Knowledge (XXG)

Hydrogen Intensity and Real-time Analysis eXperiment

Source 📝

591:. The Canadian Hydrogen Observatory and Radio-transient Detector (CHORD) is a next-generation radio telescope, proposed for construction to start immediately. CHORD is a pan-Canadian project, designed to work with and build on the success of the CHIME. It will act as a sister experiment to HIRAX. CHORD will incorporate CHIME’s best innovations alongside new Canadian technology. Small cylinders derived from the CHIME design and operating from 400-800MHz will be deployed at remote outrigger sites and provide milli-arcsecond-level localization of radio transients. These will be complemented by focused arrays of 6m composite dishes at each site, instrumented with novel ultra-wideband (UWB) feeds, covering a 5:1 radio band from 300–1500MHz. 766:(HartRAO) in 2017, which is used as a test bed for hardware and software development leading up to the construction of the full array at the South African Radio Astronomy Observatory (SARAO) site in the Karoo. Construction of a 128-element pathfinder array is slated to begin in 2024. The pathfinder array will then be expanded out to the full 1024-element array over the course of the following three years. The HartRAO 8-element array will be incorporated into the full array as an "outrigger" array, along with several others throughout southern Africa. These outriggers will dramatically improve the angular resolution of the HIRAX array, allowing it to localize FRB detections with sub-arcsecond precision. 194: 181: 167: 152: 131: 100: 83: 41: 28: 755: 1194: 2317: 201: 2327: 1107:; Aldering; Goldhaber; Knop; Nugent; Castro; Deustua; Fabbro; Goobar; Groom; Hook; Kim; Kim; Lee; Nunes; Pain; Pennypacker; Quimby; Lidman; Ellis; Irwin; McMahon; Ruiz‐Lapuente; Walton; Schaefer; Boyle; Filippenko; Matheson; Fruchter; et al. (1999). "Measurements of Omega and Lambda from 42 high redshift supernovae". 425:
is in fact accelerating. Dark energy is the hypothesized form of energy which causes this acceleration, however little is known about it beyond the fact that it must currently comprise approximately 70% of the energy density of the universe. Dark matter also plays a significant role in the growth of
667:
of data per second, which is comparable to the total international internet bandwidth for the continent of Africa. This problem is made feasible by recent advances in GPU based computing, and by the regular spacing between the array elements, which lowers the computational difficulty from
1051:; Filippenko; Challis; Clocchiatti; Diercks; Garnavich; Gilliland; Hogan; Jha; Kirshner; Leibundgut; Phillips; Reiss; Schmidt; Schommer; Smith; Spyromilio; Stubbs; Suntzeff; Tonry (1998). "Observational evidence from supernovae for an accelerating universe and a cosmological constant". 662:
cluster. This correlation operation is extremely computationally expensive, and is the primary reason why such large interferometric arrays have not previously been fielded. In full array operation, HIRAX will be required to process 6.5
649:
amplifier chains, then digitized and correlated with the signals from all other dishes to produce a single coherent image from the whole array. The digitization and frequency channelization operations will be performed by custom
461:
HIRAX is designed to measure the effects of dark energy and dark matter on the dynamics of the universe over a long period of time (~4 billion years) to learn more about their nature. This is accomplished by looking at the
2007: 568:) radio bursts, whose origins are completely unknown. Only approximately 612 have been detected as of 2021, but the HIRAX array expects to detect tens of FRBs per day. Pulsars are rapidly rotating 434:, and it is known to make up approximately 25% of the energy density of the universe, but the exact nature of it is not understood. The remaining 5% of the energy density of the universe is the 303: 193: 1665: 1557: 331: 545:
cosmological model predicts that dark energy is beginning to affect the dynamics of the universe, causing it to transition from decelerating expansion to accelerating expansion.
2366: 774: 535: 607:
be steered, but fixed in position and sweep the sky as the Earth rotates. Every few months, they will be manually re-pointed in elevation to survey a new strip of the sky.
950: 740: 552:
and large survey area will additionally make it a very powerful tool for detecting radio transient events. In particular, HIRAX will be extremely efficient at detecting
702: 572:, whose rotation causes them to appear to emit radio frequency pulses at very regular rates. Precise measurements of the rates of their pulses could be used to detect 2356: 1439: 993: 1655: 580: 1645: 778: 379: 490:, marking the expansion of the universe over time, and therefore giving information about dark energy and dark matter. For example, if dark energy is not a 299: 53: 1580: 763: 1177:
Vanderlinde, Keith; Liu, Adrian; Gaensler, Bryan; Bond, Dick; Hinshaw, Gary; Ng, Cherry; Chiang, Cynthia; Stairs, Ingrid; Brown, Jo-Anne (2019-10-21).
946:"Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae" 1346: 840:
L. Newburgh; et al. (2016). Hall, Helen J; Gilmozzi, Roberto; Marshall, Heather K (eds.). "HIRAX: A Probe of Dark Energy and Radio Transients".
2285: 2036: 1759: 1596: 1302: 359: 917:(1927). "Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques". 1997: 1719: 1973: 1867: 417:, that the universe is expanding, but for most of the 20th century it was assumed that this was a decelerating expansion, following a hot 2361: 1965: 576:, because the gravitational waves would distort the size of the space the pulses travel through, and thus their arrival times at Earth. 290:
The HIRAX collaboration is made up of over a dozen institutions, mainly from South Africa, the United States, and Canada, including the
1799: 1635: 1457: 1400: 2196: 1565: 1467: 2071: 1689: 295: 2052: 1789: 1625: 413:
are among the greatest unsolved mysteries in modern cosmology. It has been known since the late 1920s, with the discovery of
327: 307: 1475: 1339: 651: 483: 2239: 1917: 1817: 790: 479: 276: 541:, or when the universe was between 2.5 and 6.5 billion years old). This range encompasses the period when the standard 2260: 2151: 2017: 1925: 1739: 1541: 1394: 1390: 770: 291: 93: 1981: 2330: 1491: 659: 2351: 1779: 1699: 1416: 1406: 501:
Due to the expansion of the universe, the 400-800 MHz operating band of the HIRAX instrument corresponds to
422: 375: 363: 2320: 1989: 1957: 1857: 1533: 1421: 1332: 805: 655: 351: 2229: 2219: 1683: 1549: 347: 315: 1163: 498:
theory of cosmology predicts, then the rate of acceleration of the universe may not be constant over time.
1941: 1827: 1284: 260: 2234: 2201: 2121: 1729: 1675: 1615: 1515: 491: 431: 323: 2302: 2091: 1949: 1507: 1483: 1245: 1126: 1070: 1002: 959: 926: 859: 627: 508: 166: 754: 626:
across the 400–800 MHz observing band of the telescope. Each dish is coupled to a single dual-
99: 2275: 2086: 2081: 2076: 1933: 1837: 1709: 914: 635: 588: 584: 573: 475: 471: 443: 427: 151: 141: 1303:"New radio telescope launched in South Africa in order to solve the mystery that is 'dark energy'" 2255: 2224: 2171: 2131: 2101: 2044: 1809: 1588: 1142: 1116: 1086: 1060: 894: 875: 849: 646: 707: 583:(CHIME) is a sister experiment to HIRAX. It has similar science objectives, but observes in the 2280: 2126: 1449: 1263: 1030: 800: 671: 600: 426:
structures within the universe. It is believed to be a form of matter that interacts with the
355: 319: 311: 2270: 2166: 2161: 2096: 1847: 1499: 1285:"HIRAX telescope project is officially launched. – Astrophysics and Cosmology Research Unit" 1253: 1182: 1134: 1078: 1020: 1010: 967: 867: 795: 639: 638:(LNAs), and transmitted to a centralized computation structure (the "back end") by means of 553: 542: 495: 2191: 2136: 1380: 1355: 1198: 1193: 1104: 619: 343: 335: 252: 180: 145: 414: 130: 82: 1249: 1197: This article incorporates text from this source, which is available under the 1130: 1074: 1006: 963: 930: 863: 40: 2265: 2146: 631: 487: 467: 455: 240: 1025: 988: 2345: 2186: 2141: 2116: 1146: 879: 569: 549: 463: 272: 1090: 27: 2111: 1384: 618:
from neighboring dishes in the array. The antennas have been optimized to have low
548:
The HIRAX array will survey most of the southern sky to map out BAO, and its large
268: 2290: 2181: 2176: 2106: 623: 561: 447: 410: 406: 284: 280: 248: 1258: 1233: 1048: 989:"A relation between distance and radial velocity among extra-galactic nebulae" 893:
Andreas Albrecht; et al. (2006). "Report of the Dark Energy Task Force".
371: 108: 972: 945: 68: 55: 2295: 1523: 615: 256: 200: 1267: 1186: 1034: 1015: 221: 2156: 1898: 1121: 1065: 899: 611: 502: 418: 1749: 871: 664: 557: 394: 390: 339: 1319: 1212: 1179:
The Canadian Hydrogen Observatory and Radio-transient Detector (CHORD)
781:
announced the official launch of the HIRAX experiment in August 2018.
1769: 1374: 1178: 1164:"New telescope chases the mysteries of radio flashes and dark energy" 565: 451: 435: 762:
The HIRAX collaboration fielded an 8-element prototype array at the
2008:
Special Astrophysical Observatory of the Russian Academy of Science
1138: 1082: 854: 1888: 1324: 753: 386: 264: 244: 1370: 1234:"Dark-energy telescope, asteroid hunters and gene-therapy rules" 439: 367: 209:
Location of Hydrogen Intensity and Real-time Analysis eXperiment
1328: 478:
in the universe, and so can be used to map out the large scale
538: 654:(FPGA) boards, and the correlation will be run on a custom 304:
Botswana International University of Science and Technology
275:
emission on large angular scales, in order to map out the
1666:
Combined Array for Research in Millimeter-wave Astronomy
421:. However, in the late 1990s it was discovered that the 758:
The HIRAX prototype telescope array at HartRAO in 2017.
599:
The HIRAX array will consist of 1024 6-meter diameter
466:
produced by hot diffuse neutral hydrogen from distant
332:
Inter-University Centre for Astronomy and Astrophysics
271:. The array is designed to measure red-shifted 21-cm 710: 674: 614:
of 0.23, to shield the feeds from ground pickup, and
511: 482:(BAO) structure of the universe. The BAO are a fixed 389:, a local mammal, and in parallel to the neighboring 233:
Hydrogen Intensity and Real-time Analysis eXperiment
17:
Hydrogen Intensity and Real-time Analysis eXperiment
2248: 2210: 2064: 2029: 1916: 1881: 1608: 1430: 1415: 1362: 645:At the back end the signal is amplified further by 174: 159: 137: 117: 113:
37 cm (810 MHz)–75 cm (400 MHz)
107: 89: 47: 34: 21: 734: 696: 529: 1770:Multi-Element Radio Linked Interferometer Network 951:Monthly Notices of the Royal Astronomical Society 919:Annales de la Société Scientifique de Bruxelles A 603:with a field of view of 5–10°. The dishes will 994:Proceedings of the National Academy of Sciences 1656:Canadian Hydrogen Intensity Mapping Experiment 1279: 1277: 581:Canadian Hydrogen Intensity Mapping Experiment 1340: 385:The HIRAX array is named in reference to the 8: 1646:Australian Square Kilometre Array Pathfinder 835: 833: 831: 829: 827: 825: 823: 821: 380:National Research Foundation of South Africa 16: 1440:500 meter Aperture Spherical Telescope 844:. Ground-based and Airborne Telescopes VI. 300:African Institute for Mathematical Sciences 2367:Astronomical observatories in South Africa 1427: 1347: 1333: 1325: 1158: 1156: 764:Hartebeesthoek Radio Astronomy Observatory 179: 165: 150: 129: 98: 81: 39: 26: 15: 1257: 1228: 1226: 1120: 1064: 1024: 1014: 971: 898: 853: 709: 685: 673: 510: 1760:Molonglo Observatory Synthesis Telescope 1597:Warkworth Radio Astronomical Observatory 746:is the number of elements in the array. 178:28,000 m (300,000 sq ft) 817: 634:. The signal is amplified by a pair of 610:The dishes are extremely deep, with an 474:. This neutral hydrogen traces out the 2357:Science and technology in South Africa 360:Astroparticle and Cosmology Laboratory 2261:Cosmic microwave background radiation 1998:Pushchino Radio Astronomy Observatory 1720:Large Latin American Millimeter Array 7: 2326: 1974:National Radio Astronomy Observatory 1868:Westerbork Synthesis Radio Telescope 775:Department of Science and Technology 1966:Mullard Radio Astronomy Observatory 382:, and by the partner institutions. 1800:Northern Extended Millimeter Array 393:radio telescope and its eponymous 14: 1636:Australia Telescope Compact Array 1458:Caltech Submillimeter Observatory 1401:Very Long Baseline Interferometry 2325: 2316: 2315: 1244:(7719): 414–415. 1 August 2018. 1192: 199: 192: 1690:Giant Metrewave Radio Telescope 1558:UTR-2 decameter radio telescope 530:{\displaystyle 0.8<z<2.5} 296:Durban University of Technology 259:, that will be deployed at the 1790:Northern Cross Radio Telescope 1626:Atacama Large Millimeter Array 729: 714: 691: 678: 328:University of British Columbia 308:University of the Western Cape 160:Number of telescopes 1: 652:field programmable gate array 2240:Gravitational-wave astronomy 1818:Primeval Structure Telescope 791:Baryon acoustic oscillations 779:National Research Foundation 277:baryon acoustic oscillations 2152:Christiaan Alexander Muller 2018:Vermilion River Observatory 1926:Algonquin Radio Observatory 1391:Astronomical interferometer 1217:www.africabandwidthmaps.com 771:University of KwaZulu-Natal 486:size, and so they act as a 480:Baryon Acoustic Oscillation 292:University of KwaZulu-Natal 94:University of KwaZulu-Natal 2383: 2362:Interferometric telescopes 1492:Large Millimeter Telescope 1259:10.1038/d41586-018-05983-4 735:{\displaystyle O(n\log n)} 660:high performance computing 279:, and constrain models of 2311: 1780:Murchison Widefield Array 1700:Green Bank Interferometer 1524:RATAN-600 Radio Telescope 1407:Astronomical radio source 773:, and the South African 601:parabolic dish reflectors 423:expansion of the universe 376:Jet Propulsion Laboratory 364:Nelson Mandela University 218: 187: 1990:Onsala Space Observatory 1982:Nançay Radio Observatory 1958:Jodrell Bank Observatory 1858:Very Long Baseline Array 1534:Sardinia Radio Telescope 806:List of radio telescopes 697:{\displaystyle O(n^{2})} 656:graphics processing unit 589:instrumental systematics 352:West Virginia University 2220:Submillimetre astronomy 1832:Australia, South Africa 1684:Event Horizon Telescope 1213:"Africa Bandwidth Maps" 348:University of Wisconsin 316:University of Cape Town 1942:Green Bank Observatory 1828:Square Kilometre Array 1187:10.5281/zenodo.3765414 973:10.1093/mnras/91.5.483 759: 736: 698: 531: 476:large scale structures 438:which we can see; the 378:. It is funded by the 261:Square Kilometer Array 255:, operating at 400-800 22:Alternative names 2235:High-energy astronomy 2122:Sebastian von Hoerner 1730:Long Wavelength Array 1676:European VLBI Network 1616:Allen Telescope Array 1516:Qitai Radio Telescope 1109:Astrophysical Journal 1016:10.1073/pnas.15.3.168 944:Lemaître, G. (1931). 757: 737: 699: 560:. FRBs are short (~1 532: 492:cosmological constant 432:electromagnetic force 324:University of Toronto 2303:Solar radio emission 2092:Jocelyn Bell Burnell 1950:Haystack Observatory 1484:Green Bank Telescope 1468:Effelsberg Telescope 1053:Astronomical Journal 708: 672: 636:low-noise amplifiers 587:, and has different 509: 505:21-cm emission from 175:Collecting area 138:Telescope style 2276:Pulsar timing array 2082:Edward George Bowen 2072:Elizabeth Alexander 1934:Arecibo Observatory 1838:Submillimeter Array 1740:Low-Frequency Array 1710:Korean VLBI Network 1576:Southern Hemisphere 1487:(West Virginia, US) 1320:HIRAX Official Site 1250:2018Natur.560..414. 1131:1999ApJ...517..565P 1075:1998AJ....116.1009R 1007:1929PNAS...15..168H 987:Hubble, E. (1929). 964:1931MNRAS..91..483L 931:1927ASSB...47...49L 864:2016SPIE.9906E..5XN 842:Proceedings of SPIE 585:northern hemisphere 574:gravitational waves 472:intracluster medium 464:21-cm line emission 428:gravitational force 142:parabolic reflector 69:30.7211°S 21.4111°E 65: /  18: 2256:Aperture synthesis 2225:Infrared astronomy 2162:Joseph Lade Pawsey 2132:Kenneth Kellermann 2102:Nan Dieter-Conklin 1810:One-Mile Telescope 1589:Parkes Observatory 872:10.1117/12.2234286 760: 732: 694: 527: 494:, as the standard 2339: 2338: 2281:Radio propagation 2230:Optical astronomy 2127:Karl Guthe Jansky 1937:(Puerto Rico, US) 1912: 1911: 1704:West Virginia, US 1453:(Puerto Rico, US) 1450:Arecibo Telescope 1305:. 20 August 2018. 1291:. 17 August 2018. 801:Intensity mapping 640:fibre-optic links 554:Fast Radio Bursts 356:Oxford University 320:McGill University 312:Rhodes University 229: 228: 74:-30.7211; 21.4111 2374: 2352:Radio telescopes 2329: 2328: 2319: 2318: 2296:HD 164595 signal 2271:Odd radio circle 2249:Related articles 2167:Ruby Payne-Scott 2097:Arthur Covington 2087:Ronald Bracewell 2057: 2049: 2041: 2022: 2013: 2003: 1994: 1986: 1978: 1970: 1962: 1954: 1946: 1938: 1930: 1904: 1894: 1873: 1863: 1853: 1848:Very Large Array 1843: 1833: 1823: 1814: 1805: 1795: 1785: 1775: 1765: 1755: 1745: 1735: 1725: 1724:Argentina/Brazil 1715: 1705: 1695: 1680: 1671: 1661: 1651: 1641: 1631: 1621: 1601: 1593: 1585: 1577: 1570: 1566:Yevpatoria RT-70 1562: 1554: 1546: 1538: 1529: 1520: 1512: 1504: 1500:Lovell Telescope 1496: 1488: 1480: 1472: 1463: 1454: 1445: 1428: 1417:Radio telescopes 1349: 1342: 1335: 1326: 1307: 1306: 1299: 1293: 1292: 1281: 1272: 1271: 1261: 1230: 1221: 1220: 1209: 1203: 1196: 1190: 1174: 1168: 1167: 1160: 1151: 1150: 1124: 1122:astro-ph/9812133 1101: 1095: 1094: 1068: 1066:astro-ph/9805201 1045: 1039: 1038: 1028: 1018: 984: 978: 977: 975: 941: 935: 934: 911: 905: 904: 902: 900:astro-ph/0609591 890: 884: 883: 857: 848:(9906): 99065X. 837: 796:Fast radio burst 741: 739: 738: 733: 703: 701: 700: 695: 690: 689: 536: 534: 533: 528: 253:radio telescopes 243:array of 1024 6- 222:edit on Wikidata 203: 202: 196: 183: 170: 169: 155: 154: 133: 128: 126: 103: 102: 85: 80: 79: 77: 76: 75: 70: 66: 63: 62: 61: 58: 43: 30: 19: 2382: 2381: 2377: 2376: 2375: 2373: 2372: 2371: 2342: 2341: 2340: 2335: 2307: 2244: 2212: 2206: 2192:Gart Westerhout 2060: 2055: 2047: 2039: 2025: 2020: 2011: 2001: 2000:(PRAO ASC LPI, 1992: 1984: 1976: 1968: 1960: 1952: 1944: 1936: 1928: 1908: 1902: 1892: 1877: 1871: 1861: 1851: 1841: 1831: 1821: 1812: 1803: 1793: 1783: 1773: 1763: 1753: 1743: 1733: 1723: 1713: 1703: 1693: 1678: 1669: 1659: 1649: 1639: 1629: 1619: 1609:Interferometers 1604: 1599: 1591: 1583: 1575: 1568: 1560: 1552: 1550:Usuda Telescope 1544: 1536: 1527: 1518: 1510: 1502: 1494: 1486: 1478: 1470: 1461: 1452: 1443: 1432: 1419: 1411: 1381:Radio telescope 1358: 1356:Radio astronomy 1353: 1316: 1311: 1310: 1301: 1300: 1296: 1289:acru.ukzn.ac.za 1283: 1282: 1275: 1232: 1231: 1224: 1211: 1210: 1206: 1176: 1175: 1171: 1162: 1161: 1154: 1103: 1102: 1098: 1047: 1046: 1042: 986: 985: 981: 943: 942: 938: 913: 912: 908: 892: 891: 887: 839: 838: 819: 814: 787: 752: 706: 705: 681: 670: 669: 597: 507: 506: 468:galaxy clusters 456:galaxy clusters 436:baryonic matter 403: 374:, and the NASA 344:Carnegie Mellon 336:Yale University 241:interferometric 225: 214: 213: 212: 211: 210: 206: 205: 204: 164: 149: 146:radio telescope 144: 124: 122: 97: 73: 71: 67: 64: 59: 56: 54: 52: 51: 12: 11: 5: 2380: 2378: 2370: 2369: 2364: 2359: 2354: 2344: 2343: 2337: 2336: 2334: 2333: 2323: 2312: 2309: 2308: 2306: 2305: 2300: 2299: 2298: 2293: 2283: 2278: 2273: 2268: 2266:Interferometry 2263: 2258: 2252: 2250: 2246: 2245: 2243: 2242: 2237: 2232: 2227: 2222: 2216: 2214: 2208: 2207: 2205: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2147:Bernard Lovell 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2094: 2089: 2084: 2079: 2077:John G. Bolton 2074: 2068: 2066: 2062: 2061: 2059: 2058: 2050: 2045:ESA New Norcia 2042: 2033: 2031: 2027: 2026: 2024: 2023: 2015: 2005: 1995: 1987: 1979: 1971: 1963: 1955: 1947: 1939: 1931: 1922: 1920: 1914: 1913: 1910: 1909: 1907: 1906: 1896: 1885: 1883: 1879: 1878: 1876: 1875: 1865: 1855: 1852:New Mexico, US 1845: 1835: 1825: 1815: 1807: 1797: 1787: 1777: 1767: 1757: 1747: 1737: 1734:New Mexico, US 1727: 1717: 1707: 1697: 1687: 1681: 1673: 1670:California, US 1663: 1653: 1643: 1633: 1623: 1620:California, US 1612: 1610: 1606: 1605: 1603: 1602: 1594: 1586: 1584:(South Africa) 1578: 1572: 1571: 1563: 1555: 1547: 1539: 1531: 1521: 1513: 1508:Ooty Telescope 1505: 1497: 1489: 1481: 1473: 1465: 1455: 1447: 1436: 1434: 1425: 1413: 1412: 1410: 1409: 1404: 1398: 1388: 1378: 1366: 1364: 1360: 1359: 1354: 1352: 1351: 1344: 1337: 1329: 1323: 1322: 1315: 1314:External links 1312: 1309: 1308: 1294: 1273: 1222: 1204: 1169: 1152: 1139:10.1086/307221 1105:Perlmutter, S. 1096: 1083:10.1086/300499 1059:(3): 1009–38. 1049:Riess, Adam G. 1040: 979: 958:(5): 483–490. 936: 906: 885: 816: 815: 813: 810: 809: 808: 803: 798: 793: 786: 783: 751: 748: 731: 728: 725: 722: 719: 716: 713: 693: 688: 684: 680: 677: 632:dipole antenna 596: 593: 526: 523: 520: 517: 514: 488:standard ruler 450:that makes up 430:, but not the 405:The nature of 402: 399: 227: 226: 219: 216: 215: 208: 207: 198: 197: 191: 190: 189: 188: 185: 184: 176: 172: 171: 161: 157: 156: 139: 135: 134: 119: 115: 114: 111: 105: 104: 91: 87: 86: 49: 45: 44: 38:South Africa 36: 32: 31: 23: 13: 10: 9: 6: 4: 3: 2: 2379: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2349: 2347: 2332: 2324: 2322: 2314: 2313: 2310: 2304: 2301: 2297: 2294: 2292: 2289: 2288: 2287: 2284: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2253: 2251: 2247: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2217: 2215: 2209: 2203: 2202:Robert Wilson 2200: 2198: 2195: 2193: 2190: 2188: 2187:Govind Swarup 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2142:John D. Kraus 2140: 2138: 2137:Frank J. Kerr 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2117:Antony Hewish 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2069: 2067: 2063: 2054: 2051: 2046: 2043: 2038: 2035: 2034: 2032: 2028: 2019: 2016: 2009: 2006: 1999: 1996: 1991: 1988: 1983: 1980: 1975: 1972: 1967: 1964: 1959: 1956: 1951: 1948: 1943: 1940: 1935: 1932: 1927: 1924: 1923: 1921: 1919: 1918:Observatories 1915: 1900: 1897: 1890: 1887: 1886: 1884: 1880: 1869: 1866: 1859: 1856: 1849: 1846: 1839: 1836: 1829: 1826: 1819: 1816: 1811: 1808: 1801: 1798: 1791: 1788: 1781: 1778: 1771: 1768: 1761: 1758: 1751: 1748: 1741: 1738: 1731: 1728: 1721: 1718: 1711: 1708: 1701: 1698: 1691: 1688: 1685: 1682: 1677: 1674: 1667: 1664: 1657: 1654: 1647: 1644: 1637: 1634: 1627: 1624: 1617: 1614: 1613: 1611: 1607: 1598: 1595: 1590: 1587: 1582: 1579: 1574: 1573: 1567: 1564: 1559: 1556: 1551: 1548: 1543: 1540: 1535: 1532: 1525: 1522: 1517: 1514: 1509: 1506: 1501: 1498: 1493: 1490: 1485: 1482: 1477: 1476:Galenki RT-70 1474: 1469: 1466: 1459: 1456: 1451: 1448: 1441: 1438: 1437: 1435: 1429: 1426: 1423: 1418: 1414: 1408: 1405: 1402: 1399: 1396: 1392: 1389: 1386: 1382: 1379: 1376: 1372: 1368: 1367: 1365: 1361: 1357: 1350: 1345: 1343: 1338: 1336: 1331: 1330: 1327: 1321: 1318: 1317: 1313: 1304: 1298: 1295: 1290: 1286: 1280: 1278: 1274: 1269: 1265: 1260: 1255: 1251: 1247: 1243: 1239: 1235: 1229: 1227: 1223: 1218: 1214: 1208: 1205: 1202: 1200: 1195: 1188: 1184: 1180: 1173: 1170: 1165: 1159: 1157: 1153: 1148: 1144: 1140: 1136: 1132: 1128: 1123: 1118: 1115:(2): 565–86. 1114: 1110: 1106: 1100: 1097: 1092: 1088: 1084: 1080: 1076: 1072: 1067: 1062: 1058: 1054: 1050: 1044: 1041: 1036: 1032: 1027: 1022: 1017: 1012: 1008: 1004: 1001:(3): 168–73. 1000: 996: 995: 990: 983: 980: 974: 969: 965: 961: 957: 953: 952: 947: 940: 937: 932: 928: 925:(47): 49–59. 924: 920: 916: 910: 907: 901: 896: 889: 886: 881: 877: 873: 869: 865: 861: 856: 851: 847: 843: 836: 834: 832: 830: 828: 826: 824: 822: 818: 811: 807: 804: 802: 799: 797: 794: 792: 789: 788: 784: 782: 780: 776: 772: 767: 765: 756: 749: 747: 745: 726: 723: 720: 717: 711: 686: 682: 675: 666: 661: 657: 653: 648: 643: 641: 637: 633: 629: 625: 621: 617: 613: 608: 606: 602: 594: 592: 590: 586: 582: 577: 575: 571: 570:neutron stars 567: 564:) bright (~1 563: 559: 555: 551: 550:field of view 546: 544: 540: 524: 521: 518: 515: 512: 504: 499: 497: 493: 489: 485: 481: 477: 473: 470:and from the 469: 465: 459: 457: 453: 449: 445: 441: 437: 433: 429: 424: 420: 416: 412: 408: 401:Science goals 400: 398: 396: 392: 388: 383: 381: 377: 373: 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 297: 293: 288: 286: 282: 278: 274: 273:hydrogen line 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 223: 217: 195: 186: 182: 177: 173: 168: 162: 158: 153: 147: 143: 140: 136: 132: 120: 116: 112: 110: 106: 101: 95: 92: 88: 84: 78: 50: 46: 42: 37: 33: 29: 24: 20: 2211:Astronomy by 2172:Arno Penzias 2112:Cyril Hazard 1754:South Africa 1545:(Uzbekistan) 1385:Radio window 1297: 1288: 1241: 1237: 1216: 1207: 1191: 1181:(Report). . 1172: 1112: 1108: 1099: 1056: 1052: 1043: 998: 992: 982: 955: 949: 939: 922: 918: 915:Lemaître, G. 909: 888: 845: 841: 768: 761: 743: 658:(GPU) based 644: 630:clover-leaf 628:polarization 624:reflectivity 609: 604: 598: 578: 547: 500: 460: 415:Hubble's law 404: 384: 289: 269:South Africa 263:site in the 236: 232: 230: 90:Organization 2291:Wow! signal 2182:Martin Ryle 2177:Grote Reber 2107:Frank Drake 2048:(Australia) 1882:Space-based 1872:Netherlands 1744:Netherlands 1714:South Korea 1592:(Australia) 1542:Suffa RT-70 556:(FRBs) and 411:dark matter 407:dark energy 285:dark matter 281:dark energy 251:) diameter 163:1,024  72: / 48:Coordinates 35:Location(s) 2346:Categories 2213:EM methods 1433:telescopes 1431:Individual 855:1607.02059 812:References 595:Instrument 503:redshifted 372:ETH Zurich 267:region of 109:Wavelength 60:21°24′40″E 57:30°43′16″S 2197:Paul Wild 2030:Multi-use 2010:(SAORAS, 1784:Australia 1772:(MERLIN, 1764:Australia 1650:Australia 1640:Australia 1569:(Ukraine) 1561:(Ukraine) 1471:(Germany) 1199:CC BY 4.0 1147:118910636 880:119280190 724:⁡ 622:and high 616:crosstalk 239:) is an 125:2019–2022 121:2019–2022 2321:Category 2157:Jan Oort 2056:(Canada) 2040:(Canada) 1993:(Sweden) 1985:(France) 1929:(Canada) 1899:Spektr-R 1742:(LOFAR, 1722:(LLAMA, 1679:(Europe) 1668:(CARMA, 1658:(CHIME, 1648:(ASKAP, 1495:(Mexico) 1479:(Russia) 1363:Concepts 1268:30135538 1201:license. 1091:15640044 1035:16577160 785:See also 742:, where 612:f-number 484:comoving 452:galaxies 419:Big Bang 2331:Commons 1870:(WSRT, 1860:(VLBA, 1820:(PaST, 1762:(MOST, 1750:MeerKAT 1692:(GMRT, 1638:(ATCA, 1628:(ALMA, 1581:HartRAO 1553:(Japan) 1537:(Italy) 1519:(China) 1511:(India) 1442:(FAST, 1395:History 1369:Units ( 1246:Bibcode 1127:Bibcode 1071:Bibcode 1003:Bibcode 960:Bibcode 927:Bibcode 860:Bibcode 558:Pulsars 391:meerKAT 340:Caltech 123: ( 2065:People 2012:Russia 2002:Russia 1903:Russia 1850:(VLA, 1840:(SMA, 1830:(SKA, 1804:France 1782:(MWA, 1732:(LWA, 1712:(KVN, 1702:(GBI, 1660:Canada 1618:(ATA, 1528:Russia 1460:(CSO, 1403:(VLBI) 1375:jansky 1266:  1238:Nature 1145:  1089:  1033:  1026:522427 1023:  878:  750:Status 647:analog 395:animal 370:, the 362:, the 358:, the 350:, the 346:, the 330:, the 326:, the 322:, the 314:, the 306:, the 302:, the 298:, the 294:, the 148:  96:  25:HIRAX 1893:Japan 1889:HALCA 1822:China 1794:Italy 1694:India 1686:(EHT) 1630:Chile 1444:China 1143:S2CID 1117:arXiv 1087:S2CID 1061:arXiv 895:arXiv 876:S2CID 850:arXiv 777:and 537:(7-11 440:stars 387:hyrax 265:Karoo 245:meter 237:HIRAX 220:[ 118:Built 2286:SETI 2053:PARL 2037:DRAO 2021:(US) 1977:(US) 1969:(UK) 1961:(UK) 1953:(US) 1945:(US) 1813:(UK) 1600:(NZ) 1503:(UK) 1422:List 1373:and 1371:watt 1264:PMID 1031:PMID 846:9906 769:The 620:loss 579:The 543:ΛCDM 522:< 516:< 496:ΛCDM 454:and 448:dust 446:and 409:and 368:EPFL 283:and 231:The 1254:doi 1242:560 1183:doi 1135:doi 1113:517 1079:doi 1057:116 1021:PMC 1011:doi 968:doi 868:doi 721:log 704:to 605:not 539:Bya 525:2.5 513:0.8 444:gas 257:MHz 247:(20 2348:: 1862:US 1842:US 1774:UK 1462:US 1287:. 1276:^ 1262:. 1252:. 1240:. 1236:. 1225:^ 1215:. 1155:^ 1141:. 1133:. 1125:. 1111:. 1085:. 1077:. 1069:. 1055:. 1029:. 1019:. 1009:. 999:15 997:. 991:. 966:. 956:91 954:. 948:. 923:47 921:. 874:. 866:. 858:. 820:^ 665:Tb 642:. 566:Jy 562:ms 458:. 442:, 397:. 366:, 354:, 342:, 338:, 334:, 318:, 310:, 287:. 249:ft 2014:) 2004:) 1905:) 1901:( 1895:) 1891:( 1874:) 1864:) 1854:) 1844:) 1834:) 1824:) 1806:) 1802:( 1796:) 1792:( 1786:) 1776:) 1766:) 1756:) 1752:( 1746:) 1736:) 1726:) 1716:) 1706:) 1696:) 1672:) 1662:) 1652:) 1642:) 1632:) 1622:) 1530:) 1526:( 1464:) 1446:) 1424:) 1420:( 1397:) 1393:( 1387:) 1383:( 1377:) 1348:e 1341:t 1334:v 1270:. 1256:: 1248:: 1219:. 1189:. 1185:: 1166:. 1149:. 1137:: 1129:: 1119:: 1093:. 1081:: 1073:: 1063:: 1037:. 1013:: 1005:: 976:. 970:: 962:: 933:. 929:: 903:. 897:: 882:. 870:: 862:: 852:: 744:n 730:) 727:n 718:n 715:( 712:O 692:) 687:2 683:n 679:( 676:O 519:z 235:( 224:] 127:)

Index

Edit this at Wikidata
Edit this at Wikidata
30°43′16″S 21°24′40″E / 30.7211°S 21.4111°E / -30.7211; 21.4111
Edit this at Wikidata
University of KwaZulu-Natal
Edit this on Wikidata
Wavelength
Edit this at Wikidata
parabolic reflector
radio telescope
Edit this on Wikidata
Edit this on Wikidata
Edit this at Wikidata
Hydrogen Intensity and Real-time Analysis eXperiment is located in South Africa
edit on Wikidata
interferometric
meter
ft
radio telescopes
MHz
Square Kilometer Array
Karoo
South Africa
hydrogen line
baryon acoustic oscillations
dark energy
dark matter
University of KwaZulu-Natal
Durban University of Technology
African Institute for Mathematical Sciences

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.