Knowledge

Semipermeable membrane

Source đź“ť

227: 33: 1344: 382: 409:
membranes were used, but they could cause inflammatory responses in patients. Synthetic membranes have been developed that are more biocompatible and lead to fewer inflammatory responses. However, despite the increased biocompatibility, synthetic membranes have not been linked to decreased mortality.
336:
Reverse osmosis membrane modules have a limited life cycle, several studies have endeavored to improve the performance of the process and extend the RO membranes lifespan. However, even with the appropriate pretreatment of the feed water, the membranes lifespan is generally limited to five to seven
374:
It includes exposing the membrane to oxidant solutions in order to remove its dense aromatic polyamide active layer and subsequent conversion to a porous membrane. Oxidizing agents such as Sodium Hypochlorite NaClO (10–12%) and Potassium Permanganate KMnO₄ are used. These agents remove organic and
340:
Discarded RO membrane modules are currently classified worldwide as inert solid waste and are often disposed of in landfills, with limited reuse. Estimates indicated that the mass of membranes annually discarded worldwide reached 12,000 tons. At the current rate, the disposal of RO modules
279:
Artificial semipermeable membranes see wide usage in research and the medical field. Artificial lipid membranes can easily be manipulated and experimented upon to study biological phenomenon. Other artificial membranes include those involved in drug delivery, dialysis, and bioseparations.
922: 405:. The tubing uses a semipermeable membrane to remove waste before returning the purified blood to the patient. Differences in the semipermeable membrane, such as size of pores, change the rate and identity of removed molecules. Traditionally, 99:
is constructed to be selective in its permeability will determine the rate and the permeability. Many natural and synthetic materials which are rather thick are also semipermeable. One example of this is the thin film on the inside of an egg.
344:
Discarded RO membranes from desalination operations could be recycled for other processes that do not require the intensive filtration criteria of desalination, they could be used in applications requiring nanofiltration (NF) membranes.
1180:
Rozendal, R. A.; Sleutels, T. H. J. A.; Hamelers, H. V. M.; Buisman, C. J. N. (June 2008). "Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater".
1033:
MacLeod, Alison M; Campbell, Marion K; Cody, June D; Daly, Conal; Grant, Adrian; Khan, Izhar; Rabindranath, Kannaiyan S; Vale, Luke; Wallace, Sheila A (20 July 2005). Cochrane Kidney and Transplant Group (ed.).
328:, chosen primarily for its permeability to water and relative impermeability to various dissolved impurities including salt ions and other small molecules that cannot be filtered. 216:
in the cell membrane. The signaling molecules bind to the receptors, which alters the structure of these proteins. A change in the protein structure initiates a signaling cascade.
878:
Stamatialis, Dimitrios F.; Papenburg, Bernke J.; Gironés, Miriam; Saiful, Saiful; Bettahalli, Srivatsa N. M.; Schmitmeier, Stephanie; Wessling, Matthias (1 February 2008).
920:, Sidney, Loeb & Srinivasa, Sourirajan, "High flow porous membranes for separating water from saline solutions", published 12 May 1964 300:. This allows only certain particles to go through including water and leaving behind the solutes including salt and other contaminants. In the process of 324:
and Srinivasa Sourirajan invented the first practical synthetic semi-permeable membrane. Membranes used in reverse osmosis are, in general, made out of
368:
There are three forms of membranes exposure to chemical agents; simple immersion, recirculating the cleaning agent, or immersion in an ultrasound bath.
138:
A phospholipid bilayer is an example of a biological semipermeable membrane. It consists of two parallel, opposite-facing layers of uniformly arranged
1273: 341:
represents significant and growing adverse impacts on the environment, giving rise to the need to limit the direct discarding of these modules.
688: 375:
biological fouling from RO membranes, They also disinfect the membrane surface, preventing the growth of bacteria and other microorganisms.
936:
Lawler, Will; Bradford-Hartke, Zenah; Cran, Marlene J.; Duke, Mikel; Leslie, Greg; Ladewig, Bradley P.; Le-Clech, Pierre (1 August 2012).
1544: 1431: 267:
is the method by which cells counteract osmotic stress, and includes osmosensory transporters in the membrane that allow K+ and other
509: 243:. When the solutes around a cell become more or less concentrated, osmotic pressure causes water to flow into or out of the cell to 1584: 1594: 1522: 427: 1604: 576: 163: 1769: 1266: 1176:
See this document for definitions of penetrant (permeant), synthetic (artificial) membrane, and anion-exchange membrane.
819:
Siontorou, Christina G.; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P.; Karapetis, Stefanos K. (September 2017).
305: 1569: 316:
systems. They also have use in chemical applications such as batteries and fuel cells. In essence, a TFC material is a
1436: 226: 1609: 1579: 1564: 1532: 1036:"Cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease" 605: 1235:, a non-profit international association created to continue the work of the network and partnerships developed in 356:
Chemical procedures aimed at removing fouling from the spent membrane; several chemicals agents are used; such as:
220: 217: 1624: 1371: 1764: 1639: 1537: 431: 419: 378:
Sodium Hypochlorite is the most efficient oxidizing agent in light of permeability and salt rejection solution.
192:. Protein channels are embedded in or through the phospholipids, and, collectively, this model is known as the 1644: 1589: 1574: 1507: 1466: 1441: 1421: 1401: 251:
inhibits cellular functions that depend on the activity of water in the cell, such as the functioning of its
1527: 1259: 423: 1634: 170:
enter and leave the cell. Because they are attracted to the water content within and outside the cell (or
1495: 1599: 1416: 708: 213: 108: 1461: 937: 917: 879: 1477: 1446: 1282: 949: 189: 133: 528:
Boughter, Christopher T.; Monje-Galvan, Viviana; Im, Wonpil; Klauda, Jeffery B. (17 November 2016).
230:
Salt outside of the cell creates osmotic pressure that pushes water through the phospholipid bilayer
1629: 1614: 1549: 1517: 1512: 1328: 1232: 985:"Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation" 500:
Caplan, M.J. (2017). "Functional organization of the cell". In Boron, W.F.; Boulpaep, E.L. (eds.).
176:), the phosphate heads assemble along the outer and inner surfaces of the plasma membrane, and the 52: 1754: 1619: 1490: 1343: 1301: 1167: 1122: 983:
Coutinho de Paula, Eduardo; Gomes, JĂşlia CĂ©lia Lima; Amaral, MĂ­riam Cristina Santos (July 2017).
801: 309: 193: 167: 48: 1246: 1236: 938:"Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes" 32: 1693: 1411: 1381: 1198: 1114: 1106: 1065: 1012: 1004: 965: 899: 860: 842: 793: 775: 736: 728: 684: 661: 557: 549: 505: 185: 112: 304:, water is purified by applying high pressure to a solution and thereby push water through a 87:
on either side, as well as the permeability of the membrane to each solute. Depending on the
1759: 1559: 1554: 1366: 1306: 1190: 1157: 1096: 1055: 1047: 996: 957: 891: 880:"Medical applications of membranes: Drug delivery, artificial organs and tissue engineering" 850: 832: 783: 767: 720: 651: 643: 541: 293: 244: 240: 116: 17: 1426: 1353: 647: 394: 317: 301: 953: 788: 724: 1662: 1316: 1060: 1035: 855: 820: 656: 631: 402: 264: 209: 155: 1748: 1296: 1101: 1084: 577:"Semipermeable Membranes' Role in Cell Communication - Video & Lesson Transcript" 256: 248: 159: 151: 76: 1211:"High Flow Porous Membranes for Separating Water from Saline Solutions US 3133132 A" 1171: 1126: 805: 529: 308:(TFC or TFM). These are semipermeable membranes manufactured principally for use in 1500: 1456: 1391: 1333: 1311: 1051: 606:"Semipermeable Membrane: Definition & Overview - Video & Lesson Transcript" 398: 313: 139: 37: 27:
Membrane which will allow certain molecules or ions to pass through it by diffusion
895: 471: 255:
and protein systems and proper assembly of its plasma membrane. This can lead to
1728: 1713: 1451: 1376: 961: 321: 181: 177: 80: 1146:"Terminology for membranes and membrane processes (IUPAC Recommendations 1996)" 184:
molecules are also found throughout the plasma membrane and act as a buffer of
1672: 1406: 1386: 1210: 260: 171: 147: 92: 1110: 1008: 969: 903: 846: 837: 779: 732: 553: 545: 1718: 1708: 1698: 1667: 1323: 1162: 1145: 984: 709:"Bacterial Osmoregulation: A Paradigm for the Study of Cellular Homeostasis" 406: 385:
Dialysis tubing allows waste molecules to be selectively removed from blood.
325: 289: 197: 143: 1202: 1118: 1069: 1016: 864: 797: 740: 665: 561: 381: 40:, where blood is red, dialysing fluid is blue, and the membrane is yellow. 1396: 1247:
Short, non-scholarly WiseGeek article, "What is a Semipermeable Membrane.
1194: 1000: 530:"Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics" 268: 96: 88: 72: 60: 1251: 365:      - Chelating agents Such as Citric and Oxalic acids 1703: 771: 297: 84: 68: 56: 320:
constructed in the form of a film from two or more layered materials.
755: 1688: 380: 31: 188:. The phospholipid bilayer is most permeable to small, uncharged 292:
of water through a selectively permeable membrane because of an
1255: 1723: 632:"The Molecular Basis of G Protein–Coupled Receptor Activation" 450:
K+ is the element potassium's positively charged ion (cation).
252: 64: 504:(Third ed.). Philadelphia, PA: Elsevier. pp. 8–46. 239:
Because the lipid bilayer is semipermeable, it is subject to
1240: 208:
Information can also pass through the plasma membrane when
754:
Rand*, R. P.; Parsegian, V. A.; Rau, D. C. (1 July 2000).
180:
tails are the layer hidden in the inside of the membrane.
359:       - Sodium Hydroxide (alkaline) 1144:
Koros, W. J.; Ma, Y. H.; Shimidzu, T. (1 January 1996).
91:
and the solute, permeability may depend on solute size,
821:"Artificial Lipid Membranes: Past, Present, and Future" 478:. Center for Nanoscale Science, Penn State University 630:
Weis, William I.; Kobilka, Brian K. (20 June 2018).
223:
is an important subset of such signaling processes.
1681: 1653: 1475: 1351: 1289: 362:      - Hydrochloric Acid (Acidic) 1243:-funded European network of membrane researchers. 599: 597: 119:regulated by proteins embedded in the membrane. 683:(Rev. ed.). New York: Wiley. p. 30. 200:are protein channel pores permeable to water. 162:. The plasma membrane is very specific in its 107:, with the passage of molecules controlled by 1267: 472:"Osmosis Eggs | Center for Nanoscale Science" 8: 418:Other types of semipermeable membranes are 36:Schematic of semipermeable membrane during 1274: 1260: 1252: 495: 493: 1161: 1100: 1083:Kerr, Peter G; Huang, Louis (June 2010). 1059: 854: 836: 787: 655: 332:Regeneration of reverse osmosis membranes 225: 1040:Cochrane Database of Systematic Reviews 463: 443: 166:, meaning it carefully controls which 1085:"Review: Membranes for haemodialysis" 1028: 1026: 648:10.1146/annurev-biochem-060614-033910 71:. The rate of passage depends on the 7: 760:Cellular and Molecular Life Sciences 702: 700: 523: 521: 95:, properties, or chemistry. How the 725:10.1146/annurev-micro-090110-102815 534:The Journal of Physical Chemistry B 142:. Each phospholipid is made of one 25: 1342: 1102:10.1111/j.1440-1797.2010.01331.x 707:Wood, Janet M. (October 2011). 428:alkali anion-exchange membranes 401:to purify blood in the case of 1052:10.1002/14651858.CD003234.pub2 756:"Intracellular osmotic action" 271:to flow through the membrane. 154:that surrounds all biological 1: 713:Annual Review of Microbiology 636:Annual Review of Biochemistry 59:membrane that allows certain 1183:Water Science and Technology 989:Water Science and Technology 896:10.1016/j.memsci.2007.09.059 681:Fundamentals of Biochemistry 306:thin-film composite membrane 1233:The European Membrane House 962:10.1016/j.desal.2012.05.030 884:Journal of Membrane Science 349:Regeneration process steps: 18:Hydrogen-permeable membrane 1786: 1150:Pure and Applied Chemistry 218:G protein-coupled receptor 131: 1432:Metal–air electrochemical 1340: 432:proton-exchange membranes 420:cation-exchange membranes 103:Biological membranes are 838:10.3390/membranes7030038 546:10.1021/acs.jpcb.6b08574 424:anion-exchange membranes 371:2 - Oxidative treatment 1163:10.1351/pac199668071479 1734:Semipermeable membrane 1523:Lithium–iron–phosphate 386: 353:1- Chemical Treatment 231: 204:Cellular communication 67:to pass through it by 45:Semipermeable membrane 41: 1605:Rechargeable alkaline 1283:Electrochemical cells 679:Voet, Donald (2001). 384: 296:difference is called 229: 109:facilitated diffusion 105:selectively permeable 35: 1585:Nickel–metal hydride 1195:10.2166/wst.2008.043 1001:10.2166/wst.2017.238 275:Artificial membranes 160:phospholipid bilayer 134:phospholipid bilayer 128:Phospholipid bilayer 123:Biological membranes 83:of the molecules or 1770:Membrane technology 1595:Polysulfide–bromide 1437:Nickel oxyhydroxide 1329:Thermogalvanic cell 954:2012Desal.299..103L 540:(45): 11761–11772. 210:signaling molecules 158:is an example of a 1358:(non-rechargeable) 1302:Concentration cell 772:10.1007/PL00000742 502:Medical physiology 387: 310:water purification 232: 194:fluid mosaic model 42: 1742: 1741: 1189:(11): 1757–1762. 690:978-0-471-41759-0 476:www.mrsec.psu.edu 186:membrane fluidity 113:passive transport 16:(Redirected from 1777: 1765:Membrane biology 1538:Lithium–titanate 1483: 1359: 1346: 1307:Electric battery 1276: 1269: 1262: 1253: 1222: 1220: 1218: 1206: 1175: 1165: 1156:(7): 1479–1489. 1131: 1130: 1104: 1080: 1074: 1073: 1063: 1030: 1021: 1020: 995:(3–4): 605–622. 980: 974: 973: 933: 927: 926: 925: 921: 914: 908: 907: 875: 869: 868: 858: 840: 816: 810: 809: 791: 766:(7): 1018–1032. 751: 745: 744: 704: 695: 694: 676: 670: 669: 659: 627: 621: 620: 618: 616: 601: 592: 591: 589: 587: 572: 566: 565: 525: 516: 515: 497: 488: 487: 485: 483: 468: 451: 448: 294:osmotic pressure 241:osmotic pressure 117:active transport 21: 1785: 1784: 1780: 1779: 1778: 1776: 1775: 1774: 1745: 1744: 1743: 1738: 1677: 1656: 1649: 1570:Nickel–hydrogen 1528:Lithium–polymer 1484: 1481: 1480: 1471: 1360: 1357: 1356: 1347: 1338: 1285: 1280: 1229: 1216: 1214: 1209: 1179: 1143: 1140: 1138:Further reading 1135: 1134: 1082: 1081: 1077: 1046:(3): CD003234. 1032: 1031: 1024: 982: 981: 977: 935: 934: 930: 923: 916: 915: 911: 877: 876: 872: 818: 817: 813: 753: 752: 748: 706: 705: 698: 691: 678: 677: 673: 629: 628: 624: 614: 612: 603: 602: 595: 585: 583: 575:Friedl, Sarah. 574: 573: 569: 527: 526: 519: 512: 499: 498: 491: 481: 479: 470: 469: 465: 460: 455: 454: 449: 445: 440: 416: 395:Dialysis tubing 392: 390:Dialysis tubing 334: 318:molecular sieve 302:reverse osmosis 286: 284:Reverse osmosis 277: 237: 206: 152:plasma membrane 136: 130: 125: 28: 23: 22: 15: 12: 11: 5: 1783: 1781: 1773: 1772: 1767: 1762: 1757: 1747: 1746: 1740: 1739: 1737: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1685: 1683: 1679: 1678: 1676: 1675: 1670: 1665: 1663:Atomic battery 1659: 1657: 1654: 1651: 1650: 1648: 1647: 1642: 1637: 1635:Vanadium redox 1632: 1627: 1622: 1617: 1612: 1610:Silver–cadmium 1607: 1602: 1597: 1592: 1587: 1582: 1580:Nickel–lithium 1577: 1572: 1567: 1565:Nickel–cadmium 1562: 1557: 1552: 1547: 1542: 1541: 1540: 1535: 1533:Lithium–sulfur 1530: 1525: 1520: 1510: 1505: 1504: 1503: 1493: 1487: 1485: 1482:(rechargeable) 1478:Secondary cell 1476: 1473: 1472: 1470: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1424: 1419: 1414: 1409: 1404: 1402:Edison–Lalande 1399: 1394: 1389: 1384: 1379: 1374: 1369: 1363: 1361: 1352: 1349: 1348: 1341: 1339: 1337: 1336: 1331: 1326: 1321: 1320: 1319: 1317:Trough battery 1314: 1304: 1299: 1293: 1291: 1287: 1286: 1281: 1279: 1278: 1271: 1264: 1256: 1250: 1249: 1244: 1228: 1227:External links 1225: 1224: 1223: 1207: 1177: 1139: 1136: 1133: 1132: 1095:(4): 381–385. 1075: 1022: 975: 928: 909: 870: 811: 746: 719:(1): 215–238. 696: 689: 671: 642:(1): 897–919. 622: 593: 567: 517: 510: 489: 462: 461: 459: 456: 453: 452: 442: 441: 439: 436: 415: 412: 403:kidney failure 391: 388: 333: 330: 285: 282: 276: 273: 265:Osmoregulation 249:osmotic stress 236: 235:Osmotic stress 233: 205: 202: 132:Main article: 129: 126: 124: 121: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1782: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1752: 1750: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1686: 1684: 1680: 1674: 1671: 1669: 1666: 1664: 1661: 1660: 1658: 1652: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1625:Sodium–sulfur 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1600:Potassium ion 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1515: 1514: 1511: 1509: 1506: 1502: 1499: 1498: 1497: 1494: 1492: 1489: 1488: 1486: 1479: 1474: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1417:Lithium metal 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1372:Aluminium–air 1370: 1368: 1365: 1364: 1362: 1355: 1350: 1345: 1335: 1332: 1330: 1327: 1325: 1322: 1318: 1315: 1313: 1310: 1309: 1308: 1305: 1303: 1300: 1298: 1297:Galvanic cell 1295: 1294: 1292: 1288: 1284: 1277: 1272: 1270: 1265: 1263: 1258: 1257: 1254: 1248: 1245: 1242: 1239:, an earlier 1238: 1234: 1231: 1230: 1226: 1213:. 12 May 1964 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1178: 1173: 1169: 1164: 1159: 1155: 1151: 1147: 1142: 1141: 1137: 1128: 1124: 1120: 1116: 1112: 1108: 1103: 1098: 1094: 1090: 1086: 1079: 1076: 1071: 1067: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1029: 1027: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 979: 976: 971: 967: 963: 959: 955: 951: 947: 943: 939: 932: 929: 919: 913: 910: 905: 901: 897: 893: 889: 885: 881: 874: 871: 866: 862: 857: 852: 848: 844: 839: 834: 830: 826: 822: 815: 812: 807: 803: 799: 795: 790: 785: 781: 777: 773: 769: 765: 761: 757: 750: 747: 742: 738: 734: 730: 726: 722: 718: 714: 710: 703: 701: 697: 692: 686: 682: 675: 672: 667: 663: 658: 653: 649: 645: 641: 637: 633: 626: 623: 611: 607: 604:Wood, David. 600: 598: 594: 582: 578: 571: 568: 563: 559: 555: 551: 547: 543: 539: 535: 531: 524: 522: 518: 513: 511:9781455743773 507: 503: 496: 494: 490: 477: 473: 467: 464: 457: 447: 444: 437: 435: 433: 429: 425: 421: 413: 411: 408: 404: 400: 396: 389: 383: 379: 376: 372: 369: 366: 363: 360: 357: 354: 351: 350: 346: 342: 338: 331: 329: 327: 323: 319: 315: 311: 307: 303: 299: 295: 291: 283: 281: 274: 272: 270: 266: 262: 258: 257:osmotic shock 254: 250: 246: 242: 234: 228: 224: 222: 219: 215: 211: 203: 201: 199: 195: 191: 187: 183: 179: 175: 174: 169: 165: 161: 157: 153: 149: 146:head and two 145: 141: 140:phospholipids 135: 127: 122: 120: 118: 114: 110: 106: 101: 98: 94: 90: 86: 82: 78: 77:concentration 74: 70: 66: 62: 58: 54: 50: 47:is a type of 46: 39: 34: 30: 19: 1733: 1640:Zinc–bromine 1447:Silver oxide 1382:Chromic acid 1354:Primary cell 1334:Voltaic pile 1312:Flow battery 1215:. Retrieved 1186: 1182: 1153: 1149: 1092: 1088: 1078: 1043: 1039: 992: 988: 978: 945: 942:Desalination 941: 931: 912: 887: 883: 873: 828: 824: 814: 763: 759: 749: 716: 712: 680: 674: 639: 635: 625: 613:. Retrieved 609: 584:. Retrieved 580: 570: 537: 533: 501: 480:. Retrieved 475: 466: 446: 430:(AAEMs) and 417: 399:hemodialysis 393: 377: 373: 370: 367: 364: 361: 358: 355: 352: 348: 347: 343: 339: 335: 314:desalination 287: 278: 238: 207: 173:hydrophillic 172: 164:permeability 137: 104: 102: 44: 43: 38:hemodialysis 29: 1729:Salt bridge 1714:Electrolyte 1645:Zinc–cerium 1630:Solid state 1615:Silver–zinc 1590:Nickel–zinc 1575:Nickel–iron 1550:Molten salt 1518:Dual carbon 1513:Lithium ion 1508:Lithium–air 1467:Zinc–carbon 1442:Silicon–air 1422:Lithium–air 948:: 103–112. 890:(1): 1–34. 414:Other types 397:is used in 322:Sidney Loeb 245:equilibrate 182:Cholesterol 178:hydrophobic 150:tails. The 81:temperature 1749:Categories 1682:Cell parts 1673:Solar cell 1655:Other cell 1620:Sodium ion 1491:Automotive 1237:NanoMemPro 1089:Nephrology 918:US 3133132 458:References 261:cell death 198:Aquaporins 168:substances 148:fatty acid 93:solubility 1755:Diffusion 1719:Half-cell 1709:Electrode 1668:Fuel cell 1545:Metal–air 1496:Lead–acid 1412:LeclanchĂ© 1324:Fuel cell 1111:1320-5358 1009:0273-1223 970:0011-9164 904:0376-7388 847:2077-0375 831:(3): 38. 825:Membranes 780:1420-9071 733:0066-4227 610:Study.com 581:Study.com 554:1520-6106 407:cellulose 326:polyamide 290:bulk flow 269:molecules 221:signaling 214:receptors 144:phosphate 61:molecules 57:polymeric 49:synthetic 1699:Catalyst 1560:Nanowire 1555:Nanopore 1501:gel–VRLA 1462:Zinc–air 1367:Alkaline 1217:22 April 1203:18547927 1172:97076769 1127:35903616 1119:20609086 1070:16034894 1017:28759443 865:28933723 806:23759859 798:10961342 789:11146847 741:21663439 666:29925258 562:27771953 434:(PEMs). 426:(AEMs), 422:(CEMs), 212:bind to 97:membrane 89:membrane 73:pressure 53:biologic 1760:Filters 1704:Cathode 1457:Zamboni 1427:Mercury 1392:Daniell 1061:8711594 950:Bibcode 856:5618123 657:6535337 615:6 April 586:6 April 337:years. 298:osmosis 247:. This 190:solutes 85:solutes 69:osmosis 1694:Binder 1452:Weston 1377:Bunsen 1201:  1170:  1125:  1117:  1109:  1068:  1058:  1015:  1007:  968:  924:  902:  863:  853:  845:  804:  796:  786:  778:  739:  731:  687:  664:  654:  560:  552:  508:  482:2 July 79:, and 1689:Anode 1407:Grove 1387:Clark 1290:Types 1168:S2CID 1123:S2CID 802:S2CID 438:Notes 156:cells 1724:Ions 1219:2014 1199:PMID 1115:PMID 1107:ISSN 1066:PMID 1044:2009 1013:PMID 1005:ISSN 966:ISSN 900:ISSN 861:PMID 843:ISSN 794:PMID 776:ISSN 737:PMID 729:ISSN 685:ISBN 662:PMID 617:2017 588:2017 558:PMID 550:ISSN 506:ISBN 484:2021 288:The 259:and 65:ions 1397:Dry 1191:doi 1158:doi 1097:doi 1056:PMC 1048:doi 997:doi 958:doi 946:299 892:doi 888:308 851:PMC 833:doi 784:PMC 768:doi 721:doi 652:PMC 644:doi 542:doi 538:120 312:or 253:DNA 115:or 63:or 51:or 1751:: 1241:EU 1197:. 1187:57 1185:. 1166:. 1154:68 1152:. 1148:. 1121:. 1113:. 1105:. 1093:15 1091:. 1087:. 1064:. 1054:. 1042:. 1038:. 1025:^ 1011:. 1003:. 993:76 991:. 987:. 964:. 956:. 944:. 940:. 898:. 886:. 882:. 859:. 849:. 841:. 827:. 823:. 800:. 792:. 782:. 774:. 764:57 762:. 758:. 735:. 727:. 717:65 715:. 711:. 699:^ 660:. 650:. 640:87 638:. 634:. 608:. 596:^ 579:. 556:. 548:. 536:. 532:. 520:^ 492:^ 474:. 263:. 196:. 111:, 75:, 55:, 1275:e 1268:t 1261:v 1221:. 1205:. 1193:: 1174:. 1160:: 1129:. 1099:: 1072:. 1050:: 1019:. 999:: 972:. 960:: 952:: 906:. 894:: 867:. 835:: 829:7 808:. 770:: 743:. 723:: 693:. 668:. 646:: 619:. 590:. 564:. 544:: 514:. 486:. 20:)

Index

Hydrogen-permeable membrane

hemodialysis
synthetic
biologic
polymeric
molecules
ions
osmosis
pressure
concentration
temperature
solutes
membrane
solubility
membrane
facilitated diffusion
passive transport
active transport
phospholipid bilayer
phospholipids
phosphate
fatty acid
plasma membrane
cells
phospholipid bilayer
permeability
substances
hydrophillic
hydrophobic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑