Knowledge (XXG)

Hyperbolic orthogonality

Source 📝

31: 2321: 62:
to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular timeline. This dependence on a certain timeline is determined by velocity, and is the basis for the
1094: 1207: 863:
where the asymptote is invariant. Hyperbolically orthogonal lines lie in different sectors of the plane, determined by the asymptotes of the hyperbola, thus the relation of hyperbolic orthogonality is a
1232:
wrote in 1910, " hyperbola is unaltered when any pair of conjugate diameters are taken as new axes, and a new unit of length is taken proportional to the length of either of these diameters." On this
194:
The relation of hyperbolic orthogonality actually applies to classes of parallel lines in the plane, where any particular line can represent the class. Thus, for a given hyperbola and asymptote
2024: 779: 834: 697: 619: 462: 353: 253: 1387: 1297: 1273:
Edwin B. Wilson & Gilbert N. Lewis (1912) "The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics" Proceedings of the
497: 385: 844:
the ellipse is a circle and the conjugate diameters are perpendicular while the hyperbola is rectangular and the conjugate diameters are hyperbolic-orthogonal.
2071: 2306: 2095: 1841: 962: 1877: 1831: 2015: 1274: 1499: 1128: 281:
is used to describe orthogonality in analytic geometry, with two elements orthogonal when their bilinear form vanishes. In the plane of
2123: 1752: 1757: 1468: 1439: 1254:
in 1912. They note "in our plane no pair of perpendicular lines is better suited to serve as coordinate axes than any other pair"
2077: 1294: 1790: 856: 542:
The bilinear form may be computed as the real part of the complex product of one number with the conjugate of the other. Then
1893: 1971: 2034: 2324: 2066: 1901: 2343: 1888: 1648: 1929: 1663: 626: 548: 38:
is preserved by rotation in the left diagram; hyperbolic orthogonality with respect to hyperbola (B) is preserved by
2216: 1658: 1611: 893: 64: 884:
study in 1908, the concept of points in a spacetime plane being hyperbolic-orthogonal to a timeline (tangent to a
393: 2246: 1872: 1553: 726: 287: 784: 2271: 1821: 1492: 1410: 860: 852: 80: 2000: 1922: 1542: 1533: 1391: 1233: 2089: 1995: 217: 2226: 1953: 1627: 1591: 865: 186: 2231: 1836: 1775: 1228:. The directions indicated by conjugate diameters are taken for space and time axes in relativity. As 2136: 2062: 1906: 1508: 1421: 1243: 2211: 2206: 2201: 2196: 2028: 1977: 1795: 1780: 1606: 1537: 1485: 1225: 1221: 848: 712: 39: 2100: 2276: 2176: 1958: 1939: 1933: 1884: 1826: 1735: 1653: 1571: 1548: 1516: 1251: 59: 185:). Therefore the reflected line has slope 1/m and the slopes of hyperbolic orthogonal lines are 2286: 2156: 2118: 2110: 1711: 1668: 1464: 1435: 877: 708: 388: 1460: 1314: 2251: 2191: 2181: 2128: 2105: 1683: 1452: 1427: 1278: 1247: 467: 124: 30: 1445: 358: 2266: 2241: 2166: 2161: 2044: 2005: 1967: 1911: 1785: 1721: 1442: 1383: 1301: 1229: 855:. Suppose the slope of a vertical line is denoted ∞ so that all lines have a slope in the 2049: 2348: 2291: 1963: 1947: 1943: 1846: 1816: 1673: 1576: 1402: 1295:
Through the Looking Glass – A glimpse of Euclid’s twin geometry, the Minkowski geometry
282: 2337: 2281: 2261: 2256: 2171: 2039: 1867: 1811: 1643: 1596: 1368: 896:. In Minkowski's development the hyperbola of type (B) above is in use. Two vectors ( 278: 35: 17: 1453: 2301: 2221: 2186: 1716: 1678: 274:, a radius to a hyperbola is hyperbolic orthogonal to a tangent to the hyperbola. 1331: 2085: 2054: 1601: 1335: 859:. Then whichever hyperbola (A) or (B) is used, the operation is an example of a 2296: 1862: 1706: 1701: 885: 1089:{\displaystyle c^{2}\ t_{1}\ t_{2}-x_{1}\ x_{2}-y_{1}\ y_{2}-z_{1}\ z_{2}=0.} 1693: 881: 84: 55: 1349: 2236: 1586: 1237: 47: 271: 1434:, chapter 1: A Trip on Einstein's Train, Universitext Springer-Verlag 1916: 1282: 1236:, he then wrote the Lorentz transformation in the modern form using 1202:{\displaystyle {\frac {c\ t_{1}}{x_{1}}}={\frac {x_{2}}{c\ t_{2}}}} 120: 1897: 1416:
Francesco Catoni, Dino Boccaletti, & Roberto Cannata (2008)
1481: 851:, the operation of taking the hyperbolic orthogonal line is an 87:. Two particular hyperbolas are frequently used in the plane: 1477: 1224:. Any diameter of the original hyperbola is reflected to a 530:
in the hyperbolic number plane are said to be respectively
119:
In this case the lines are hyperbolic orthogonal if their
1334:, ellipse §33, page 38 and hyperbola §41, page 49, from 723:â€Č represent the slopes of the conjugate diameters, then 270:
Similar to the perpendularity of a circle radius to the
1348: 1131: 965: 787: 729: 629: 551: 470: 396: 361: 290: 220: 621:
entails perpendicularity in the complex plane, while
2149: 2014: 1986: 1855: 1804: 1766: 1745: 1734: 1692: 1636: 1620: 1562: 1526: 1515: 1388:
A History of the Theories of Aether and Electricity
54:between two lines separated by the asymptotes of a 1201: 1088: 828: 773: 691: 613: 491: 456: 379: 347: 247: 707:The notion of hyperbolic orthogonality arose in 206:) are hyperbolic orthogonal if there is a pair ( 692:{\displaystyle w_{1}w_{2}^{*}+w_{1}^{*}w_{2}=0} 614:{\displaystyle z_{1}z_{2}^{*}+z_{1}^{*}z_{2}=0} 27:Relation of space and time in relativity theory 1493: 1451:J.A. Wheeler; C. Misner; K.S. Thorne (1973). 538:if their respective inner products are zero. 8: 1367:Various English translations on Wikisource: 457:{\displaystyle w_{1}=u+jv,\quad w_{2}=x+jy,} 239: 224: 83:of each other over the asymptote of a given 1424:, Basel. See page 38, Pseudo-orthogonality. 774:{\displaystyle gg'=-{\frac {b^{2}}{a^{2}}}} 348:{\displaystyle z_{1}=u+iv,\quad z_{2}=x+iy} 1742: 1523: 1500: 1486: 1478: 829:{\displaystyle gg'={\frac {b^{2}}{a^{2}}}} 1269: 1267: 1190: 1173: 1167: 1156: 1145: 1132: 1130: 1074: 1061: 1048: 1035: 1022: 1009: 996: 983: 970: 964: 818: 808: 802: 786: 763: 753: 747: 728: 677: 667: 662: 649: 644: 634: 628: 599: 589: 584: 571: 566: 556: 550: 469: 430: 401: 395: 360: 324: 295: 289: 219: 29: 1263: 892:of events relative to the timeline, or 1304:, ICME-10 Copenhagen; pages 6 & 7. 1275:American Academy of Arts and Sciences 956:(meaning hyperbolic orthogonal) when 248:{\displaystyle a\rVert c,\ b\rVert d} 173:, 1) on the line is reflected across 101:When reflected in the x-axis, a line 7: 1432:Orthogonality and Spacetime Geometry 2072:Tolman–Oppenheimer–Volkoff equation 2025:Friedmann–LemaĂźtre–Robertson–Walker 25: 1842:Hamilton–Jacobi–Einstein equation 1459:. W.H. Freeman & Co. p.  1212:Given a hyperbola with asymptote 836:in the case of a hyperbola. When 516:in the complex number plane, and 2320: 2319: 868:on sets of lines in the plane. 857:projectively extended real line 715:of ellipses and hyperbolas. If 425: 319: 1649:Mass–energy equivalence (E=mc) 1418:Mathematics of Minkowski Space 781:in the case of an ellipse and 1: 1407:Relativity and Modern Physics 1250:developed the concept within 703:s are hyperbolic orthogonal. 1664:Relativistic Doppler effect 1347:Minkowski, Hermann (1909), 1319:College Mathematics Journal 2365: 2135:In computational physics: 1659:Relativity of simultaneity 894:relativity of simultaneity 888:) has been used to define 65:relativity of simultaneity 2317: 1972:Lense–Thirring precession 1554:Doubly special relativity 1355:Physikalische Zeitschrift 1832:Post-Newtonian formalism 1822:Einstein field equations 1758:Mathematical formulation 1582:Hyperbolic orthogonality 1411:Harvard University Press 387:, while in the plane of 145:as asymptote. For lines 52:hyperbolic orthogonality 1543:Galilean transformation 1534:Principle of relativity 1392:Longmans, Green and Co. 1315:Hyperbolic Number Plane 1293:BjĂžrn Felsager (2004), 1234:principle of relativity 355:, the bilinear form is 1628:Lorentz transformation 1203: 1090: 866:heterogeneous relation 847:In the terminology of 830: 775: 693: 615: 493: 492:{\displaystyle xu-yv.} 458: 381: 349: 249: 43: 2096:Weyl−Lewis−Papapetrou 1837:Raychaudhuri equation 1776:Equivalence principle 1350:"Raum und Zeit"  1277:48:387–507, esp. 415 1204: 1091: 861:hyperbolic involution 831: 776: 694: 616: 536:hyperbolic orthogonal 494: 464:the bilinear form is 459: 382: 380:{\displaystyle xu+yv} 350: 259:is the reflection of 250: 77:hyperbolic orthogonal 58:is a concept used in 42:in the right diagram. 33: 18:Hyperbolic-orthogonal 2137:Numerical relativity 1978:pulsar timing arrays 1317:, also published in 1244:Edwin Bidwell Wilson 1216:, its reflection in 1129: 963: 785: 727: 711:in consideration of 627: 549: 532:Euclidean orthogonal 468: 394: 359: 288: 218: 2344:Minkowski spacetime 2029:Friedmann equations 1923:Hulse–Taylor binary 1885:Gravitational waves 1781:Riemannian geometry 1607:Proper acceleration 1592:Maxwell's equations 1538:Galilean relativity 1330:Barry Spain (1957) 1222:conjugate hyperbola 849:projective geometry 713:conjugate diameters 672: 654: 594: 576: 198:, a pair of lines ( 153:with −1 < 40:hyperbolic rotation 2078:Reissner–Nordström 1996:Brans–Dicke theory 1827:Linearized gravity 1654:Length contraction 1572:Frame of reference 1549:Special relativity 1313:Sobczyk, G.(1995) 1300:2011-07-16 at the 1252:synthetic geometry 1226:conjugate diameter 1199: 1086: 880:'s foundation for 826: 771: 689: 658: 640: 611: 580: 562: 489: 454: 389:hyperbolic numbers 377: 345: 245: 169:= 1. The point (1/ 99:= 0 as asymptote. 60:special relativity 50:, the relation of 44: 2331: 2330: 2145: 2144: 2124:OzsvĂĄth–SchĂŒcking 1730: 1729: 1712:Minkowski diagram 1669:Thomas precession 1612:Relativistic mass 1422:BirkhĂ€user Verlag 1332:Analytical Conics 1197: 1185: 1162: 1140: 1069: 1043: 1017: 991: 978: 878:Hermann Minkowski 824: 769: 709:analytic geometry 235: 125:additive inverses 16:(Redirected from 2356: 2323: 2322: 2106:van Stockum dust 1878:Two-body problem 1796:Mach's principle 1743: 1684:Terrell rotation 1524: 1502: 1495: 1488: 1479: 1474: 1458: 1428:Robert Goldblatt 1395: 1381: 1375: 1362: 1352: 1344: 1338: 1328: 1322: 1311: 1305: 1291: 1285: 1283:10.2307/20022840 1271: 1248:Gilbert N. Lewis 1208: 1206: 1205: 1200: 1198: 1196: 1195: 1194: 1183: 1178: 1177: 1168: 1163: 1161: 1160: 1151: 1150: 1149: 1138: 1133: 1125:≠ 0, then 1095: 1093: 1092: 1087: 1079: 1078: 1067: 1066: 1065: 1053: 1052: 1041: 1040: 1039: 1027: 1026: 1015: 1014: 1013: 1001: 1000: 989: 988: 987: 976: 975: 974: 835: 833: 832: 827: 825: 823: 822: 813: 812: 803: 798: 780: 778: 777: 772: 770: 768: 767: 758: 757: 748: 740: 698: 696: 695: 690: 682: 681: 671: 666: 653: 648: 639: 638: 620: 618: 617: 612: 604: 603: 593: 588: 575: 570: 561: 560: 498: 496: 495: 490: 463: 461: 460: 455: 435: 434: 406: 405: 386: 384: 383: 378: 354: 352: 351: 346: 329: 328: 300: 299: 254: 252: 251: 246: 233: 21: 2364: 2363: 2359: 2358: 2357: 2355: 2354: 2353: 2334: 2333: 2332: 2327: 2313: 2141: 2045:BKL singularity 2035:LemaĂźtre–Tolman 2010: 2006:Quantum gravity 1988: 1982: 1968:geodetic effect 1942:(together with 1912:LISA Pathfinder 1851: 1800: 1786:Penrose diagram 1768: 1762: 1737: 1726: 1722:Minkowski space 1688: 1632: 1616: 1564: 1558: 1518: 1511: 1506: 1471: 1450: 1399: 1398: 1384:E. T. Whittaker 1382: 1378: 1346: 1345: 1341: 1329: 1325: 1312: 1308: 1302:Wayback Machine 1292: 1288: 1272: 1265: 1260: 1230:E. T. Whittaker 1186: 1179: 1169: 1152: 1141: 1134: 1127: 1126: 1124: 1121: 1117: 1114: 1110: 1106: 1102: 1070: 1057: 1044: 1031: 1018: 1005: 992: 979: 966: 961: 960: 951: 948: 944: 941: 937: 934: 930: 927: 923: 920: 916: 913: 909: 906: 902: 899: 874: 814: 804: 791: 783: 782: 759: 749: 733: 725: 724: 673: 630: 625: 624: 595: 552: 547: 546: 529: 522: 515: 508: 466: 465: 426: 397: 392: 391: 357: 356: 320: 291: 286: 285: 283:complex numbers 216: 215: 192: 73: 28: 23: 22: 15: 12: 11: 5: 2362: 2360: 2352: 2351: 2346: 2336: 2335: 2329: 2328: 2318: 2315: 2314: 2312: 2311: 2304: 2299: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2254: 2249: 2244: 2239: 2234: 2232:Choquet-Bruhat 2229: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2153: 2151: 2147: 2146: 2143: 2142: 2140: 2139: 2132: 2131: 2126: 2121: 2114: 2113: 2108: 2103: 2098: 2093: 2084:Axisymmetric: 2081: 2080: 2075: 2069: 2058: 2057: 2052: 2047: 2042: 2037: 2032: 2023:Cosmological: 2020: 2018: 2012: 2011: 2009: 2008: 2003: 1998: 1992: 1990: 1984: 1983: 1981: 1980: 1975: 1964:frame-dragging 1961: 1956: 1951: 1948:Einstein rings 1944:Einstein cross 1937: 1926: 1925: 1920: 1914: 1909: 1904: 1891: 1881: 1880: 1875: 1870: 1865: 1859: 1857: 1853: 1852: 1850: 1849: 1847:Ernst equation 1844: 1839: 1834: 1829: 1824: 1819: 1817:BSSN formalism 1814: 1808: 1806: 1802: 1801: 1799: 1798: 1793: 1788: 1783: 1778: 1772: 1770: 1764: 1763: 1761: 1760: 1755: 1749: 1747: 1740: 1732: 1731: 1728: 1727: 1725: 1724: 1719: 1714: 1709: 1704: 1698: 1696: 1690: 1689: 1687: 1686: 1681: 1676: 1674:Ladder paradox 1671: 1666: 1661: 1656: 1651: 1646: 1640: 1638: 1634: 1633: 1631: 1630: 1624: 1622: 1618: 1617: 1615: 1614: 1609: 1604: 1599: 1594: 1589: 1584: 1579: 1577:Speed of light 1574: 1568: 1566: 1560: 1559: 1557: 1556: 1551: 1546: 1540: 1530: 1528: 1521: 1513: 1512: 1507: 1505: 1504: 1497: 1490: 1482: 1476: 1475: 1469: 1448: 1425: 1414: 1409:, pages 62,3, 1403:G. D. Birkhoff 1397: 1396: 1394:(see page 441) 1376: 1374: 1373: 1372: 1371: 1369:Space and Time 1339: 1323: 1306: 1286: 1262: 1261: 1259: 1256: 1193: 1189: 1182: 1176: 1172: 1166: 1159: 1155: 1148: 1144: 1137: 1122: 1119: 1115: 1112: 1108: 1104: 1100: 1097: 1096: 1085: 1082: 1077: 1073: 1064: 1060: 1056: 1051: 1047: 1038: 1034: 1030: 1025: 1021: 1012: 1008: 1004: 999: 995: 986: 982: 973: 969: 949: 946: 942: 939: 935: 932: 928: 925: 921: 918: 914: 911: 907: 904: 900: 897: 873: 870: 821: 817: 811: 807: 801: 797: 794: 790: 766: 762: 756: 752: 746: 743: 739: 736: 732: 705: 704: 688: 685: 680: 676: 670: 665: 661: 657: 652: 647: 643: 637: 633: 622: 610: 607: 602: 598: 592: 587: 583: 579: 574: 569: 565: 559: 555: 540: 539: 527: 520: 513: 506: 488: 485: 482: 479: 476: 473: 453: 450: 447: 444: 441: 438: 433: 429: 424: 421: 418: 415: 412: 409: 404: 400: 376: 373: 370: 367: 364: 344: 341: 338: 335: 332: 327: 323: 318: 315: 312: 309: 306: 303: 298: 294: 244: 241: 238: 232: 229: 226: 223: 191: 190: 189:of each other. 128: 89: 79:when they are 75:Two lines are 72: 69: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2361: 2350: 2347: 2345: 2342: 2341: 2339: 2326: 2316: 2310: 2309: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2217:Chandrasekhar 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2177:Schwarzschild 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2154: 2152: 2148: 2138: 2134: 2133: 2130: 2127: 2125: 2122: 2120: 2116: 2115: 2112: 2109: 2107: 2104: 2102: 2099: 2097: 2094: 2091: 2087: 2083: 2082: 2079: 2076: 2073: 2070: 2068: 2064: 2063:Schwarzschild 2060: 2059: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2030: 2026: 2022: 2021: 2019: 2017: 2013: 2007: 2004: 2002: 1999: 1997: 1994: 1993: 1991: 1985: 1979: 1976: 1973: 1969: 1965: 1962: 1960: 1959:Shapiro delay 1957: 1955: 1952: 1949: 1945: 1941: 1938: 1935: 1931: 1928: 1927: 1924: 1921: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1902:collaboration 1899: 1895: 1892: 1890: 1886: 1883: 1882: 1879: 1876: 1874: 1871: 1869: 1868:Event horizon 1866: 1864: 1861: 1860: 1858: 1854: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1812:ADM formalism 1810: 1809: 1807: 1803: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1773: 1771: 1765: 1759: 1756: 1754: 1751: 1750: 1748: 1744: 1741: 1739: 1733: 1723: 1720: 1718: 1717:Biquaternions 1715: 1713: 1710: 1708: 1705: 1703: 1700: 1699: 1697: 1695: 1691: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1644:Time dilation 1642: 1641: 1639: 1635: 1629: 1626: 1625: 1623: 1619: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1597:Proper length 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1569: 1567: 1561: 1555: 1552: 1550: 1547: 1544: 1541: 1539: 1535: 1532: 1531: 1529: 1525: 1522: 1520: 1514: 1510: 1503: 1498: 1496: 1491: 1489: 1484: 1483: 1480: 1472: 1470:0-7167-0344-0 1466: 1462: 1457: 1456: 1449: 1447: 1444: 1441: 1440:0-387-96519-X 1437: 1433: 1429: 1426: 1423: 1419: 1415: 1412: 1408: 1404: 1401: 1400: 1393: 1389: 1385: 1380: 1377: 1370: 1366: 1365: 1364: 1363: 1360: 1356: 1351: 1343: 1340: 1337: 1333: 1327: 1324: 1320: 1316: 1310: 1307: 1303: 1299: 1296: 1290: 1287: 1284: 1280: 1276: 1270: 1268: 1264: 1257: 1255: 1253: 1249: 1245: 1241: 1239: 1235: 1231: 1227: 1223: 1220:produces the 1219: 1215: 1210: 1191: 1187: 1180: 1174: 1170: 1164: 1157: 1153: 1146: 1142: 1135: 1083: 1080: 1075: 1071: 1062: 1058: 1054: 1049: 1045: 1036: 1032: 1028: 1023: 1019: 1010: 1006: 1002: 997: 993: 984: 980: 971: 967: 959: 958: 957: 955: 895: 891: 887: 883: 879: 871: 869: 867: 862: 858: 854: 850: 845: 843: 839: 819: 815: 809: 805: 799: 795: 792: 788: 764: 760: 754: 750: 744: 741: 737: 734: 730: 722: 718: 714: 710: 702: 686: 683: 678: 674: 668: 663: 659: 655: 650: 645: 641: 635: 631: 623: 608: 605: 600: 596: 590: 585: 581: 577: 572: 567: 563: 557: 553: 545: 544: 543: 537: 533: 526: 519: 512: 505: 501: 500: 499: 486: 483: 480: 477: 474: 471: 451: 448: 445: 442: 439: 436: 431: 427: 422: 419: 416: 413: 410: 407: 402: 398: 390: 374: 371: 368: 365: 362: 342: 339: 336: 333: 330: 325: 321: 316: 313: 310: 307: 304: 301: 296: 292: 284: 280: 279:bilinear form 275: 273: 268: 266: 262: 258: 242: 236: 230: 227: 221: 213: 209: 205: 201: 197: 188: 184: 180: 176: 172: 168: 164: 160: 157:< 1, when 156: 152: 148: 144: 140: 136: 132: 129: 126: 122: 118: 116: 112: 108: 104: 98: 94: 91: 90: 88: 86: 82: 78: 70: 68: 66: 61: 57: 53: 49: 41: 37: 36:orthogonality 32: 19: 2307: 2001:Kaluza–Klein 1753:Introduction 1679:Twin paradox 1581: 1454: 1431: 1417: 1406: 1379: 1358: 1354: 1342: 1326: 1318: 1309: 1289: 1242: 1217: 1213: 1211: 1111:s are zero, 1103:= 1 and the 1098: 953: 890:simultaneity 889: 875: 872:Simultaneity 846: 841: 837: 720: 716: 706: 700: 699:implies the 541: 535: 531: 524: 517: 510: 503: 502:The vectors 276: 269: 264: 260: 256: 214:) such that 211: 207: 203: 199: 195: 193: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 114: 110: 106: 102: 100: 96: 92: 76: 74: 51: 45: 2090:Kerr–Newman 2061:Spherical: 1930:Other tests 1873:Singularity 1805:Formulation 1767:Fundamental 1621:Formulation 1602:Proper time 1563:Fundamental 1455:Gravitation 1336:Hathi Trust 1118:≠ 0, 187:reciprocals 81:reflections 2338:Categories 2242:Zel'dovich 2150:Scientists 2129:Alcubierre 1936:of Mercury 1934:precession 1863:Black hole 1746:Background 1738:relativity 1707:World line 1702:Light cone 1527:Background 1519:relativity 1509:Relativity 1321:26:268–80. 1258:References 886:world line 853:involution 137:= 1 with 95:= 1 with 34:Euclidean 2212:Robertson 2197:Friedmann 2192:Eddington 2182:de Sitter 2016:Solutions 1894:detectors 1889:astronomy 1856:Phenomena 1791:Geodesics 1694:Spacetime 1637:Phenomena 1055:− 1029:− 1003:− 882:spacetime 745:− 669:∗ 651:∗ 591:∗ 573:∗ 478:− 240:‖ 225:‖ 181:to (1, 1/ 85:hyperbola 56:hyperbola 2325:Category 2202:LemaĂźtre 2167:Einstein 2157:PoincarĂ© 2117:Others: 2101:Taub–NUT 2067:interior 1989:theories 1987:Advanced 1954:redshift 1769:concepts 1587:Rapidity 1565:concepts 1390:Dublin: 1298:Archived 1238:rapidity 796:′ 738:′ 109:becomes 71:Geometry 48:geometry 2267:Hawking 2262:Penrose 2247:Novikov 2227:Wheeler 2172:Hilbert 2162:Lorentz 2119:pp-wave 1940:lensing 1736:General 1517:Special 1446:0888161 1430:(1987) 1405:(1923) 1386:(1910) 1361:: 75–88 924:) and ( 272:tangent 263:across 165:, then 2308:others 2297:Thorne 2287:Misner 2272:Taylor 2257:Geroch 2252:Ehlers 2222:Zwicky 2040:Kasner 1467:  1438:  1184:  1139:  1107:s and 1068:  1042:  1016:  990:  977:  954:normal 952:) are 876:Since 255:, and 234:  121:slopes 2349:Angle 2302:Weiss 2282:Bondi 2277:Hulse 2207:Milne 2111:discs 2055:Milne 2050:Gödel 1907:Virgo 1099:When 2237:Kerr 2187:Weyl 2086:Kerr 1946:and 1900:and 1898:LIGO 1465:ISBN 1436:ISBN 1246:and 719:and 523:and 509:and 161:= 1/ 123:are 2292:Yau 1917:GEO 1279:doi 534:or 113:= − 46:In 2340:: 1966:/ 1932:: 1887:: 1463:. 1461:58 1443:MR 1420:, 1359:10 1357:, 1353:, 1266:^ 1240:. 1209:. 1084:0. 945:, 938:, 931:, 917:, 910:, 903:, 840:= 701:w' 277:A 267:. 210:, 202:, 177:= 151:mx 149:= 141:= 133:− 117:. 115:mx 107:mx 105:= 93:xy 67:. 2092:) 2088:( 2074:) 2065:( 2031:) 2027:( 1974:) 1970:( 1950:) 1919:) 1896:( 1545:) 1536:( 1501:e 1494:t 1487:v 1473:. 1413:. 1281:: 1218:A 1214:A 1192:2 1188:t 1181:c 1175:2 1171:x 1165:= 1158:1 1154:x 1147:1 1143:t 1136:c 1123:2 1120:t 1116:1 1113:x 1109:z 1105:y 1101:c 1081:= 1076:2 1072:z 1063:1 1059:z 1050:2 1046:y 1037:1 1033:y 1024:2 1020:x 1011:1 1007:x 998:2 994:t 985:1 981:t 972:2 968:c 950:2 947:t 943:2 940:z 936:2 933:y 929:2 926:x 922:1 919:t 915:1 912:z 908:1 905:y 901:1 898:x 842:b 838:a 820:2 816:a 810:2 806:b 800:= 793:g 789:g 765:2 761:a 755:2 751:b 742:= 735:g 731:g 721:g 717:g 687:0 684:= 679:2 675:w 664:1 660:w 656:+ 646:2 642:w 636:1 632:w 609:0 606:= 601:2 597:z 586:1 582:z 578:+ 568:2 564:z 558:1 554:z 528:2 525:w 521:1 518:w 514:2 511:z 507:1 504:z 487:. 484:v 481:y 475:u 472:x 452:, 449:y 446:j 443:+ 440:x 437:= 432:2 428:w 423:, 420:v 417:j 414:+ 411:u 408:= 403:1 399:w 375:v 372:y 369:+ 366:u 363:x 343:y 340:i 337:+ 334:x 331:= 326:2 322:z 317:, 314:v 311:i 308:+ 305:u 302:= 297:1 293:z 265:A 261:d 257:c 243:d 237:b 231:, 228:c 222:a 212:d 208:c 204:b 200:a 196:A 183:m 179:x 175:y 171:m 167:y 163:m 159:x 155:m 147:y 143:x 139:y 135:y 131:x 127:. 111:y 103:y 97:y 20:)

Index

Hyperbolic-orthogonal

orthogonality
hyperbolic rotation
geometry
hyperbola
special relativity
relativity of simultaneity
reflections
hyperbola
slopes
additive inverses
reciprocals
tangent
bilinear form
complex numbers
hyperbolic numbers
analytic geometry
conjugate diameters
projective geometry
involution
projectively extended real line
hyperbolic involution
heterogeneous relation
Hermann Minkowski
spacetime
world line
relativity of simultaneity
conjugate hyperbola
conjugate diameter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑