183 3207: 3203: 3199: 3192: 3190: 3188: 3184: 3179: 3175: 3170: 3165: 3160: 3155: 3151: 3147: 3142: 3137: 3133: 3129: 3125: 3118: 3115: 3102: 3098: 3096:9789400712225 3092: 3088: 3084: 3080: 3079: 3071: 3068: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3028: 3025: 3020: 3016: 3011: 3006: 3002: 2998: 2994: 2990: 2989: 2984: 2977: 2974: 2969: 2965: 2961: 2957: 2953: 2949: 2948:J. Chem. Phys 2942: 2939: 2934: 2930: 2926: 2922: 2915: 2912: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2879: 2871: 2861: 2858: 2850: 2846: 2842: 2838: 2834: 2830: 2826: 2825: 2817: 2810: 2808: 2804: 2799: 2793: 2789: 2782: 2780: 2776: 2772: 2768: 2762: 2758: 2754: 2750: 2746: 2742: 2735: 2732: 2727: 2723: 2719: 2715: 2711: 2707: 2700: 2697: 2691: 2688: 2682: 2679: 2673: 2670: 2666: 2660: 2657: 2652: 2648: 2643: 2638: 2634: 2630: 2626: 2619: 2616: 2611: 2607: 2603: 2597: 2593: 2592: 2584: 2581: 2576: 2572: 2568: 2562: 2558: 2551: 2549: 2545: 2538: 2536: 2534: 2533:Joachim Boldt 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2490: 2488: 2486: 2482: 2478: 2474: 2471: 2467: 2463: 2459: 2454: 2452: 2448: 2444: 2428: 2427: 2422: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2385: 2383: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2352: 2347: 2343: 2339: 2331: 2329: 2326: 2322: 2317: 2315: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2284: 2280: 2277: 2272: 2270: 2266: 2262: 2259: 2256: 2252: 2248: 2245: 2241: 2237: 2233: 2232:sedimentation 2229: 2225: 2221: 2213: 2209: 2205: 2201: 2197: 2194: 2190: 2186: 2182: 2178: 2172: 2164: 2162: 2159: 2155: 2151: 2147: 2143: 2135: 2133: 2130: 2121: 2119: 2116: 2112: 2110: 2106: 2097: 2090: 2088: 2086: 2082: 2078: 2069: 2065: 2061: 2058: 2054: 2050: 2049: 2048: 2042: 2040: 2038: 2034: 2024: 2020: 2013: 2010: 2006: 2002: 1998: 1994: 1993: 1992: 1985: 1981: 1979: 1975: 1974:precipitation 1971: 1967: 1963: 1958: 1956: 1953:and T is the 1952: 1948: 1943: 1941: 1937: 1930:Stabilization 1929: 1924: 1920: 1916: 1912: 1908: 1907:precipitation 1904: 1901: 1897: 1893: 1889: 1886: 1885: 1884: 1878: 1876: 1874: 1869: 1849: 1846: 1843: 1840: 1835: 1830: 1826: 1819: 1816: 1809: 1808: 1807: 1804: 1788: 1784: 1780: 1775: 1771: 1744: 1740: 1736: 1731: 1728: 1723: 1720: 1700: 1693: 1692: 1691: 1669: 1665: 1661: 1656: 1652: 1645: 1642: 1637: 1633: 1625: 1624: 1623: 1620: 1606: 1594: 1578: 1571: 1570: 1566: 1550: 1543: 1542: 1538: 1522: 1517: 1513: 1505: 1504: 1503: 1486: 1483: 1480: 1477: 1474: 1471: 1468: 1463: 1459: 1451: 1450: 1449: 1447: 1443: 1438: 1436: 1432: 1428: 1424: 1415: 1408: 1403: 1400: 1397: 1396:Steric forces 1394: 1391: 1388: 1385: 1382: 1379: 1376: 1375: 1374: 1368: 1366: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1327: 1325: 1318: 1316: 1314: 1309: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1277:Hydrocolloids 1272:Hydrocolloids 1271: 1262: 1257: 1253: 1249: 1245: 1239: 1234: 1231: 1227: 1220: 1216: 1210: 1205: 1201: 1195: 1190: 1183: 1178: 1175:Whipped cream 1171: 1166: 1163: 1159: 1152: 1147: 1140: 1135: 1128: 1123: 1121: 1119: 1115: 1111: 1107: 1103: 1099: 1090: 1085: 1082: 1080: 1076: 1072: 1068: 1063: 1062: 1058: 1056: 1052: 1048: 1047:floating soap 1044: 1039: 1036: 1033: 1032: 1029: 1025: 1021: 1017: 1016:pigmented ink 1012: 1011: 1007: 1005: 1000: 995: 991: 987: 983: 978: 977: 973: 969: 967: 966:shaving cream 963: 962:whipped cream 958: 957: 953: 950: 949: 946: 942: 938: 933: 932:Solid aerosol 930: 928: 924: 920: 916: 912: 908: 903: 902: 897: 894: 889: 886: 883: 877: 873: 870: 867: 866: 860:Medium/phase 858: 855: 849: 845: 843: 839: 837: 833: 826: 821: 819: 815: 814:Thomas Graham 811: 807: 803: 798: 796: 792: 788: 784: 779: 777: 773: 768: 767: 762: 758: 754: 750: 746: 742: 739: 736: 732: 728: 716: 711: 709: 704: 702: 697: 696: 694: 693: 687: 677: 674: 669: 663: 662: 661: 660: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 461:Van der Waals 459: 458: 451: 450: 442: 439: 437: 434: 432: 429: 427: 424: 422: 419: 418: 414: 409: 408: 400: 397: 395: 392: 390: 387: 385: 381: 378: 376: 373: 371: 368: 367: 363: 358: 357: 349: 346: 344: 340: 337: 335: 331: 328: 326: 322: 319: 317: 314: 313: 306: 305: 297: 294: 292: 289: 287: 284: 283: 276: 275: 267: 264: 262: 259: 257: 256:Ferroelectric 254: 252: 251:Piezoelectric 249: 247: 244: 242: 239: 237: 234: 232: 229: 227: 226:Semiconductor 224: 222: 219: 217: 214: 212: 209: 207: 204: 203: 196: 195: 187: 184: 182: 179: 177: 174: 173: 166: 165: 157: 154: 152: 149: 147: 146:Superfluidity 144: 142: 139: 137: 134: 132: 129: 127: 124: 122: 119: 117: 114: 112: 109: 107: 104: 102: 99: 97: 94: 93: 89: 84: 83: 77: 74: 72: 69: 67: 64: 63: 61: 60: 56: 52: 51: 48: 44: 41: 36: 32: 19: 5260:Dosage forms 5104:Raoult's law 5056:Ternary plot 5051:Mixing ratio 4935: 4838:Superheating 4711:Vaporization 4706:Triple point 4701:Supercooling 4666:Lambda point 4616:Condensation 4533:Time crystal 4517: 4511:Other states 4451:Quantum Hall 4323:. Retrieved 4319:the original 4314: 4304: 4292:. Retrieved 4286: 4230: 4224: 4199: 4195: 4189: 4177:. Retrieved 4173:the original 4163: 4151:. Retrieved 4144:the original 4131: 4118: 4093: 4089: 4083: 4063: 4056: 4031: 4027: 4021: 4004: 4000: 3994: 3980:(1): 84–85. 3977: 3973: 3967: 3945:(4): 84–95. 3942: 3938: 3932: 3899: 3895: 3889: 3864: 3860: 3854: 3827: 3823: 3813: 3778: 3774: 3726: 3722: 3709: 3684: 3680: 3674: 3654: 3647: 3628: 3624: 3614: 3605: 3599: 3582: 3578: 3572: 3539: 3535: 3529: 3504: 3500: 3494: 3469: 3465: 3455: 3422: 3418: 3412: 3395: 3391: 3385: 3357: 3350: 3323: 3319: 3313: 3286: 3282: 3271: 3243: 3220: 3197: 3131: 3127: 3117: 3105:. Retrieved 3101:the original 3077: 3070: 3037: 3033: 3027: 2992: 2986: 2976: 2951: 2947: 2941: 2924: 2920: 2914: 2882: 2876: 2860: 2828: 2822: 2787: 2770: 2766: 2744: 2740: 2734: 2709: 2705: 2699: 2690: 2681: 2672: 2664: 2659: 2632: 2628: 2618: 2590: 2583: 2556: 2517:crystalloids 2494: 2458:soil science 2455: 2426:eigencolloid 2424: 2389: 2358:, a type of 2349: 2335: 2318: 2273: 2244:interstitial 2200:close-packed 2198:result from 2174: 2139: 2125: 2113: 2109:turbidimetry 2102: 2077:viscoelastic 2073: 2046: 2029: 2018: 1990: 1977: 1966:flocculation 1959: 1944: 1933: 1911:condensation 1882: 1870: 1867: 1805: 1762: 1689: 1621: 1598: 1501: 1439: 1421:The Earth’s 1420: 1372: 1331: 1322: 1310: 1276: 1275: 1117: 1113: 1109: 1105: 1101: 1097: 1095: 1083: 1059: 1037: 1024:precipitates 1008: 970: 954: 931: 915:condensation 898: 887: 853: 841: 840: 835: 831: 830: 817: 799: 780: 764: 760: 726: 724: 591:von Klitzing 425: 296:Kondo effect 156:Time crystal 136:Fermi liquid 40: 5255:Soft matter 5209:Lyonium ion 5124:Miscibility 5109:Henry's law 4747:Latent heat 4696:Sublimation 4641:Evaporation 4576:Ferromagnet 4571:Ferrimagnet 4553:Dark matter 4485:High energy 4179:12 February 4153:22 February 4007:(7): 2306. 3107:5 September 2954:(6): 2322. 2437:, or Am(OH) 2362:. The term 2328:formation. 2306:Bragg’s law 2298:iridescence 2271:lightwave. 2240:hydrostatic 2236:compression 2220:precipitate 2202:domains of 2009:peptization 2005:DLVO theory 1970:coagulation 1962:aggregation 1940:free energy 1879:Preparation 1162:opalescence 1160:with light 1144:Jello cubes 1077:, gel-like 927:hair sprays 879:Dispersion 783:translucent 759:. The term 413:Soft matter 334:Ferromagnet 5229:Categories 5204:Amphiphile 5199:Lipophilic 5194:Hydrophile 5189:Hydrophobe 5066:Solubility 4961:Saturation 4931:Suspension 4762:Volatility 4725:Quantities 4686:Regelation 4661:Ionization 4636:Deposition 4588:Superglass 4558:Antimatter 4492:QCD matter 4471:Supersolid 4466:Superfluid 4429:Low energy 4325:4 November 4249:1035317420 2927:(8): 806. 2712:: 97–121. 2539:References 2447:bentonites 2336:Colloidal 2332:In biology 2310:scattering 2222:in highly 2085:toothpaste 2068:depletants 1888:Dispersion 1365:solution. 1319:Components 1250:of liquid 1158:silica gel 1156:Colloidal 1065:Examples: 1041:Examples: 1038:Solid foam 1014:Examples: 990:hand cream 986:mayonnaise 980:Examples: 935:Examples: 905:Examples: 893:immiscible 827:definition 791:scattering 776:micrometre 766:suspension 556:Louis NĂ©el 546:Schrieffer 454:Scientists 348:Spin glass 343:Metamagnet 325:Paramagnet 141:Supersolid 5214:Lyate ion 5169:Solvation 5084:Solvation 5026:Normality 4257:cite book 4140:1015-2636 3867:: 25–73. 3631:(1): 33. 3377:701308697 3263:232632488 3141:1309.1187 3062:221770585 2761:186208563 2610:406528399 2575:706803091 2473:particles 2397:sandstone 2393:limestone 2356:membranes 2342:cytoplasm 2325:chemistry 2279:Coulombic 2276:repulsive 2228:Australia 2226:pools in 2224:siliceous 2204:amorphous 2181:analogous 2081:bentonite 1847:η 1844:π 1785:ρ 1781:− 1772:ρ 1737:π 1666:ρ 1662:− 1653:ρ 1565:viscosity 1551:η 1481:η 1478:π 1444:with the 1350:molecules 1281:chemicals 1252:butterfat 1118:hydrosols 1087:Example: 1084:Solid sol 1051:styrofoam 1002:, liquid 960:Example: 941:ice cloud 842:Colloidal 836:colloidal 772:nanometre 745:suspended 741:particles 738:insoluble 735:dispersed 636:Abrikosov 551:Josephson 521:Van Vleck 511:Luttinger 384:Polariton 316:Diamagnet 236:Conductor 231:Semimetal 216:Insulator 131:Fermi gas 5235:Colloids 5184:Polarity 5143:Category 5031:Molality 4893:Solution 4823:Spinodal 4771:Concepts 4651:Freezing 4288:Medscape 4048:23836297 3805:24104290 3745:26315444 3701:18986182 3681:Langmuir 3564:24157992 3556:12948027 3521:12954183 3486:41264141 3447:19577785 3392:Langmuir 3326:: 1–57. 3305:96812603 3178:25344532 3054:32937070 3034:Langmuir 3019:23572691 2903:Archived 2899:96812603 2849:Archived 2845:95122531 2767:colloids 2726:55882753 2651:95122531 2529:efficacy 2477:diameter 2269:incident 2193:spectral 2165:Crystals 2063:polymer. 2037:guar gum 1896:spraying 1427:sediment 1338:solution 1299:through 1289:proteins 1283:(mostly 1248:emulsion 1230:crystals 1026:, solid 1020:sediment 972:Emulsion 838:system. 820:in 1861. 753:aerosols 686:Category 641:Ginzburg 616:Laughlin 576:Kadanoff 531:Shockley 516:Anderson 471:von Laue 121:Bose gas 5134:Solvent 4936:Colloid 4926:Mixture 4783:Binodal 4671:Melting 4606:Boiling 4523:Crystal 4518:Colloid 4204:Bibcode 4098:Bibcode 3947:Bibcode 3924:4191566 3904:Bibcode 3869:Bibcode 3832:Bibcode 3783:Bibcode 3753:5727282 3723:Science 3427:Bibcode 3169:4234574 3146:Bibcode 3010:3551143 2956:Bibcode 2485:soil pH 2433:, U(OH) 2401:granite 2346:nucleus 2321:physics 2294:crystal 2290:aqueous 2267:as the 2255:visible 2185:natural 2177:ordered 2142:physics 2033:xanthan 1892:milling 1591:is the 1563:is the 1535:is the 1362:crystal 1360:(NaCl) 1346:solvent 1219:opalite 1132:Aerogel 1071:gelatin 1043:aerogel 951:Liquid 901:aerosol 899:Liquid 881:medium 871:Liquid 832:Colloid 818:colloid 731:mixture 727:colloid 646:Leggett 621:Störmer 606:Bednorz 566:Giaever 536:Bardeen 526:Hubbard 501:Peierls 491:Onsager 441:Polymer 426:Colloid 389:Polaron 380:Plasmon 375:Exciton 4411:Plasma 4392:Liquid 4294:6 July 4247:  4237:  4138:  4071:  4046:  3922:  3896:Nature 3803:  3751:  3743:  3699:  3662:  3562:  3554:  3519:  3484:  3445:  3375:  3365:  3338:  3303:  3261:  3251:  3208:  3176:  3166:  3093:  3060:  3052:  3017:  3007:  2897:  2843:  2794:  2759:  2724:  2649:  2608:  2598:  2573:  2563:  2421:fulvic 2314:X-rays 2288:in an 2238:under 2212:silica 1919:silica 1690:where 1593:radius 1502:where 1342:solute 1340:, the 1217:in an 1200:Creams 1055:pumice 1034:Solid 911:clouds 874:Solid 795:opaque 749:liquid 684:  651:Parisi 611:MĂĽller 601:Rohrer 596:Binnig 586:Wilson 581:Fisher 541:Cooper 506:Landau 394:Magnon 370:Phonon 211:Plasma 111:Plasma 101:Liquid 66:Phases 4956:Alloy 4401:Vapor 4387:Solid 4380:State 4147:(PDF) 4128:(PDF) 3920:S2CID 3749:S2CID 3719:(PDF) 3560:S2CID 3482:JSTOR 3301:S2CID 3136:arXiv 3058:S2CID 2906:(PDF) 2895:S2CID 2873:(PDF) 2852:(PDF) 2841:S2CID 2819:(PDF) 2757:S2CID 2722:S2CID 2647:S2CID 2470:humus 2462:soils 2417:humic 2261:waves 2258:light 2247:voids 2214:, SiO 2196:color 2154:model 2146:atoms 2075:with 1915:redox 1913:, or 1431:cream 1297:foods 1293:water 1116:, or 1075:jelly 994:latex 937:smoke 923:steam 825:IUPAC 774:to 1 729:is a 561:Esaki 486:Bloch 481:Debye 476:Bragg 466:Onnes 399:Roton 96:Solid 4372:list 4327:2011 4296:2016 4263:link 4245:OCLC 4235:ISBN 4181:2009 4155:2009 4136:ISSN 4069:ISBN 4044:PMID 3801:PMID 3741:PMID 3697:PMID 3660:ISBN 3552:PMID 3517:PMID 3443:PMID 3373:OCLC 3363:ISBN 3336:ISBN 3259:OCLC 3249:ISBN 3206:ISBN 3174:PMID 3109:2018 3091:ISBN 3050:PMID 3015:PMID 2792:ISBN 2606:OCLC 2596:ISBN 2571:OCLC 2561:ISBN 2523:and 2468:and 2466:clay 2419:and 2409:clay 2405:sorb 2344:and 2323:and 2253:for 2234:and 2210:(or 2189:opal 2083:and 2035:and 1978:floc 1923:gold 1763:and 1599:and 1354:ions 1344:and 1305:skin 1287:and 1266:Mist 1244:Milk 1226:opal 1067:agar 982:milk 956:Foam 919:mist 884:Gas 868:Gas 812:and 757:gels 755:and 631:Tsui 626:Yang 571:Kohn 496:Mott 4397:Gas 4212:doi 4106:doi 4036:doi 4009:doi 3982:doi 3955:doi 3943:234 3912:doi 3900:204 3877:doi 3840:doi 3791:doi 3731:doi 3727:349 3689:doi 3633:doi 3587:doi 3583:152 3544:doi 3509:doi 3505:263 3474:doi 3435:doi 3400:doi 3328:doi 3291:doi 3164:PMC 3154:doi 3132:111 3083:doi 3042:doi 3005:PMC 2997:doi 2964:doi 2929:doi 2887:doi 2833:doi 2749:doi 2745:151 2714:doi 2637:doi 2456:In 2312:of 2140:In 1972:or 1921:or 1352:or 1061:Gel 1010:Sol 974:or 907:fog 743:is 186:QCP 106:Gas 76:QCP 35:SEM 5231:: 4399:/ 4313:. 4285:. 4271:^ 4259:}} 4255:{{ 4243:. 4210:. 4200:32 4198:. 4130:. 4104:. 4094:32 4092:. 4042:. 4032:42 4030:. 4005:73 4003:. 3978:67 3976:. 3953:. 3941:. 3918:. 3910:. 3898:. 3875:. 3865:24 3863:. 3838:. 3828:13 3826:. 3822:. 3799:. 3789:. 3779:21 3777:. 3773:. 3761:^ 3747:. 3739:. 3725:. 3721:. 3695:. 3685:24 3683:. 3629:72 3627:. 3623:. 3581:. 3558:. 3550:. 3540:20 3538:. 3515:. 3503:. 3480:. 3470:56 3468:. 3464:. 3441:. 3433:. 3423:43 3421:. 3396:10 3394:. 3371:. 3334:. 3324:18 3322:. 3299:. 3287:83 3281:. 3257:. 3233:^ 3204:. 3200:. 3186:^ 3172:. 3162:. 3152:. 3144:. 3130:. 3126:. 3089:. 3056:. 3048:. 3038:36 3036:. 3013:. 3003:. 2993:47 2991:. 2985:. 2962:. 2952:44 2950:. 2925:82 2923:. 2901:. 2893:. 2883:83 2881:. 2875:. 2847:. 2839:. 2829:81 2827:. 2821:. 2806:^ 2778:^ 2773:." 2755:. 2743:. 2720:. 2710:14 2708:. 2645:. 2633:81 2631:. 2627:. 2604:. 2569:. 2547:^ 2487:. 2399:, 2395:, 2382:. 2039:. 1968:, 1947:kT 1909:, 1902:). 1894:, 1448:: 1246:- 1120:. 1112:, 1108:, 1104:, 1100:, 1073:, 1069:, 1053:, 1049:, 1045:, 1022:, 1018:, 996:, 992:, 988:, 984:, 964:, 943:, 939:, 925:, 921:, 917:, 913:, 909:, 778:. 725:A 5145:) 5141:( 4877:e 4870:t 4863:v 4374:) 4370:( 4360:e 4353:t 4346:v 4329:. 4298:. 4265:) 4251:. 4218:. 4214:: 4206:: 4183:. 4157:. 4112:. 4108:: 4100:: 4077:. 4050:. 4038:: 4015:. 4011:: 3988:. 3984:: 3961:. 3957:: 3949:: 3926:. 3914:: 3906:: 3883:. 3879:: 3871:: 3848:. 3842:: 3834:: 3807:. 3793:: 3785:: 3755:. 3733:: 3703:. 3691:: 3668:. 3641:. 3635:: 3608:. 3593:. 3589:: 3566:. 3546:: 3523:. 3511:: 3488:. 3476:: 3449:. 3437:: 3429:: 3406:. 3402:: 3379:. 3344:. 3330:: 3307:. 3293:: 3265:. 3214:. 3180:. 3156:: 3148:: 3138:: 3111:. 3085:: 3064:. 3044:: 3021:. 2999:: 2970:. 2966:: 2958:: 2935:. 2931:: 2889:: 2835:: 2800:. 2763:. 2751:: 2728:. 2716:: 2667:. 2653:. 2639:: 2612:. 2577:. 2439:3 2435:4 2431:4 2216:2 1925:. 1850:r 1841:6 1836:g 1831:A 1827:m 1820:= 1817:v 1789:2 1776:1 1759:, 1745:3 1741:r 1732:3 1729:4 1724:= 1721:V 1701:V 1675:) 1670:2 1657:1 1649:( 1646:V 1643:= 1638:A 1634:m 1607:v 1579:r 1523:g 1518:A 1514:m 1487:v 1484:r 1475:6 1472:= 1469:g 1464:A 1460:m 1221:: 714:e 707:t 700:v 20:)

Index

Hydrocolloidal

SEM
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑