Knowledge (XXG)

Hydrothermal vent microbial communities

Source 📝

110:
the vents are expelled and mixed with the surrounding water. These hyperthermophilic microbes are thought to contain proteins that have extended stability at higher temperatures due to intramolecular interactions but the exact mechanisms are not clear yet. The stabilization mechanisms for DNA are not as unknown and the denaturation of DNA are thought to be minimized through high salt concentrations, more specifically Mg, K, and PO4 which are highly concentrated in hyperthermophiles. Along with this, many of the microbes have proteins similar to histones that are bound to the DNA and can offer protection against the high temperatures. Microbes are also found to be in symbiotic relationships with other organisms in the hydrothermal vent environment due to their ability to have a detoxification mechanism which allows them to metabolize the sulfide-rich waters which would otherwise be toxic to the organisms and the microbes.
62:
water accumulates dissolved minerals and chemicals from the rocks that it encounters. There are generally three kinds of vents that occur and are all characterized by its temperature and chemical composition. Diffuse vents release clear water typically up to 30 °C. White smoker vents emit a milky-coloured water between 200-330 °C, and black smoker vents generally release water hotter than the other vents between 300-400 °C. The waters from black smokers are darkened by the precipitates of sulfide that are accumulated. Due to the absence of sunlight at these ocean depths, energy is provided by
76: 768: 570: 124: 3772: 20: 1517: 1421: 87:, the temperatures underneath the thermocline and the waters near the deep sea are relatively constant. No changes are caused by seasonal effects or annual changes. These temperatures stay in the range of 0–3 °C with the exception of the waters immediately surrounding the hydrothermal vents, which can get as high as 407 °C. These waters are prevented from boiling due to the high pressure at those depths. 4339: 907:
energy sources; different temperature vents have different concentrations of nutrients, suggesting large variation between vents. In general, large microbial populations are found in warm vent water plumes (25 °C), the surfaces exposed to warm vent plumes and in symbiotic tissues within certain vent invertebrates in the vicinity of the vent.
1561:) that are able to enhance the sulfur oxidation metabolism in their hosts could provide selective advantages to viruses (continued infection and replication). The similarity in viral and SUP05 genes for the sulfur metabolism implies an exchange of genes in the past and could implicate the viruses as agents of evolution. 1521:
prophage. 5. The prophage then remains dormant until the host cell divides. 6. After the host cell has duplicated, the phage DNA in the daughter cells activate, and the phage DNA begins to express itself. Some of the cells containing the prophage go on to create new phages which will move on to infect other cells.
923:) in the presence of oxygen. They are the predominant population in the majority of hydrothermal vents because their source of energy is widely available, and chemosynthesis rates increase in aerobic conditions. The bacteria at hydrothermal vents are similar to the types of sulfur bacteria found in other H 1047:
These bacteria are commonly found in iron and manganese deposits on surfaces exposed intermittently to plumes of hydrothermal and bottom seawater. However, due to the rapid oxidation of Fe in neutral and alkaline waters (i.e. freshwater and seawater), bacteria responsible for the oxidative deposition
109:
Extreme conditions in the hydrothermal vent environment mean that microbial communities that inhabit these areas need to adapt to them. Microbes that live here are known to be hyperthermophiles, microorganisms that grow at temperatures above 90 °C. These organisms are found where the fluids from
1520:
Lysogenic Cycle: 1. The prokaryotic cell is shown with its DNA, in green. 2. The bacteriophage attaches and releases its DNA, shown in red, into the prokaryotic cell. 3. The phage DNA then moves through the cell to the host's DNA. 4. The phage DNA integrates itself into the host cell's DNA, creating
1466:
had viral abundances from 1.45×10 to 9.90×10 per mL, with a drop-off in abundance found in the hydrothermal-vent plume (3.5×10 per mL) and outside the venting system (2.94×10 per mL). The high density of viruses and therefore of viral production (in comparison to surrounding deep-sea waters) implies
1577:
rather than free floating viruses and that the auxiliary genes can be expressed to benefit both the host and the integrated virus. The viruses enhance fitness by boosting metabolism or offering greater metabolic flexibility to their hosts. The evidence suggests that deep-sea hydrothermal vent viral
179:
processes. For example, some microbe species oxidize sulfide to sulfate and another species will reduce sulfate to elemental sulfur. As a result, a web of chemical pathways mediated by different microbial species transform elements such as carbon, sulfur, nitrogen, and hydrogen, from one species to
1478:
However, in contrast to their role as a source of mortality and population control, viruses have also been postulated to enhance survival of prokaryotes in extreme environments, acting as reservoirs of genetic information. The interactions of the virosphere with microorganisms under environmental
906:
The most abundant bacteria in hydrothermal vents are chemolithotrophs. These bacteria use reduced chemical species, most often sulfur, as sources of energy to reduce carbon dioxide to organic carbon. The chemolithotrophic abundance in a hydrothermal vent environment is determined by the available
453:
which can originate from both geological and biological processes. Methane concentrations in hydrothermal vent plumes can exceed 300μM in concentration depending on the vent. In comparison, the vent fluid contains 10 – 10 times more methane than the surrounding deep ocean water, of which methane
61:
Hydrothermal vents are located where the tectonic plates are moving apart and spreading. This allows water from the ocean to enter into the crust of the earth where it is heated by the magma. The increasing pressure and temperature forces the water back out of these openings, on the way out, the
1529:
One study of virus-host interactions in diffuse-flow hydrothermal vent environments found that the high incidence of lysogenic hosts and large populations of temperate viruses was unique in its magnitude and that these viruses are likely critical to the systems' ecology of prokaryotes. The same
57:
relationship with animals. Chemolithoautotrophic bacteria derive nutrients and energy from the geological activity at Hydrothermal vents to fix carbon into organic forms. Viruses are also a part of the hydrothermal vent microbial community and their influence on the microbial ecology in these
481:
Energy generation via methane oxidation yields the next best source of energy after sulfur oxidation. It has been suggested that microbial oxidation facilitates rapid turnover at hydrothermal vents, thus much of the methane is oxidize within short distance of the vent. In hydrothermal vent
66:
where symbiotic bacteria and archaea form the bottom of the food chain and are able to support a variety of organisms such as Riftia pachyptila and Alvinella pompejana. These organisms use this symbiotic relationship in order to use and obtain the chemical energy that is released at these
1096:
of these animals are specified organs for symbionts that contains valuable molecules for chemosynthesis. These organisms have become so reliant on their symbionts that they have lost all morphological features relating to ingestion and digestion, though the bacteria are provided with
1712:
Kádár E, Costa V, Santos RS, Powell JJ (July 2006). "Tissue partitioning of micro-essential metals in the vent bivalve Bathymodiolus azoricus and associated organisms (endosymbiont bacteria and a parasite polychaete) from geochemically distinct vents of the Mid-Atlantic Ridge".
241:
is the incorporation of inorganic carbon into organic matter. Unlike the surface of the planet where light is a major source of energy for carbon fixation, hydrothermal vent chemolithotrophic bacteria rely on chemical oxidation to obtain the energy required. Fixation of
100:
Although there is very little light in the hydrothermal vent environment, photosynthetic organisms have been found. However, the energy that the majority of organisms use comes from chemosynthesis. The organisms use the minerals and chemicals that come out of the vents.
794:
is the dominant species of dissolved inorganic nitrogen, and can be produced by water mass mixing below hydrothermal vents and discharged in vent fluids. Quantities of available ammonium vary between vents depending on the geological activity and microbial composition.
661:
and dissimilatory oxidation. The Sox pathway is a multi enzyme pathway capable of oxidizing sulfide, sulfite, elemental sulfur, and thiosulfate to sulfate. Dissimilatory oxidation converts sulfite to elemental sulfur. Sulfur oxidizing species include and the genera of
1525:
A review of viral work at hydrothermal vents published in 2015 stated that vents harbour a significant proportion of lysogenic hosts and that a large proportion of viruses are temperate, indicating that the vent environments may provide an advantage to the prophage.
1438:
are the most abundant life in the ocean, harboring the greatest reservoir of genetic diversity. As their infections are often fatal, they constitute a significant source of mortality and thus have widespread influence on biological oceanographic processes,
1121:
To illustrate the incredible diversity of hydrothermal vents, the list below is a cumulative representation of bacterial phyla and genera, in alphabetical order. As shown, proteobacteria appears to be the most dominant phyla present in deep-sea vents.
494:
as these are most plentiful at hydrothermal vents. AOM is found to be prevalent in marine sediments at hydrothermal vents and may be responsible for consuming 75% of methane produced by the vent. Species that perform AOM include Archaea of
468:
lineages. Methanotrophs convert methane into carbon dioxide and organic carbon. They are typically characterized by the presence of intercellular membranes and microbes with intercellular membranes were observed to make up 20% of the
266:
for carbon fixation found in microbial vent communities include the Calvin–Benson–Bassham (CBB) cycle, reductive tricarboxylic acid (rTCA) cycle, 3-hydroxypropionate (3-HP) cycle and reductive acetyl coenzyme A (acetyl-CoA) pathway.
951:
Methane is a substantial source of energy in certain hydrothermal vents, but not others: methane is more abundant in warm vents (25 °C) than hydrogen. Many types of methanotrophic bacteria exist, which require oxygen and fix
1048:
of iron would be more commonly found in acidic waters. Manganese-oxidizing bacteria would be more abundant in freshwater and seawater compared to iron-oxidizing bacteria due to the higher concentration of available metal.
1552:
An example of this was associated with the sulfur-consuming bacterium SUP05. A study found that 15 of 18 viral genomes sequenced from samples of vent plumes contained genes closely related to an enzyme that the SUP05
2509:
Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR (October 2012). "Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction".
1572:
genes, indicating that viral genomes encode auxiliary metabolic genes. Coupled with the observations of a high proportion of lysogenic viruses, this indicates that viruses are selected to be integrated
814:
data suggests that microorganisms influence dissolved inorganic nitrogen quantities and compositions, and all pathways of the nitrogen cycle are likely to be found at hydrothermal vents. Biological
818:
is important to provide some of the biologically available nitrogen to the nitrogen cycle, especially at unsedimented hydrothermal vents. Nitrogen is fixed by many different microbes including
3474:
Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR, Winget D, Wommack KE (November 2008). "Lysogenic virus-host interactions predominate at deep-sea diffuse-flow hydrothermal vents".
1513:) which can therefore allow hosts to cope with different environments. Benefits to the host population can also be conferred by expression of phage-encoded fitness-enhancing phenotypes. 2411:
Cerqueira T, Barroso C, Froufe H, Egas C, Bettencourt R (August 2018). "Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields".
1467:
that viruses are a significant source of microbial mortality at the vents. As in other marine environments, deep-sea hydrothermal viruses affect the abundance and diversity of
90:
With increasing depth, the high pressure begins to take effect. The pressure increases by about 10 megapascals (MPa) for every kilometre of vertical distance. This means that
3980: 2211:
Dunk RM, Peltzer ET, Walz PM, Brewer PG (December 2005). "Seeing a deep ocean CO2 enrichment experiment in a new light: laser raman detection of dissolved CO2 in seawater".
2933:"Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation" 616:. Sulfide is plentiful at Hydrothermal Vents, with concentrations from one to tens of mM, whereas the surrounding ocean water usually only contains a few nano molars. 1509:
life-cycle can persist stably for thousands of generations of infected bacteria and the viruses can alter the host's phenotype by enabling genes (a process known as
4363: 1814:
Jebbar M, Franzetti B, Girard E, Oger P (July 2015). "Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes".
226:
using energy from sources such as oxidation of sulfur, iron, manganese, hydrogen and methane. These bacteria supply a large portion of organic carbon that support
2892:"Subseafloor nitrogen transformations in diffuse hydrothermal vent fluids of the Juan de Fuca Ridge evidenced by the isotopic composition of nitrate and ammonium" 1538:
to sequenced data), with high diversity across vent environments but lower diversity for specific vent sites, which indicates high specificity for viral targets.
738:
areas of the hydrothermal vent, thus are one of the predominant processes that occur within the sediments. Species that reduce sulfate have been identified in
1549:, participating in metabolic pathways as well as forming branched pathways in microbial metabolism which facilitated adaptation to the extreme environment. 1980:
Kletzin A, Urich T, Müller F, Bandeiras TM, Gomes CM (February 2004). "Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea".
877: 771:
Processes of the nitrogen cycle relevant to microbial communities at hydrothermal vents, including names of pyla/genera. Adapted from Gruber et al. (2008)
3264:
Ortmann AC, Suttle CA (August 2005). "High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality".
4319: 4309: 1491:
of infections going on in the ocean, and every one of those interactions can result in the transfer of genetic information between virus and host." —
3696: 454:
ranges between 0.2-0.3nM in concentration. Microbial communities use the high concentrations of methane as an energy source and a source of carbon.
1012:
Little is known about microbes that use hydrogen as a source of energy, however, studies have shown that they are aerobic, and also symbiotic with
396:
cycles are acetyl-CoA/propionyl-CoA carboxylase, malonyl-CoA reductase and propionyl-CoA synthase. Most of the organisms that use this pathway are
4095: 127:
A diagram showing the process of how seawater becomes a part of the hydrothermal effluent including the elements that are added and precipitated.
844:
microbes have been found to be able to fix nitrogen at higher temperatures such as 92 °C. Nitrogen fixation may be especially prevalent in
3533: 2049: 1480: 4116: 1396:
Microbial communities inhabiting deep-sea hydrothermal vent chimneys appear to be highly enriched in genes that encode enzymes employed in
852:
where biologically available levels of nitrogen are low, due to high microbe density and anaerobic environment which allow the function of
1581:
As hydrothermal vents outlets for sub-seafloor material, there is also likely a connection between vent viruses and those in the crust.
180:
another. Their activity alters the original chemical composition produced by geological activity of the hydrothermal vent environment.
4304: 3598:
Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ (May 2014). "Sulfur oxidation genes in diverse deep-sea viruses".
3404: 131:
Microbial communities at hydrothermal vents mediate the transformation of energy and minerals produced by geological activity into
4131: 4111: 1771: 1409: 2661:"Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents" 3058:"Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries" 3014:"Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent" 1605: 711: 2826:"Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge" 731: 487: 1458:
Deep-sea hydrothermal vents were found to have large numbers of viruses, indicating high viral production. Samples from the
1067:
is an important process for hydrothermal vent communities. At warm vents, common symbionts for bacteria are deep-sea clams,
83:
Although there is a large variation in temperatures at the surface of the water with the seasonal changes in depths of the
4215: 4080: 3771: 994: 655: 625: 1578:
evolutionary strategies promote prolonged host integration, favoring a form of mutualism rather than classic parasitism.
1016:(see below). These bacteria are important in the primary production of organic carbon because the geothermally-produced H 3813: 3689: 3204:"Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics" 1459: 1447:
within the ocean. Evidence has been found, however, to indicate that viruses found in vent habitats have adopted a more
1428: 4156: 344:
is the second most commonly found carbon fixation pathway at hydrothermal vents. rTCA cycle is essentially a reversed
281: 409: 4186: 4075: 3901: 3873: 1332: 1310: 1187: 1076: 426: 1558: 1325: 1247: 881: 752: 1346: 4205: 3916: 1401: 873: 664: 352:
zones in the hydrothermal vent system because some enzymes in the rTCA cycle are sensitive to the presence of O
2760:"Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents" 1339: 218:
around 2.2mM. The bountiful carbon and electron acceptors produced by geological activity support an oasis of
573:
The sulfur cycle processes relevant to hydrothermal vent microbial communities with examples of phyla/genera.
4342: 4256: 4251: 4146: 4060: 3808: 3682: 2599:"Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem" 1772:"Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge" 1569: 1361: 1020:
is taken up for this process. Hydrogen-oxidizing and denitrifying bacteria may be abundant in vents where NO
767: 458:, where a species uses methane both as an energy and carbon source, have been observed with the presence of 75: 4297: 4241: 3798: 3788: 1226: 609: 413: 2550:"Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments" 538:
are found to grow in Hydrothermal vent plumes at temperatures between 55 °C to 80 °C. However,
4368: 4287: 4231: 4136: 4035: 3911: 3844: 2193: 1069: 857: 569: 393: 2457:
Martin W, Baross J, Kelley D, Russell MJ (November 2008). "Hydrothermal vents and the origin of life".
2032:
Sievert SM, Hügler M, Taylor CD, Wirsen CO (2008). "Sulfur Oxidation at Deep-Sea Hydrothermal Vents".
97:
Salinity remains relatively constant within the deep seas around the world, at 35 parts per thousand.
4193: 3906: 3803: 3607: 3361: 3308: 3273: 3215: 3114: 2903: 2837: 2723: 2610: 2272: 2220: 2125: 1929: 1870: 1786: 1722: 1686: 1590: 1510: 1479:
stresses is therefore thought to aide microorganism survival through dispersal of host genes through
676: 634:
S produced by the hydrothermal vents are a major source of energy for sulfur metabolism in microbes.
2931:
Skennerton CT, Ward LM, Michel A, Metcalfe K, Valiente C, Mullin S, et al. (23 December 2015).
1455:
evolutionary strategy in order to survive the extreme and volatile environment in which they exist.
1269: 734:(AOM) often use sulfate as electron acceptor. This method is favoured by organisms living in highly 210:
is also a large reservoir of carbon and concentration of carbon dioxide species such as dissolved CO
4009: 3551:"Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions" 1554: 1448: 1397: 1375: 1255: 1220: 1088: 743: 715: 693: 651: 556: 459: 357: 341: 314: 255: 247: 195: 123: 1677:
Lutz RA, Kennish MJ (August 1993). "Ecology of deep-sea hydrothermal vent communities: A review".
1113:
which indicate that methane assimilation may take place within the trophosome of these organisms.
4246: 4210: 4198: 4045: 3931: 3861: 3849: 3839: 3793: 3641: 3499: 3385: 3351: 3181: 3138: 2482: 2436: 2157: 2141: 2005: 1839: 1535: 1305: 1234: 836: 824: 756: 552: 309: 3660: 2259:
Ver Eecke HC, Butterfield DA, Huber JA, Lilley MD, Olson EJ, Roe KK, et al. (August 2012).
1752: 1564:
Another metagenomic study found that viral genes had relatively high proportions of metabolism,
810:
in hydrothermal vent microbial communities still requires more comprehensive research. However,
45:
includes all unicellular organisms that live and reproduce in a chemically distinct area around
19: 3012:
Audiffrin C, Cayol JL, Joulian C, Casalot L, Thomas P, Garcia JL, Ollivier B (September 2003).
1353: 348:
heterotrophs use to oxidize organic matter. Organism that use the rTCA cycle prefer to inhabit
4171: 4121: 4014: 3953: 3921: 3883: 3866: 3633: 3580: 3529: 3521: 3491: 3453: 3377: 3324: 3243: 3173: 3130: 3087: 3035: 2985: 2964: 2863: 2789: 2692: 2636: 2579: 2527: 2474: 2428: 2364: 2300: 2236: 2149: 2045: 1997: 1957: 1898: 1857:
Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, et al. (June 2005).
1831: 1770:
Haase KM, Petersen S, Koschinsky A, Seifert R, Devey CW, Keir R, et al. (November 2007).
1659: 1488: 1444: 1215: 1082: 974: 894: 815: 491: 345: 263: 46: 30: 646:, and elemental sulfur is used to produce energy for microbe metabolism such as synthesis of 4141: 4065: 3999: 3854: 3623: 3615: 3570: 3562: 3483: 3443: 3435: 3369: 3316: 3281: 3233: 3223: 3165: 3122: 3077: 3069: 3025: 2954: 2944: 2911: 2853: 2845: 2779: 2771: 2731: 2682: 2672: 2659:
Topçuoğlu BD, Stewart LC, Morrison HG, Butterfield DA, Huber JA, Holden JF (5 August 2016).
2626: 2618: 2569: 2561: 2519: 2466: 2420: 2354: 2290: 2280: 2228: 2133: 2037: 1989: 1947: 1937: 1888: 1878: 1823: 1794: 1730: 1694: 1649: 1639: 1492: 1319: 1283: 1276: 1168: 1000: 978:
trophosome, indicating a symbiotic relationship. Here, methane-oxidizing bacteria refers to
849: 699: 668: 647: 613: 464: 362: 251: 207: 172: 4166: 4050: 4004: 3896: 1557:
use to extract energy from sulfur compounds. The authors concluded that such phage genes (
1516: 1506: 1498: 1173: 1137: 865: 830: 380: 238: 203: 143:. The hydrothermal vent fluid and the surrounding ocean water is rich in elements such as 3320: 2261:"Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents" 1993: 3611: 3365: 3312: 3277: 3219: 3118: 2907: 2841: 2727: 2614: 2548:
Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A (May 2012).
2276: 2224: 2129: 1933: 1874: 1790: 1726: 1690: 1004:
are methanotrophs, which have been discovered in hydrothermal vent communities as well.
803:
concentrations are depleted in hydrothermal vents compared to the surrounding seawater.
4282: 4277: 4236: 4161: 4040: 3975: 3936: 3926: 3575: 3550: 3448: 3423: 3238: 3203: 3082: 3057: 2959: 2932: 2784: 2759: 2687: 2660: 2631: 2598: 2574: 2549: 2295: 2260: 2116:
Jannasch HW, Mottl MJ (August 1985). "Geomicrobiology of deep-sea hydrothermal vents".
1893: 1858: 1654: 1627: 1420: 1382: 1262: 1210: 1126: 1064: 1029: 807: 781: 760: 727: 523: 500: 132: 63: 23: 2858: 2825: 4357: 4181: 4126: 4090: 3948: 3741: 3731: 3713: 3705: 2523: 2359: 2342: 1952: 1917: 1600: 1463: 1368: 1151: 988: 861: 845: 748: 735: 589: 562: 550:
availability. Genera of thermophilic methanogens found at hydrothermal vents include
470: 349: 140: 50: 26: 3503: 3389: 2343:"Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance" 2161: 2009: 1843: 4292: 4019: 3780: 3185: 3156:
Suttle CA (October 2007). "Marine viruses--major players in the global ecosystem".
3142: 2486: 2440: 1859:"An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent" 1531: 1424: 1240: 1178: 979: 683: 583: 510: 483: 455: 317: 189: 91: 54: 3645: 2849: 3228: 2190:
Studies of microbial methane oxidation in deep sea hydrothermal vent environments
2137: 2041: 1734: 1404:. This finding suggests that these microbial communities have evolved extensive 4324: 4085: 3941: 2712:"Distribution and behavior of dissolved hydrogen sulfide in hydrothermal plumes" 2197: 1628:"Is the genetic landscape of the deep subsurface biosphere affected by viruses?" 1595: 1202: 853: 841: 790:
available to hydrothermal vents, with around 0.59 mM of dissolved nitrogen gas.
643: 535: 527: 227: 84: 2265:
Proceedings of the National Academy of Sciences of the United States of America
1922:
Proceedings of the National Academy of Sciences of the United States of America
1863:
Proceedings of the National Academy of Sciences of the United States of America
4176: 4055: 3963: 3958: 3746: 3285: 2736: 2424: 1827: 1546: 1468: 1452: 1405: 1160: 1131: 1093: 983: 819: 435: 412:
pathway has only been found in chemoautotrophs. This pathway does not require
368: 329: 219: 176: 34: 2949: 2711: 2677: 1644: 1032:
that reduces sulfur-compounds in warm vents and has been found in tube worms
206:
with methane concentration reaching 10 times of the surrounding ocean water.
4151: 3968: 3619: 3056:
Xie W, Wang F, Guo L, Chen Z, Sievert SM, Meng J, et al. (March 2011).
2710:
Radford-Knoery J, German CR, Charlou JL, Donval JP, Fouquet Y (March 2001).
2285: 1883: 1502: 1440: 1297: 1290: 1195: 1061: 688: 672: 539: 397: 321: 303: 148: 136: 3637: 3584: 3495: 3457: 3439: 3381: 3328: 3247: 3177: 3134: 3091: 3073: 3039: 2968: 2867: 2793: 2696: 2640: 2583: 2565: 2531: 2478: 2432: 2368: 2304: 2240: 2153: 2001: 1961: 1942: 1902: 1835: 1663: 972:
and CO, if present in vent water. These type of bacteria are also found in
3566: 3487: 3030: 3013: 2775: 943:
which is of particular importance because of its ability to fix nitrogen.
167:
from which they can derive energy or nutrients. Microbes derive energy by
4261: 3823: 3818: 3756: 3726: 2916: 2891: 2622: 1799: 1574: 998:
are examples methanogens, which are found in hydrothermal vents; whereas
791: 787: 719: 534:. Evidence of methanogenesis can be found alongside of AOM in sediments. 431: 325: 3169: 3126: 2470: 3891: 3751: 3721: 2890:
Bourbonnais A, Lehmann MF, Butterfield DA, Juniper SK (February 2012).
2145: 1565: 1462:
off the southwest coast of British Columbia showed that active venting
1143: 869: 811: 800: 796: 739: 723: 639: 601: 597: 531: 450: 400:
with the ability to use organic carbon in addition to carbon fixation.
374: 297: 293: 259: 199: 160: 156: 152: 3356: 2232: 1698: 654:. The major metabolic pathways used for sulfur oxidation includes the 3736: 3628: 1542: 1364:- sulfate-reducing, make up more than 25% of the bacterial community 605: 496: 289: 164: 3373: 79:
A cloud of effluent being violently expelled by a hydrothermal vent.
3342:
Goldenfeld N, Woese C (January 2007). "Biology's next revolution".
2758:
Frank KL, Rogers DR, Olins HC, Vidoudez C, Girguis PR (July 2013).
1105:. Additionally, methane-oxidizing bacteria have been isolated from 490:(AOM) is typically coupled to reduction of sulfate or Fe and Mn as 4314: 3761: 2980: 2978: 1515: 1472: 1435: 1419: 635: 588:
Microbial communities at hydrothermal vent convert sulfur such as
300:
has been identified in members of the microbial community such as
194:
Geological activity at hydrothermal vents produce an abundance of
168: 122: 74: 18: 3674: 3018:
International Journal of Systematic and Evolutionary Microbiology
2597:
Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (September 2006).
3299:
Breitbart M (15 January 2012). "Marine viruses: truth or dare".
144: 3678: 888:
species perform denitrification and reduce nitrate to oxidize H
856:, a nitrogen-fixing enzyme. Evidence has also been detected of 542:
methanogenesis performed by many thermophilic species require H
482:
communities, aerobic oxidation of methane is commonly found in
915:
These bacteria use various forms of available sulfur (S, S, S
892:
S. Nitrate assimilation is performed by symbiotic species of
3422:
Clokie MR, Millard AD, Letarov AV, Heaphy S (January 2011).
1024:-containing bottom seawater mixes with hydrothermal fluid. 420:. Organisms that have been found with this pathway prefer H 222:
microbial communities that fix inorganic carbon, such as CO
530:, from reaction of carbon dioxide or other compounds like 198:. Hydrothermal vent plumes contain high concentrations of 2885: 2883: 2881: 2879: 2877: 1501:(those not causing immediate lysis) can sometimes confer 1471:
and therefore impact microbial biogeochemical cycling by
596:
produced by geological activity into other forms such as
424:
rich areas. Species include deltaproteobacterium such as
3528:. Walter de Gruyter GmbH & Co KG. pp. 209–222. 1608:- system of generating energy used in hydrothermal vents 718:. Microbes that perform sulfate reduction typically use 546:
as an electron donor so microbial growth is limited by H
416:
as the pathway is directly coupled to the reduction of H
3266:
Deep Sea Research Part I: Oceanographic Research Papers
94:
can reach up to 110 MPa at the depths of the trenches.
3259: 3257: 2824:
Mehta MP, Butterfield DA, Baross JA (February 2003).
1541:
A metagenomic analysis of deep-sea hydrothermal vent
1530:
study's genetic analysis found that 51% of the viral
3515: 3513: 3405:"New viral way of life discovered in deep-sea vents" 292:
is ribulose-1,5-bisphosphate carboxylase/oxygenase (
171:
elements. Different microbial species use different
4270: 4224: 4104: 4028: 3992: 3882: 3832: 3779: 3712: 3202:Anderson RE, Sogin ML, Baross JA (3 October 2014). 786:Deep ocean water contains the largest reservoir of 3105:Suttle CA (September 2005). "Viruses in the sea". 2183: 2181: 2179: 2177: 2175: 2173: 2171: 1918:"Life in extreme environments: hydrothermal vents" 1916:Zierenberg RA, Adams MW, Arp AJ (November 2000). 288:fixation pathway found among autotrophs. The key 3661:"Viruses make zombies of deep sea vent bacteria" 2406: 2404: 2402: 2400: 2398: 2336: 2334: 2111: 2109: 2107: 2105: 2103: 2101: 2099: 2097: 2095: 2093: 2091: 2089: 2087: 2085: 2083: 2081: 3469: 3467: 3197: 3195: 3007: 3005: 2819: 2817: 2815: 2813: 2811: 2809: 2807: 2805: 2803: 2753: 2751: 2749: 2747: 2654: 2652: 2650: 2543: 2541: 2504: 2502: 2500: 2498: 2496: 2452: 2450: 2396: 2394: 2392: 2390: 2388: 2386: 2384: 2382: 2380: 2378: 2332: 2330: 2328: 2326: 2324: 2322: 2320: 2318: 2316: 2314: 2254: 2252: 2250: 2079: 2077: 2075: 2073: 2071: 2069: 2067: 2065: 2063: 2061: 638:of reduced sulfur compounds into forms such as 2027: 2025: 2023: 2021: 2019: 1975: 1973: 1971: 1545:showed that viral genes manipulated bacterial 449:Hydrothermal vents produce high quantities of 58:ecosystems is a burgeoning field of research. 3690: 1746: 1744: 1626:Anderson RE, Brazelton WJ, Baross JA (2011). 714:uses sulfate as an electron acceptor for the 8: 3526:Microbial Evolution under Extreme Conditions 878:dissimilatory nitrate reduction to ammonium 139:bacteria is then used to support the upper 3697: 3683: 3675: 3051: 3049: 4320:Physical factors affecting microbial life 4310:Microbially induced sedimentary structure 3627: 3574: 3447: 3355: 3237: 3227: 3081: 3029: 2958: 2948: 2915: 2857: 2783: 2735: 2686: 2676: 2630: 2573: 2358: 2294: 2284: 1982:Journal of Bioenergetics and Biomembranes 1951: 1941: 1892: 1882: 1798: 1653: 1643: 1505:that improve fitness in prokaryotes The 262:domain at hydrothermal vents. Four major 53:, free floating cells, or bacteria in an 766: 568: 151:and various species of sulfur including 4096:International Census of Marine Microbes 4071:Hydrothermal vent microbial communities 1618: 1416:Viruses and deep-sea hydrothermal vents 4364:Organisms living on hydrothermal vents 2830:Applied and Environmental Microbiology 2603:Applied and Environmental Microbiology 2213:Environmental Science & Technology 1408:capabilities to cope with the extreme 342:Reductive Carboxylic Acid Cycle (rTCA) 336:Reductive carboxylic acid cycle (rTCA) 3520:Culley AI, Shakya M, Lang AS (2015). 43:hydrothermal vent microbial community 7: 4117:Microbiomes of the built environment 3321:10.1146/annurev-marine-120709-142805 2896:Geochemistry, Geophysics, Geosystems 1779:Geochemistry, Geophysics, Geosystems 4305:Lines on the Antiquity of Microbes 2986:"Hydrothermal vents - microbewiki" 1994:10.1023/b:jobb.0000019600.36757.8c 630:Reduced sulfur compounds such as H 271:Carbon fixation metabolic pathways 14: 3549:He T, Li H, Zhang X (July 2017). 2341:Nakagawa S, Takai K (July 2008). 276:Calvin–Benson–Bassham cycle (CBB) 49:. These include organisms in the 4338: 4337: 4132:Microbial symbiosis and immunity 3770: 2524:10.1111/j.1462-2920.2012.02825.x 2360:10.1111/j.1574-6941.2008.00502.x 1534:sequences were unknown (lacking 1427:in the High Rise portion of the 356:It is found in sulfate reducing 3561:(4): mBio.00893–17, e00893–17. 3522:"Viral evolution at the limits" 3301:Annual Review of Marine Science 1606:Hydrogen sulfide chemosynthesis 1751:Bergman J (16 February 2011). 1487:Each second, "there's roughly 732:Anaerobic oxidation of methane 522:Production of methane through 488:Anaerobic oxidation of methane 16:Undersea unicellular organisms 1: 4216:Synthetic microbial consortia 4081:Microbial oxidation of sulfur 3981:Host microbe interactions in 3403:Callaway E (21 August 2008). 2850:10.1128/aem.69.2.960-970.2003 1080:and pogonophoran tube worms, 1043:Iron- and manganese-oxidizing 995:Methanocaldococcus jannaschii 927:S-rich environments - except 626:Microbial oxidation of sulfur 135:. Organic matter produced by 3814:Microbial population biology 3229:10.1371/journal.pone.0109696 3158:Nature Reviews. Microbiology 2459:Nature Reviews. Microbiology 2138:10.1126/science.229.4715.717 2042:10.1007/978-3-540-72682-1_19 1753:"Temperature of Ocean Water" 1735:10.1016/j.seares.2006.01.002 1460:Endeavour Hydrothermal Vents 1429:Endeavour Hydrothermal Vents 982:, which are not the same as 427:Dulfobacterium autotrophicum 404:Reductive acetyl CoA pathway 230:life at hydrothermal vents. 2034:Microbial Sulfur Metabolism 1248:Sideroxydans lithotrophicus 1077:Bathyomodiolus thermophilus 526:can be from degradation of 492:terminal electron acceptors 284:cycle is the most common CO 282:Calvin-Benson-Bassham (CBB) 4385: 4076:Marine microbial symbiosis 3902:Kill the Winner hypothesis 3874:Bacteria collective motion 2716:Limnology and Oceanography 2512:Environmental Microbiology 1475:their hosts to replicate. 1347:Hydrogenimonas thermophila 1333:Sulfurimonas paralvinellae 1311:Mariprofundus ferrooxydans 1188:Leptospirillum ferriphilum 1026:Desulfonauticus submarinus 779: 623: 581: 486:microbes of vent animals. 246:is observed in members of 187: 4333: 4112:Microbes in human culture 3768: 3286:10.1016/j.dsr.2005.04.002 2937:Frontiers in Microbiology 2737:10.4319/lo.2001.46.2.0461 2665:Frontiers in Microbiology 2425:10.1007/s00248-018-1144-x 2347:FEMS Microbiology Ecology 1828:10.1007/s00792-015-0760-3 1632:Frontiers in Microbiology 1559:auxiliary metabolic genes 1326:Sulfurovum lithotrophicum 935:Other common species are 882:sulfur oxidizing bacteria 703:can also oxidize sulfur. 388:3-HP and 3-HP/4-HB cycles 114:Microbial biogeochemistry 67:hydrothermal vent areas. 4206:Human Microbiome Project 3917:Microbial biodegradation 3524:. In Bakermans C (ed.). 2950:10.3389/fmicb.2015.01425 2678:10.3389/fmicb.2016.01240 1645:10.3389/fmicb.2011.00219 1481:Horizontal Gene Transfer 1402:homologous recombination 1340:Nitratifactor salsuginis 726:or organic matter as an 536:Thermophilic methanogens 360:such as some members of 71:Environmental properties 29:at the junction between 4257:Microbiological culture 4252:Microbial DNA barcoding 4061:Antarctic microorganism 3809:Microbial phylogenetics 3620:10.1126/science.1252229 2286:10.1073/pnas.1206632109 1884:10.1073/pnas.0503674102 1757:Windows to the Universe 1715:Journal of Sea Research 1410:DNA damaging conditions 1362:Thermodesulfobacteriota 1057:Symbiotic relationships 968:compounds, including CO 764:at hydrothermal vents. 473:at hydrothermal vents. 175:of an element in their 4242:Impedance microbiology 3983:Caenorhabditis elegans 3799:Microbial intelligence 3789:Microbial biogeography 3440:10.4161/bact.1.1.14942 3074:10.1038/ismej.2010.144 2990:microbewiki.kenyon.edu 2566:10.1038/ismej.2011.164 2188:de Angelis MA (1989). 1943:10.1073/pnas.210395997 1522: 1496: 1445:biogeochemical cycling 1432: 772: 716:assimilation of sulfur 574: 128: 80: 38: 4288:Microbial dark matter 4232:Dark-field microscopy 4036:Marine microorganisms 3912:Microbial cooperation 3659:Wall T (2 May 2014). 3567:10.1128/mBio.00893-17 3488:10.1038/ismej.2008.73 3031:10.1099/ijs.0.02551-0 2776:10.1038/ismej.2013.17 1679:Reviews of Geophysics 1519: 1485: 1423: 1412:in which they exist. 1070:Calpytogena magnifica 770: 691:species of the class 572: 169:oxidizing or reducing 126: 78: 22: 3907:Microbial consortium 3804:Microbial metabolism 2917:10.1029/2011gc003863 2623:10.1128/AEM.00574-06 2036:. pp. 238–258. 1800:10.1029/2006gc001509 1591:Marine microorganism 1555:chemolithoautotrophs 1511:lysogenic conversion 1038:Alvinella pompejana. 850:particulate material 410:Reductive Acetyl CoA 358:deltaproteobacterium 315:gammaproteobacterial 92:hydrostatic pressure 4010:Seagrass microbiome 3612:2014Sci...344..757A 3366:2007Natur.445..369G 3313:2012ARMS....4..425B 3278:2005DSRI...52.1515O 3220:2014PLoSO...9j9696A 3170:10.1038/nrmicro1750 3127:10.1038/nature04160 3119:2005Natur.437..356S 3024:(Pt 5): 1585–1590. 2908:2012GGG....13.2T01B 2842:2003ApEnM..69..960M 2728:2001LimOc..46..461R 2615:2006ApEnM..72.6257B 2471:10.1038/nrmicro1991 2277:2012PNAS..10913674V 2271:(34): 13674–13679. 2225:2005EnST...39.9630D 2130:1985Sci...229..717J 1934:2000PNAS...9712961Z 1928:(24): 12961–12962. 1875:2005PNAS..102.9306B 1791:2007GGG.....811002H 1727:2006JSR....56...45K 1691:1993RvGeo..31..211L 1398:DNA mismatch repair 1256:Gammaproteobacteria 1221:Alphaproteobacteria 1089:Alvinella pompejana 902:Bacterial diversity 744:Deltaproteobacteria 694:Gammaproteobacteria 557:Methanothermococcus 460:gammaproteobacteria 392:The key enzymes of 310:zetaproteobacterium 256:Alphaproteobacteria 248:Gammaproteobacteria 4247:Microbial cytology 4211:Protein production 4046:Marine prokaryotes 3932:Microbial food web 3862:Protist locomotion 3840:Bacterial motility 3794:Microbial genetics 3424:"Phages in nature" 1523: 1433: 1306:Zetaproteobacteria 1258:- major symbionts 1235:Betaproteobacteria 1008:Hydrogen-oxidizing 837:Methanobacteriales 825:Methanomicrobiales 773: 575: 553:Methanocaldococcus 445:Methane metabolism 394:3-HP and 3-HP/4-HB 264:metabolic pathways 129: 81: 47:hydrothermal vents 39: 4351: 4350: 4122:Food microbiology 4015:Soil microbiology 3954:Microbial synergy 3922:Microbial ecology 3606:(6185): 757–760. 3535:978-3-11-038964-7 3482:(11): 1112–1121. 3113:(7057): 356–361. 2518:(10): 2726–2740. 2413:Microbial Ecology 2233:10.1021/es0511725 2219:(24): 9630–9636. 2124:(4715): 717–725. 2051:978-3-540-72679-1 1869:(26): 9306–9310. 1699:10.1029/93rg01280 1489:Avogadro's number 1216:Acidithiobacillia 1083:Riftia pachyptila 947:Methane-oxidizing 895:Riftia pachyptila 816:nitrogen fixation 806:The study of the 648:organic compounds 614:organic molecules 477:Methane oxidation 346:TCA or Kreb cycle 258:, and members of 31:hydrothermal vent 4376: 4341: 4340: 4142:Human microbiome 4066:Coral microbiome 4000:Plant microbiome 3774: 3699: 3692: 3685: 3676: 3669: 3668: 3656: 3650: 3649: 3631: 3595: 3589: 3588: 3578: 3546: 3540: 3539: 3517: 3508: 3507: 3476:The ISME Journal 3471: 3462: 3461: 3451: 3419: 3413: 3412: 3400: 3394: 3393: 3359: 3339: 3333: 3332: 3296: 3290: 3289: 3272:(8): 1515–1527. 3261: 3252: 3251: 3241: 3231: 3199: 3190: 3189: 3153: 3147: 3146: 3102: 3096: 3095: 3085: 3062:The ISME Journal 3053: 3044: 3043: 3033: 3009: 3000: 2999: 2997: 2996: 2982: 2973: 2972: 2962: 2952: 2928: 2922: 2921: 2919: 2887: 2872: 2871: 2861: 2821: 2798: 2797: 2787: 2770:(7): 1391–1401. 2764:The ISME Journal 2755: 2742: 2741: 2739: 2707: 2701: 2700: 2690: 2680: 2656: 2645: 2644: 2634: 2609:(9): 6257–6270. 2594: 2588: 2587: 2577: 2560:(5): 1018–1031. 2554:The ISME Journal 2545: 2536: 2535: 2506: 2491: 2490: 2454: 2445: 2444: 2408: 2373: 2372: 2362: 2338: 2309: 2308: 2298: 2288: 2256: 2245: 2244: 2208: 2202: 2201: 2185: 2166: 2165: 2113: 2056: 2055: 2029: 2014: 2013: 1977: 1966: 1965: 1955: 1945: 1913: 1907: 1906: 1896: 1886: 1854: 1848: 1847: 1811: 1805: 1804: 1802: 1776: 1767: 1761: 1760: 1748: 1739: 1738: 1709: 1703: 1702: 1674: 1668: 1667: 1657: 1647: 1623: 1499:Temperate phages 1320:Campylobacterota 1284:Methylococcaceae 1277:Thioalkalivibrio 1169:Deferribacterota 1117:Phyla and genera 1074:mussels such as 1001:Methylocystaceae 911:Sulfur-oxidizing 712:Sulfur reduction 707:Sulfur reduction 700:Campylobacterota 669:Halothiobacillus 652:inorganic carbon 620:Sulfur oxidation 606:elemental sulfur 465:Methylococcaceae 302:Thiomicrospira, 252:Campylobacterota 220:chemoautotrophic 208:Deep ocean water 196:carbon compounds 173:chemical species 165:elemental sulfur 133:organic material 4384: 4383: 4379: 4378: 4377: 4375: 4374: 4373: 4354: 4353: 4352: 4347: 4329: 4266: 4220: 4100: 4051:Marine protists 4024: 4005:Root microbiome 3988: 3897:Biological pump 3878: 3828: 3775: 3766: 3708: 3703: 3673: 3672: 3658: 3657: 3653: 3597: 3596: 3592: 3548: 3547: 3543: 3536: 3519: 3518: 3511: 3473: 3472: 3465: 3421: 3420: 3416: 3402: 3401: 3397: 3374:10.1038/445369a 3341: 3340: 3336: 3298: 3297: 3293: 3263: 3262: 3255: 3214:(10): e109696. 3201: 3200: 3193: 3164:(10): 801–812. 3155: 3154: 3150: 3104: 3103: 3099: 3055: 3054: 3047: 3011: 3010: 3003: 2994: 2992: 2984: 2983: 2976: 2930: 2929: 2925: 2889: 2888: 2875: 2823: 2822: 2801: 2757: 2756: 2745: 2709: 2708: 2704: 2658: 2657: 2648: 2596: 2595: 2591: 2547: 2546: 2539: 2508: 2507: 2494: 2465:(11): 805–814. 2456: 2455: 2448: 2410: 2409: 2376: 2340: 2339: 2312: 2258: 2257: 2248: 2210: 2209: 2205: 2187: 2186: 2169: 2115: 2114: 2059: 2052: 2031: 2030: 2017: 1979: 1978: 1969: 1915: 1914: 1910: 1856: 1855: 1851: 1813: 1812: 1808: 1774: 1769: 1768: 1764: 1750: 1749: 1742: 1711: 1710: 1706: 1676: 1675: 1671: 1625: 1624: 1620: 1615: 1587: 1418: 1394: 1174:Gemmatimonadota 1138:Hydrogenobacter 1119: 1104: 1100: 1059: 1054: 1045: 1023: 1019: 1010: 971: 967: 963: 959: 955: 949: 926: 922: 918: 913: 904: 891: 880:. For example, 866:denitrification 831:Methanococcales 784: 778: 757:Desulfobacteria 742:and members of 709: 633: 628: 622: 593: 586: 580: 549: 545: 520: 479: 447: 423: 419: 406: 390: 381:Thermoproteales 355: 338: 287: 278: 273: 245: 239:Carbon fixation 236: 234:Carbon fixation 225: 217: 213: 204:carbon monoxide 192: 186: 121: 116: 107: 73: 17: 12: 11: 5: 4382: 4380: 4372: 4371: 4366: 4356: 4355: 4349: 4348: 4346: 4345: 4334: 4331: 4330: 4328: 4327: 4322: 4317: 4312: 4307: 4302: 4301: 4300: 4290: 4285: 4283:Deep biosphere 4280: 4278:Bioremediation 4274: 4272: 4268: 4267: 4265: 4264: 4259: 4254: 4249: 4244: 4239: 4237:DNA sequencing 4234: 4228: 4226: 4222: 4221: 4219: 4218: 4213: 4208: 4203: 4202: 4201: 4196: 4191: 4190: 4189: 4179: 4174: 4169: 4164: 4159: 4154: 4149: 4139: 4134: 4129: 4124: 4119: 4114: 4108: 4106: 4102: 4101: 4099: 4098: 4093: 4088: 4083: 4078: 4073: 4068: 4063: 4058: 4053: 4048: 4043: 4041:Marine viruses 4038: 4032: 4030: 4026: 4025: 4023: 4022: 4017: 4012: 4007: 4002: 3996: 3994: 3990: 3989: 3987: 3986: 3978: 3976:Quorum sensing 3973: 3972: 3971: 3966: 3956: 3951: 3946: 3945: 3944: 3939: 3937:microbial loop 3929: 3927:Microbial cyst 3924: 3919: 3914: 3909: 3904: 3899: 3894: 3888: 3886: 3880: 3879: 3877: 3876: 3871: 3870: 3869: 3859: 3858: 3857: 3852: 3847: 3845:run-and-tumble 3836: 3834: 3830: 3829: 3827: 3826: 3821: 3816: 3811: 3806: 3801: 3796: 3791: 3785: 3783: 3777: 3776: 3769: 3767: 3765: 3764: 3759: 3754: 3749: 3744: 3739: 3734: 3729: 3724: 3718: 3716: 3710: 3709: 3706:Microorganisms 3704: 3702: 3701: 3694: 3687: 3679: 3671: 3670: 3651: 3590: 3541: 3534: 3509: 3463: 3414: 3395: 3334: 3307:(1): 425–448. 3291: 3253: 3191: 3148: 3097: 3068:(3): 414–426. 3045: 3001: 2974: 2923: 2873: 2836:(2): 960–970. 2799: 2743: 2722:(2): 461–464. 2702: 2646: 2589: 2537: 2492: 2446: 2419:(2): 387–403. 2374: 2310: 2246: 2203: 2167: 2057: 2050: 2015: 1967: 1908: 1849: 1822:(4): 721–740. 1806: 1762: 1740: 1704: 1685:(3): 211–242. 1669: 1617: 1616: 1614: 1611: 1610: 1609: 1603: 1598: 1593: 1586: 1583: 1417: 1414: 1393: 1390: 1389: 1388: 1387: 1386: 1383:Desulfuromonas 1379: 1372: 1359: 1358: 1357: 1350: 1343: 1336: 1329: 1317: 1316: 1315: 1314: 1313: 1303: 1302: 1301: 1294: 1287: 1280: 1273: 1270:Thiomicrospira 1266: 1263:Allochromatium 1253: 1252: 1251: 1244: 1232: 1231: 1230: 1218: 1211:Pseudomonadota 1208: 1207: 1206: 1193: 1192: 1191: 1184: 1176: 1171: 1166: 1165: 1164: 1154: 1149: 1148: 1147: 1129: 1127:Actinomycetota 1118: 1115: 1111:R. pachyptila, 1102: 1098: 1065:chemosynthesis 1058: 1055: 1053: 1050: 1044: 1041: 1030:hydrogenotroph 1021: 1017: 1009: 1006: 969: 965: 961: 957: 953: 948: 945: 929:Thiomicrospira 924: 920: 916: 912: 909: 903: 900: 889: 874:mineralization 846:microbial mats 822:in the orders 808:Nitrogen cycle 782:Nitrogen cycle 780:Main article: 777: 776:Nitrogen cycle 774: 761:Desulfuromonas 728:electron donor 708: 705: 697:and the phlym 665:Thiomicrospira 631: 624:Main article: 621: 618: 608:for energy or 591: 582:Main article: 579: 576: 547: 543: 524:methanogenesis 519: 518:Methanogenesis 516: 501:Thermoproteota 478: 475: 446: 443: 421: 417: 405: 402: 389: 386: 353: 337: 334: 285: 277: 274: 272: 269: 243: 235: 232: 223: 215: 211: 188:Main article: 185: 182: 141:trophic levels 120: 117: 115: 112: 106: 103: 72: 69: 64:chemosynthesis 27:microbial mats 24:Chemosynthetic 15: 13: 10: 9: 6: 4: 3: 2: 4381: 4370: 4367: 4365: 4362: 4361: 4359: 4344: 4336: 4335: 4332: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4299: 4296: 4295: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4275: 4273: 4269: 4263: 4260: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4229: 4227: 4223: 4217: 4214: 4212: 4209: 4207: 4204: 4200: 4197: 4195: 4192: 4188: 4185: 4184: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4150: 4148: 4145: 4144: 4143: 4140: 4138: 4135: 4133: 4130: 4128: 4127:Microbial oil 4125: 4123: 4120: 4118: 4115: 4113: 4110: 4109: 4107: 4105:Human related 4103: 4097: 4094: 4092: 4091:Picoeukaryote 4089: 4087: 4084: 4082: 4079: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4033: 4031: 4027: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3997: 3995: 3991: 3985: 3984: 3979: 3977: 3974: 3970: 3967: 3965: 3962: 3961: 3960: 3957: 3955: 3952: 3950: 3949:Microbial mat 3947: 3943: 3940: 3938: 3935: 3934: 3933: 3930: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3910: 3908: 3905: 3903: 3900: 3898: 3895: 3893: 3890: 3889: 3887: 3885: 3881: 3875: 3872: 3868: 3865: 3864: 3863: 3860: 3856: 3853: 3851: 3848: 3846: 3843: 3842: 3841: 3838: 3837: 3835: 3831: 3825: 3822: 3820: 3817: 3815: 3812: 3810: 3807: 3805: 3802: 3800: 3797: 3795: 3792: 3790: 3787: 3786: 3784: 3782: 3778: 3773: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3742:Nanobacterium 3740: 3738: 3735: 3733: 3732:Cyanobacteria 3730: 3728: 3725: 3723: 3720: 3719: 3717: 3715: 3711: 3707: 3700: 3695: 3693: 3688: 3686: 3681: 3680: 3677: 3666: 3662: 3655: 3652: 3647: 3643: 3639: 3635: 3630: 3625: 3621: 3617: 3613: 3609: 3605: 3601: 3594: 3591: 3586: 3582: 3577: 3572: 3568: 3564: 3560: 3556: 3552: 3545: 3542: 3537: 3531: 3527: 3523: 3516: 3514: 3510: 3505: 3501: 3497: 3493: 3489: 3485: 3481: 3477: 3470: 3468: 3464: 3459: 3455: 3450: 3445: 3441: 3437: 3433: 3429: 3428:Bacteriophage 3425: 3418: 3415: 3410: 3409:New Scientist 3406: 3399: 3396: 3391: 3387: 3383: 3379: 3375: 3371: 3367: 3363: 3358: 3357:q-bio/0702015 3353: 3350:(7126): 369. 3349: 3345: 3338: 3335: 3330: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3295: 3292: 3287: 3283: 3279: 3275: 3271: 3267: 3260: 3258: 3254: 3249: 3245: 3240: 3235: 3230: 3225: 3221: 3217: 3213: 3209: 3205: 3198: 3196: 3192: 3187: 3183: 3179: 3175: 3171: 3167: 3163: 3159: 3152: 3149: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3116: 3112: 3108: 3101: 3098: 3093: 3089: 3084: 3079: 3075: 3071: 3067: 3063: 3059: 3052: 3050: 3046: 3041: 3037: 3032: 3027: 3023: 3019: 3015: 3008: 3006: 3002: 2991: 2987: 2981: 2979: 2975: 2970: 2966: 2961: 2956: 2951: 2946: 2942: 2938: 2934: 2927: 2924: 2918: 2913: 2909: 2905: 2901: 2897: 2893: 2886: 2884: 2882: 2880: 2878: 2874: 2869: 2865: 2860: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2820: 2818: 2816: 2814: 2812: 2810: 2808: 2806: 2804: 2800: 2795: 2791: 2786: 2781: 2777: 2773: 2769: 2765: 2761: 2754: 2752: 2750: 2748: 2744: 2738: 2733: 2729: 2725: 2721: 2717: 2713: 2706: 2703: 2698: 2694: 2689: 2684: 2679: 2674: 2670: 2666: 2662: 2655: 2653: 2651: 2647: 2642: 2638: 2633: 2628: 2624: 2620: 2616: 2612: 2608: 2604: 2600: 2593: 2590: 2585: 2581: 2576: 2571: 2567: 2563: 2559: 2555: 2551: 2544: 2542: 2538: 2533: 2529: 2525: 2521: 2517: 2513: 2505: 2503: 2501: 2499: 2497: 2493: 2488: 2484: 2480: 2476: 2472: 2468: 2464: 2460: 2453: 2451: 2447: 2442: 2438: 2434: 2430: 2426: 2422: 2418: 2414: 2407: 2405: 2403: 2401: 2399: 2397: 2395: 2393: 2391: 2389: 2387: 2385: 2383: 2381: 2379: 2375: 2370: 2366: 2361: 2356: 2352: 2348: 2344: 2337: 2335: 2333: 2331: 2329: 2327: 2325: 2323: 2321: 2319: 2317: 2315: 2311: 2306: 2302: 2297: 2292: 2287: 2282: 2278: 2274: 2270: 2266: 2262: 2255: 2253: 2251: 2247: 2242: 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2207: 2204: 2199: 2195: 2191: 2184: 2182: 2180: 2178: 2176: 2174: 2172: 2168: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2112: 2110: 2108: 2106: 2104: 2102: 2100: 2098: 2096: 2094: 2092: 2090: 2088: 2086: 2084: 2082: 2080: 2078: 2076: 2074: 2072: 2070: 2068: 2066: 2064: 2062: 2058: 2053: 2047: 2043: 2039: 2035: 2028: 2026: 2024: 2022: 2020: 2016: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1976: 1974: 1972: 1968: 1963: 1959: 1954: 1949: 1944: 1939: 1935: 1931: 1927: 1923: 1919: 1912: 1909: 1904: 1900: 1895: 1890: 1885: 1880: 1876: 1872: 1868: 1864: 1860: 1853: 1850: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1816:Extremophiles 1810: 1807: 1801: 1796: 1792: 1788: 1784: 1780: 1773: 1766: 1763: 1758: 1754: 1747: 1745: 1741: 1736: 1732: 1728: 1724: 1720: 1716: 1708: 1705: 1700: 1696: 1692: 1688: 1684: 1680: 1673: 1670: 1665: 1661: 1656: 1651: 1646: 1641: 1637: 1633: 1629: 1622: 1619: 1612: 1607: 1604: 1602: 1601:Guaymas Basin 1599: 1597: 1594: 1592: 1589: 1588: 1584: 1582: 1579: 1576: 1571: 1567: 1562: 1560: 1556: 1550: 1548: 1544: 1539: 1537: 1533: 1527: 1518: 1514: 1512: 1508: 1504: 1500: 1495: 1494: 1493:Curtis Suttle 1490: 1484: 1482: 1476: 1474: 1470: 1465: 1464:black smokers 1461: 1456: 1454: 1450: 1446: 1442: 1437: 1430: 1426: 1422: 1415: 1413: 1411: 1407: 1403: 1399: 1391: 1385: 1384: 1380: 1378: 1377: 1376:Desulfobulbus 1373: 1371: 1370: 1369:Desulfovibrio 1366: 1365: 1363: 1360: 1356: 1355: 1351: 1349: 1348: 1344: 1342: 1341: 1337: 1335: 1334: 1330: 1328: 1327: 1323: 1322: 1321: 1318: 1312: 1309: 1308: 1307: 1304: 1300: 1299: 1295: 1293: 1292: 1288: 1286: 1285: 1281: 1279: 1278: 1274: 1272: 1271: 1267: 1265: 1264: 1260: 1259: 1257: 1254: 1250: 1249: 1245: 1243: 1242: 1238: 1237: 1236: 1233: 1229: 1228: 1224: 1223: 1222: 1219: 1217: 1214: 1213: 1212: 1209: 1205: 1204: 1199: 1198: 1197: 1194: 1190: 1189: 1185: 1182: 1181: 1180: 1177: 1175: 1172: 1170: 1167: 1163: 1162: 1158: 1157: 1155: 1153: 1152:Chloroflexota 1150: 1146: 1145: 1140: 1139: 1135: 1134: 1133: 1130: 1128: 1125: 1124: 1123: 1116: 1114: 1112: 1108: 1095: 1091: 1090: 1085: 1084: 1079: 1078: 1073: 1071: 1066: 1063: 1056: 1051: 1049: 1042: 1040: 1039: 1035: 1034:R. pachyptila 1031: 1027: 1015: 1007: 1005: 1003: 1002: 997: 996: 991: 990: 989:Methanococcus 985: 981: 980:methanotrophs 977: 976: 964:, and other C 946: 944: 942: 938: 934: 933:Thiobacillus. 931:has replaced 930: 910: 908: 901: 899: 897: 896: 887: 883: 879: 875: 871: 867: 863: 862:nitrification 859: 855: 851: 847: 843: 839: 838: 833: 832: 827: 826: 821: 817: 813: 809: 804: 802: 798: 793: 789: 783: 775: 769: 765: 763: 762: 758: 754: 753:Desulfobulbus 750: 749:Desulfovibrio 745: 741: 737: 733: 729: 725: 721: 717: 713: 706: 704: 702: 701: 696: 695: 690: 687: 685: 680: 678: 677:Persephonella 674: 670: 666: 660: 658: 653: 649: 645: 641: 637: 627: 619: 617: 615: 611: 607: 603: 599: 595: 585: 577: 571: 567: 565: 564: 563:Methanococcus 559: 558: 554: 541: 537: 533: 529: 525: 517: 515: 513: 512: 507: 506:Crenarchaeota 503: 502: 498: 493: 489: 485: 484:endosymbiotic 476: 474: 472: 471:microbial mat 467: 466: 461: 457: 456:Methanotrophy 452: 444: 442: 440: 437: 433: 430: 428: 415: 411: 403: 401: 399: 395: 387: 385: 383: 382: 377: 376: 371: 370: 365: 364: 363:Desulfobacter 359: 351: 347: 343: 335: 333: 331: 327: 323: 319: 318:endosymbionts 316: 312: 311: 306: 305: 299: 295: 291: 283: 275: 270: 268: 265: 261: 257: 253: 249: 240: 233: 231: 229: 228:heterotrophic 221: 209: 205: 201: 197: 191: 183: 181: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 125: 118: 113: 111: 104: 102: 98: 95: 93: 88: 86: 77: 70: 68: 65: 59: 56: 55:endosymbiotic 52: 51:microbial mat 48: 44: 36: 32: 28: 25: 21: 4369:Microbiology 4293:Microswimmer 4187:in pregnancy 4137:Nylon-eating 4070: 4020:Spermosphere 3982: 3781:Microbiology 3664: 3654: 3603: 3599: 3593: 3558: 3554: 3544: 3525: 3479: 3475: 3434:(1): 31–45. 3431: 3427: 3417: 3408: 3398: 3347: 3343: 3337: 3304: 3300: 3294: 3269: 3265: 3211: 3207: 3161: 3157: 3151: 3110: 3106: 3100: 3065: 3061: 3021: 3017: 2993:. Retrieved 2989: 2940: 2936: 2926: 2899: 2895: 2833: 2829: 2767: 2763: 2719: 2715: 2705: 2668: 2664: 2606: 2602: 2592: 2557: 2553: 2515: 2511: 2462: 2458: 2416: 2412: 2350: 2346: 2268: 2264: 2216: 2212: 2206: 2189: 2121: 2117: 2033: 1988:(1): 77–91. 1985: 1981: 1925: 1921: 1911: 1866: 1862: 1852: 1819: 1815: 1809: 1782: 1778: 1765: 1756: 1721:(1): 45–52. 1718: 1714: 1707: 1682: 1678: 1672: 1635: 1631: 1621: 1580: 1563: 1551: 1540: 1528: 1524: 1497: 1486: 1477: 1457: 1434: 1425:Black smoker 1395: 1381: 1374: 1367: 1352: 1345: 1338: 1331: 1324: 1296: 1289: 1282: 1275: 1268: 1261: 1246: 1241:Thiobacillus 1239: 1225: 1201: 1186: 1183:Nitrospinota 1179:Nitrospirota 1159: 1156:Chlorobiota 1142: 1136: 1120: 1110: 1107:C. magnifica 1106: 1101:S and free O 1087: 1081: 1075: 1068: 1060: 1046: 1037: 1033: 1025: 1013: 1011: 999: 993: 987: 973: 950: 940: 936: 932: 928: 914: 905: 893: 885: 858:assimilation 842:Thermophilic 835: 829: 823: 805: 785: 747: 710: 698: 692: 684:Sulfurimonas 682: 663: 656: 629: 610:assimilation 587: 584:Sulfur cycle 578:Sulfur cycle 561: 551: 528:hydrocarbons 521: 511:Thermococcus 509: 505: 499: 480: 463: 448: 438: 436:methanogenic 425: 407: 391: 379: 373: 367: 361: 339: 308: 301: 279: 237: 193: 190:Carbon cycle 184:Carbon cycle 130: 119:Introduction 108: 99: 96: 89: 82: 60: 42: 40: 4325:Siderophore 4086:Phycosphere 3942:viral shunt 2353:(1): 1–14. 1785:(11): n/a. 1596:Movile Cave 1575:pro-viruses 1469:prokaryotes 1449:mutualistic 1203:Clostridium 984:methanogens 854:nitrogenase 644:thiosulfate 369:Aquificales 137:autotrophic 105:Adaptations 85:thermocline 37:communities 4358:Categories 4225:Techniques 4056:Microalgae 3964:microbiota 3959:Microbiome 3747:Prokaryote 2995:2018-10-22 2902:(2): n/a. 2192:(Thesis). 1613:References 1547:metabolism 1532:metagenome 1503:phenotypes 1406:DNA repair 1392:DNA repair 1227:Paracoccus 1200:Acetogen: 1161:Chlorobium 1132:Aquificota 1094:trophosome 941:Beggiatoa, 898:tubeworm. 820:methanogen 540:autotropic 504:(formerly 398:mixotrophs 330:gastropods 35:coral reef 4298:biohybrid 4152:dysbiosis 3969:holobiont 3867:amoeboids 3850:twitching 3629:1912/6700 2198:303750552 1507:lysogenic 1453:parasitic 1441:evolution 1354:Thiovulum 1298:Thioploca 1291:Beggiatoa 1196:Bacillota 1062:Symbiotic 937:Thiothrix 689:Symbiotic 673:Beggiatoa 636:Oxidation 432:acetogens 322:tubeworms 304:Beggiatoa 177:metabolic 149:manganese 4343:Category 4262:Staining 4194:placenta 3824:Virology 3819:Mycology 3757:Protozoa 3727:Bacteria 3665:ABC News 3638:24789974 3585:28698277 3504:23516254 3496:18719614 3458:21687533 3390:10737747 3382:17251963 3329:22457982 3248:25279954 3208:PLOS ONE 3178:17853907 3135:16163346 3092:20927138 3040:13130052 2969:26779119 2943:: 1425. 2868:12571018 2794:23535916 2697:27547206 2671:: 1240. 2641:16957253 2584:22094346 2532:22827909 2479:18820700 2433:29354879 2369:18503548 2305:22869718 2241:16475344 2194:ProQuest 2162:24859537 2154:17841485 2010:45653369 2002:15168612 1962:11058150 1903:15967984 1844:17213654 1836:26101015 1664:22084639 1585:See also 1570:cofactor 1566:vitamins 1536:homology 886:Begiatoa 792:Ammonium 788:nitrogen 746:such as 720:hydrogen 326:bivalves 3892:Biofilm 3884:Ecology 3855:gliding 3752:Protist 3722:Archaea 3608:Bibcode 3600:Science 3576:5513705 3449:3109452 3362:Bibcode 3309:Bibcode 3274:Bibcode 3239:4184897 3216:Bibcode 3186:4658457 3143:4370363 3115:Bibcode 3083:3105715 2960:4688376 2904:Bibcode 2838:Bibcode 2785:3695286 2724:Bibcode 2688:4974244 2632:1563643 2611:Bibcode 2575:3329104 2487:1709272 2441:7879639 2296:3427048 2273:Bibcode 2221:Bibcode 2146:1696097 2126:Bibcode 2118:Science 1930:Bibcode 1894:1166624 1871:Bibcode 1787:Bibcode 1723:Bibcode 1687:Bibcode 1655:3211056 1638:: 219. 1543:viromes 1436:Viruses 1144:Aquifex 1052:Ecology 870:anammox 812:isotope 801:nitrite 797:Nitrate 740:Archaea 724:methane 659:pathway 640:sulfite 602:sulfate 598:sulfite 532:formate 462:in the 451:methane 439:Archaea 375:Aquifex 298:RuBisCO 294:RuBisCO 260:Archaea 214:and HCO 200:methane 161:sulfate 157:sulfite 153:sulfide 4199:uterus 4182:vagina 4147:asthma 4029:Marine 3993:Plants 3833:Motion 3714:Groups 3646:692770 3644:  3636:  3583:  3573:  3532:  3502:  3494:  3456:  3446:  3388:  3380:  3344:Nature 3327:  3246:  3236:  3184:  3176:  3141:  3133:  3107:Nature 3090:  3080:  3038:  2967:  2957:  2866:  2859:143675 2856:  2792:  2782:  2695:  2685:  2639:  2629:  2582:  2572:  2530:  2485:  2477:  2439:  2431:  2367:  2303:  2293:  2239:  2196:  2160:  2152:  2144:  2048:  2008:  2000:  1960:  1950:  1901:  1891:  1842:  1834:  1662:  1652:  1473:lysing 1092:. The 1086:, and 1014:Riftia 975:Riftia 834:, and 759:, and 736:anoxic 604:, and 560:, and 508:) and 497:phylum 350:anoxic 328:, and 313:, and 290:enzyme 4315:Omics 4271:Other 4172:mouth 4157:fecal 3762:Virus 3737:Fungi 3642:S2CID 3500:S2CID 3386:S2CID 3352:arXiv 3182:S2CID 3139:S2CID 2483:S2CID 2437:S2CID 2158:S2CID 2142:JSTOR 2006:S2CID 1953:34077 1840:S2CID 1775:(PDF) 1451:than 1028:is a 884:like 650:from 612:into 4177:skin 4167:lung 3634:PMID 3581:PMID 3555:mBio 3530:ISBN 3492:PMID 3454:PMID 3378:PMID 3325:PMID 3244:PMID 3174:PMID 3131:PMID 3088:PMID 3036:PMID 2965:PMID 2864:PMID 2790:PMID 2693:PMID 2637:PMID 2580:PMID 2528:PMID 2475:PMID 2429:PMID 2365:PMID 2301:PMID 2237:PMID 2150:PMID 2046:ISBN 1998:PMID 1958:PMID 1899:PMID 1832:PMID 1660:PMID 1568:and 1443:and 1400:and 1141:and 1109:and 1036:and 992:and 956:, CH 939:and 876:and 848:and 799:and 681:and 434:and 408:The 378:and 372:and 340:The 280:The 202:and 145:iron 41:The 33:and 4162:gut 3624:hdl 3616:doi 3604:344 3571:PMC 3563:doi 3484:doi 3444:PMC 3436:doi 3370:doi 3348:445 3317:doi 3282:doi 3234:PMC 3224:doi 3166:doi 3123:doi 3111:437 3078:PMC 3070:doi 3026:doi 2955:PMC 2945:doi 2912:doi 2854:PMC 2846:doi 2780:PMC 2772:doi 2732:doi 2683:PMC 2673:doi 2627:PMC 2619:doi 2570:PMC 2562:doi 2520:doi 2467:doi 2421:doi 2355:doi 2291:PMC 2281:doi 2269:109 2229:doi 2134:doi 2122:229 2038:doi 1990:doi 1948:PMC 1938:doi 1889:PMC 1879:doi 1867:102 1824:doi 1795:doi 1731:doi 1695:doi 1650:PMC 1640:doi 657:SOX 566:. 414:ATP 320:of 296:). 4360:: 3663:. 3640:. 3632:. 3622:. 3614:. 3602:. 3579:. 3569:. 3557:. 3553:. 3512:^ 3498:. 3490:. 3478:. 3466:^ 3452:. 3442:. 3430:. 3426:. 3407:. 3384:. 3376:. 3368:. 3360:. 3346:. 3323:. 3315:. 3303:. 3280:. 3270:52 3268:. 3256:^ 3242:. 3232:. 3222:. 3210:. 3206:. 3194:^ 3180:. 3172:. 3160:. 3137:. 3129:. 3121:. 3109:. 3086:. 3076:. 3064:. 3060:. 3048:^ 3034:. 3022:53 3020:. 3016:. 3004:^ 2988:. 2977:^ 2963:. 2953:. 2939:. 2935:. 2910:. 2900:13 2898:. 2894:. 2876:^ 2862:. 2852:. 2844:. 2834:69 2832:. 2828:. 2802:^ 2788:. 2778:. 2766:. 2762:. 2746:^ 2730:. 2720:46 2718:. 2714:. 2691:. 2681:. 2667:. 2663:. 2649:^ 2635:. 2625:. 2617:. 2607:72 2605:. 2601:. 2578:. 2568:. 2556:. 2552:. 2540:^ 2526:. 2516:14 2514:. 2495:^ 2481:. 2473:. 2461:. 2449:^ 2435:. 2427:. 2417:76 2415:. 2377:^ 2363:. 2351:65 2349:. 2345:. 2313:^ 2299:. 2289:. 2279:. 2267:. 2263:. 2249:^ 2235:. 2227:. 2217:39 2215:. 2170:^ 2156:. 2148:. 2140:. 2132:. 2120:. 2060:^ 2044:. 2018:^ 2004:. 1996:. 1986:36 1984:. 1970:^ 1956:. 1946:. 1936:. 1926:97 1924:. 1920:. 1897:. 1887:. 1877:. 1865:. 1861:. 1838:. 1830:. 1820:19 1818:. 1793:. 1781:. 1777:. 1755:. 1743:^ 1729:. 1719:56 1717:. 1693:. 1683:31 1681:. 1658:. 1648:. 1634:. 1630:. 986:: 960:NH 952:CH 872:, 868:, 864:, 860:, 840:. 828:, 755:, 751:, 730:. 722:, 675:, 671:, 667:, 642:, 600:, 555:, 514:. 441:. 384:. 366:, 354:2. 332:. 324:, 307:, 254:, 250:, 242:CO 224:2, 163:, 159:, 155:, 147:, 3698:e 3691:t 3684:v 3667:. 3648:. 3626:: 3618:: 3610:: 3587:. 3565:: 3559:8 3538:. 3506:. 3486:: 3480:2 3460:. 3438:: 3432:1 3411:. 3392:. 3372:: 3364:: 3354:: 3331:. 3319:: 3311:: 3305:4 3288:. 3284:: 3276:: 3250:. 3226:: 3218:: 3212:9 3188:. 3168:: 3162:5 3145:. 3125:: 3117:: 3094:. 3072:: 3066:5 3042:. 3028:: 2998:. 2971:. 2947:: 2941:6 2920:. 2914:: 2906:: 2870:. 2848:: 2840:: 2796:. 2774:: 2768:7 2740:. 2734:: 2726:: 2699:. 2675:: 2669:7 2643:. 2621:: 2613:: 2586:. 2564:: 2558:6 2534:. 2522:: 2489:. 2469:: 2463:6 2443:. 2423:: 2371:. 2357:: 2307:. 2283:: 2275:: 2243:. 2231:: 2223:: 2200:. 2164:. 2136:: 2128:: 2054:. 2040:: 2012:. 1992:: 1964:. 1940:: 1932:: 1905:. 1881:: 1873:: 1846:. 1826:: 1803:. 1797:: 1789:: 1783:8 1759:. 1737:. 1733:: 1725:: 1701:. 1697:: 1689:: 1666:. 1642:: 1636:2 1483:. 1431:. 1103:2 1099:2 1097:H 1072:, 1022:3 1018:2 970:2 966:1 962:2 958:3 954:4 925:2 921:3 919:O 917:2 890:2 686:. 679:, 632:2 594:S 592:2 590:H 548:2 544:2 429:, 422:2 418:2 286:2 244:2 216:3 212:2

Index


Chemosynthetic
microbial mats
hydrothermal vent
coral reef
hydrothermal vents
microbial mat
endosymbiotic
chemosynthesis

thermocline
hydrostatic pressure

organic material
autotrophic
trophic levels
iron
manganese
sulfide
sulfite
sulfate
elemental sulfur
oxidizing or reducing
chemical species
metabolic
Carbon cycle
carbon compounds
methane
carbon monoxide
Deep ocean water

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.