Knowledge (XXG)

Relativity of simultaneity

Source 📝

203:, i.e., the complete Lorentz transformation. PoincarĂ© obtained the full transformation earlier in 1905 but in the papers of that year he did not mention his synchronization procedure. This derivation was completely based on light speed invariance and the relativity principle, so Einstein noted that for the electrodynamics of moving bodies the aether is superfluous. Thus, the separation into "true" and "local" times of Lorentz and PoincarĂ© vanishes â€“ all times are equally valid and therefore the relativity of length and time is a natural consequence. 193:). Therefore, if they synchronize their clocks by using light signals, they will only consider the transit time for the signals, but not their motion in respect to the aether. So the moving clocks are not synchronous and do not indicate the "true" time. PoincarĂ© calculated that this synchronization error corresponds to Lorentz's local time. In 1904, PoincarĂ© emphasized the connection between the principle of relativity, "local time", and light speed invariance; however, the reasoning in that paper was presented in a qualitative and conjectural manner. 300: 1580: 75: 83: 369: 361: 338: 330: 2433: 760: 919:) that might be referred to as the co-moving or "tangent free-float-frame" definition. This definition is naturally extrapolated to events in gravitationally-curved spacetimes, and to accelerated observers, through use of a radar-time/distance definition that (unlike the tangent free-float-frame definition for accelerated frames) assigns a unique time and position to any event. 189:
for observers in different states of motion. This was done in 1900, when Poincaré derived local time by assuming that the speed of light is invariant within the aether. Due to the "principle of relative motion", moving observers within the aether also assume that they are at rest and that the speed of light is constant in all directions (only to first order in
25: 309:
along the axis of train movement (back and front of the train car). In the inertial frame of the standing observer, there are three events which are spatially dislocated, but simultaneous: standing observer facing the moving observer (i.e., the center of the train), lightning striking the front of the train car, and lightning striking the back of the car.
408:
In the second diagram, the two ends of the train moving to the right, are shown by parallel lines. The flash of light is given off at a point exactly halfway between the two ends of the train, and again form two 45° lines, expressing the constancy of the speed of light. In this picture, however, the
356:
For the observer standing on the platform, on the other hand, the rear of the traincar is moving (catching up) toward the point at which the flash was given off, and the front of the traincar is moving away from it. As the speed of light is finite and the same in all directions for all observers, the
145:
occur at the same time if those events are separated in space. If one reference frame assigns precisely the same time to two events that are at different points in space, a reference frame that is moving relative to the first will generally assign different times to the two events (the only exception
404:
In the first diagram, the two ends of the train are drawn as grey lines. Because the ends of the train are stationary with respect to the observer on the train, these lines are just vertical lines, showing their motion through time but not space. The flash of light is shown as the 45° red lines. The
352:
A flash of light is given off at the center of the traincar just as the two observers pass each other. For the observer on board the train, the front and back of the traincar are at fixed distances from the light source and as such, according to this observer, the light will reach the front and back
308:
Einstein's version of the experiment presumed that one observer was sitting midway inside a speeding traincar and another was standing on a platform as the train moved past. As measured by the standing observer, the train is struck by two bolts of lightning simultaneously, but at different positions
819:
Graphically, this can be represented on a spacetime diagram by the fact that a plot of the set of points regarded as simultaneous generates a line which depends on the observer. In the spacetime diagram, the dashed line represents a set of points considered to be simultaneous with the origin by an
188:
who already emphasized in 1898 the conventional nature of simultaneity and who argued that it is convenient to postulate the constancy of the speed of light in all directions. However, this paper did not contain any discussion of Lorentz's theory or the possible difference in defining simultaneity
922:
The radar-time definition of extended-simultaneity further facilitates visualization of the way that acceleration curves spacetime for travelers in the absence of any gravitating objects. This is illustrated in the figure at right, which shows radar time/position isocontours for events in flat
149:
For example, a car crash in London and another in New York appearing to happen at the same time to an observer on Earth, will appear to have occurred at slightly different times to an observer on an airplane flying between London and New York. Furthermore, if the two events cannot be causally
150:
connected, depending on the state of motion, the crash in London may appear to occur first in a given frame, and the New York crash may appear to occur first in another. However, if the events can be causally connected, precedence order is preserved in all frames of reference.
312:
Since the events are placed along the axis of train movement, their time coordinates become projected to different time coordinates in the moving train's inertial frame. Events which occurred at space coordinates in the direction of train movement happen
908: 67: 401:= 0, and is drawn horizontally. The statement that the speed of light is the same for all observers is represented by drawing a light ray as a 45° line, regardless of the speed of the source relative to the speed of the observer. 303:
Einstein imagined a stationary observer who witnessed two lightning bolts simultaneously striking both ends of a moving train. He concluded that an observer standing on the train would measure the bolts to strike at different
571: 763:
A spacetime diagram showing the set of points regarded as simultaneous by a stationary observer (horizontal dotted line) and the set of points regarded as simultaneous by an observer moving at v = 0.25c (dashed
654: 1305: 824:
of one-quarter of the speed of light. The dotted horizontal line represents the set of points regarded as simultaneous with the origin by a stationary observer. This diagram is drawn using the (
357:
light headed for the back of the train will have less distance to cover than the light headed for the front. Thus, the flashes of light will strike the ends of the traincar at different times.
2136: 1203: 832:) coordinates of the stationary observer, and is scaled so that the speed of light is one, i.e., so that a ray of light would be represented by a line with a 45° angle from the 317:
than events at coordinates opposite to the direction of train movement. In the moving train's inertial frame, this means that lightning will strike the front of the train car
86:
Events A, B, and C occur in different order depending on the motion of the observer. The white line represents a plane of simultaneity being moved from the past to the future.
1384: 472:. And suppose that the observers' coordinate axes are parallel and that they have the same origin. Then the Lorentz transformation expresses how the coordinates are related: 722: 688: 927:
roundtrip. One caveat of this approach is that the time and place of remote events are not fully defined until light from such an event is able to reach our traveler.
349:
in 1910 and Einstein in 1917. It also consists of one observer midway inside a speeding traincar and another observer standing on a platform as the train moves past.
1366: 2183: 475: 2418: 2207: 1953: 46: 33: 575: 405:
points at which the two light flashes hit the ends of the train are at the same level in the diagram. This means that the events are simultaneous.
2465: 1989: 1943: 2127: 1417: 1165: 78:
Event B is simultaneous with A in the green reference frame, but it occurred before in the blue frame, and will occur later in the red frame.
1036: 1611: 429:, which relates the coordinates used by one observer to coordinates used by another in uniform relative motion with respect to the first. 748:
coordinate, so they will happen at different times in that frame. The term that accounts for the failure of absolute simultaneity is the
1427: 2235: 816:
constant. That is, the set of events which are regarded as simultaneous depends on the frame of reference used to make the comparison.
1864: 163: 1869: 1314: 1288: 1212: 1084: 946: 289: 2189: 1902: 2005: 2083: 2146: 261:. The book culminates in chapter 6, "The transition to the relativistic conception of simultaneity". Jammer indicates that 2436: 2178: 2013: 159: 114: 2000: 1228: 915:
The Lorentz-transform calculation above uses a definition of extended-simultaneity (i.e. of when and where events occur
1760: 2460: 2455: 2041: 1775: 231: 732:. If two events happen at the same time in the frame of the first observer, they will have identical values of the 2328: 1723: 1035: 38: 2358: 1984: 1665: 345:
A popular picture for understanding this idea is provided by a thought experiment similar to those suggested by
299: 2383: 1933: 1693: 1604: 956: 896: 227: 2112: 2034: 692: 658: 1654: 1645: 277: 110: 2201: 2107: 1101: 2338: 2065: 1739: 1703: 982: 951: 888: 426: 82: 2343: 1948: 1887: 346: 879:, and the set of simultaneous events for the second observer (at the origin) is described by the line 280:
can be expressed as the arbitrariness of which pair are taken to represent space and time in a plane.
2248: 2174: 2018: 1620: 1541: 1459: 1279:
Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911)
1243: 1145: 1001: 167: 1583: 2323: 2318: 2313: 2308: 2140: 2089: 1907: 1892: 1718: 1649: 1597: 924: 273: 269: 181: 2212: 1389: 184:
drift experiments. However, Lorentz gave no physical explanation of this effect. This was done by
2388: 2288: 2070: 2051: 2045: 1996: 1938: 1847: 1765: 1683: 1660: 1628: 1557: 1531: 1483: 1017: 991: 146:
being when motion is exactly perpendicular to the line connecting the locations of both events).
142: 122: 2398: 2268: 2230: 2222: 1823: 1780: 1500:
Einstein's thought experiment used two light rays starting at both ends of the platform. See:
1475: 1413: 1310: 1284: 1208: 1161: 1080: 977: 936: 382: 207: 185: 118: 1424: 2363: 2303: 2293: 2240: 2217: 1795: 1579: 1549: 1467: 1251: 1153: 1009: 941: 792:) coordinate system. From the above equations for the Lorentz transform it can be seen that 333:
The train-and-platform experiment from the reference frame of an observer on board the train
242: 74: 2378: 2353: 2278: 2273: 2156: 2117: 2079: 2023: 1897: 1833: 1522:
Dolby, Carl E.; Gull, Stephen F. (December 2001). "On radar time and the twin "paradox"".
1431: 1379: 784:= constant defines the "line of simultaneity" for the first (stationary) observer in the ( 389:-axis is defined to be a point traced out in time by the origin of the spatial coordinate 368: 360: 249:, directly addressing the structure Minkowski had put in place for simultaneity. In 2006, 215: 196: 173: 134: 106: 2161: 341:
Reference frame of an observer standing on the platform (length contraction not depicted)
1545: 1504: 1463: 1247: 1149: 1005: 2403: 2075: 2059: 2055: 1958: 1928: 1785: 1688: 1277: 729: 1038:
Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern
2449: 2393: 2373: 2368: 2283: 2151: 1979: 1923: 1755: 1708: 1561: 1348: 1021: 1487: 1446: 1442:
The thought experiment by Comstock described two platforms in relative motion. See:
1182: 337: 329: 101: 2413: 2333: 2298: 1828: 1790: 1262: 1190:, vol. 1, Boston and New York: Houghton, Mifflin and Company, pp. 604–622 1116: 372:
The same diagram in the frame of an observer who sees the train moving to the right
268:
Naturally the mathematical notions preceded physical interpretation. For instance,
254: 759: 199:
used a similar method in 1905 to derive the time transformation for all orders in
1407: 2197: 2166: 1713: 1471: 2408: 1974: 1818: 1813: 1013: 907: 262: 250: 235: 230:
of spatial directions to the worldline associated to the rapidity. Then every
211: 66: 1256: 1100: 464:. Now suppose that the first observer sees the second observer moving in the 1805: 1157: 864: 1479: 780:) coordinate system for the second (moving) observer, just as the equation 24: 1331: 923:
spacetime as experienced by a traveler (red trajectory) taking a constant
895:
of the worldline and simultaneous events, in accord with the principle of
2348: 1698: 223: 219: 1130: 91: 1553: 1536: 2028: 566:{\displaystyle t'={\frac {t-{v\,x/c^{2}}}{\sqrt {1-v^{2}/c^{2}}}}\,,} 1503: 1188:
Congress of arts and science, universal exposition, St. Louis, 1904
996: 906: 892: 758: 367: 359: 336: 328: 298: 81: 73: 65: 1056: 105: â€“ whether two spatially separated events occur at the same 2009: 1445: 1181: 409:
points at which the light flashes hit the ends of the train are
1593: 1306:
Subtle is the Lord: The Science and the Life of Albert Einstein
397:-axis is defined as the set of all points in space at the time 364:
The spacetime diagram in the frame of the observer on the train
259:
Concepts of Simultaneity: from antiquity to Einstein and beyond
226:, and the ordinary sense of simultaneity becomes dependent on 18: 16:
Concept that simultaneity depends on choice of reference frame
1589: 649:{\displaystyle x'={\frac {x-v\,t}{\sqrt {1-v^{2}/c^{2}}}}\,,} 425:
The relativity of simultaneity can be demonstrated using the
736:-coordinate. However, if they have different values of the 133:
According to the special theory of relativity introduced by
1204:
Thematic Origins of Scientific Thought: Kepler to Einstein
1107:
Archives NĂ©erlandaises des Sciences Exactes et Naturelles
812:
constant are different from the set of points that makes
1102:"La thĂ©orie de Lorentz et le principe de rĂ©action"  856:= 0, the equation of the dotted line of simultaneity is 844:= 1, the equation of the dashed line of simultaneity is 432:
Assume that the first observer uses coordinates labeled
265:
demythologized the absolute time of Newtonian physics.
1330: 1388:(1 ed.). Dublin: Longman, Green and Co. p.  695: 661: 578: 478: 448:, while the second observer uses coordinates labeled 121:
in 1900, and thereafter became a central idea in the
867:
in the spacetime of the first observer described by
772:= constant defines a "line of simultaneity" in the ( 744:-direction), they will have different values of the 381:
It may be helpful to visualize this situation using
2261: 2126: 2098: 1967: 1916: 1878: 1857: 1846: 1804: 1748: 1732: 1674: 1638: 1627: 1385:
A History of the Theories of Aether and Electricity
1077:
Einstein's Clocks, Poincaré's Maps: Empires of Time
978:"Simultaneity as an invariant equivalence relation" 1401: 1399: 1276: 716: 682: 648: 565: 70:On spaceships, map-clocks may look unsynchronized. 214:of a particle in his model of the cosmos called 176:used a mathematical method called "local time" 117:. This possibility was raised by mathematician 1183:"The Principles of Mathematical Physics"  836:axis. From our previous analysis, given that 1605: 1367:Bulletin of the American Mathematical Society 1055: 808:= constant. Thus the set of points that make 8: 1347:Various English translations on Wikisource: 863:In general the second observer traces out a 1412:, Samaira Book Publishers, pp. 30–33, 1409:Relativity - The Special and General Theory 1064:, New York: Science Press, pp. 222–234 321:the two observers align (face each other). 218:. In Minkowski's view, the naĂŻve notion of 1854: 1635: 1612: 1598: 1590: 1506:Relativity: The Special and General Theory 1535: 1255: 1131:"The Genesis of the theory of relativity" 995: 710: 694: 676: 660: 642: 633: 624: 618: 602: 590: 577: 559: 550: 541: 535: 516: 507: 503: 499: 490: 477: 740:-coordinate (different positions in the 49:of all important aspects of the article. 968: 45:Please consider expanding the lead to 1309:, New York: Oxford University Press, 7: 1363:Orthogonality and Spacetime Geometry 1229:"Zur Elektrodynamik bewegter Körper" 247:Orthogonality and Spacetime Geometry 2184:Tolman–Oppenheimer–Volkoff equation 2137:Friedmann–LemaĂźtre–Robertson–Walker 1447:"The principle of relativity"  276:are related as space and time. The 353:of the traincar at the same time. 164:History of Lorentz transformations 14: 1954:Hamilton–Jacobi–Einstein equation 2432: 2431: 1578: 1361:A.D. Taimanov (1989) "Review of 1034:Lorentz, Hendrik Antoon (1895), 911:Roundtrip radar-time isocontours 820:observer moving with a velocity 393:, and is drawn vertically. The 137:, it is impossible to say in an 23: 37:may be too short to adequately 2466:Thought experiments in physics 1761:Mass–energy equivalence (E=mc) 947:Einstein's thought experiments 290:Einstein's thought experiments 47:provide an accessible overview 1: 1180:PoincarĂ©, Henri (1904–1906), 1054:PoincarĂ©, Henri (1898–1913), 976:Mamone-Capria, Marco (2012), 917:at which you were not present 385:. For a given observer, the 160:History of special relativity 1207:, Harvard University Press, 413:at the same level; they are 210:introduced the concept of a 180:for explaining the negative 123:special theory of relativity 1776:Relativistic Doppler effect 1524:American Journal of Physics 1329:Minkowski, Hermann (1909), 1283:, Reading: Addison–Wesley, 1057:"The Measure of Time"  796:is constant if and only if 232:inertial frame of reference 2482: 2247:In computational physics: 1771:Relativity of simultaneity 1472:10.1126/science.31.803.767 1275:Miller, Arthur I. (1981), 1129:Darrigol, Olivier (2005), 1062:The foundations of science 287: 157: 115:observer's reference frame 96:relativity of simultaneity 2429: 2084:Lense–Thirring precession 1666:Doubly special relativity 1406:Einstein, Albert (2017), 1337:Physikalische Zeitschrift 1227:Einstein, Albert (1905), 1079:, New York: W.W. Norton, 1014:10.1007/s10701-012-9674-4 468:-direction at a velocity 1944:Post-Newtonian formalism 1934:Einstein field equations 1870:Mathematical formulation 1694:Hyperbolic orthogonality 1257:10.1002/andp.19053221004 1099:PoincarĂ©, Henri (1900), 957:Einstein synchronisation 897:hyperbolic orthogonality 228:hyperbolic orthogonality 141:sense that two distinct 1655:Galilean transformation 1646:Principle of relativity 1444:Comstock, D.F. (1910), 1201:Holton, Gerald (1988), 1158:10.1007/3-7643-7436-5_1 1075:Galison, Peter (2003), 717:{\displaystyle z'=z\,,} 683:{\displaystyle y'=y\,,} 278:principle of relativity 236:simultaneous hyperplane 1740:Lorentz transformation 1303:Pais, Abraham (1982), 983:Foundations of Physics 912: 889:multiplicative inverse 765: 718: 684: 650: 567: 427:Lorentz transformation 421:Lorentz transformation 373: 365: 342: 334: 325:The train-and-platform 305: 87: 79: 71: 2208:Weyl−Lewis−Papapetrou 1949:Raychaudhuri equation 1888:Equivalence principle 1332:"Raum und Zeit"  910: 903:Accelerated observers 762: 719: 685: 651: 568: 371: 363: 347:Daniel Frost Comstock 340: 332: 302: 294: 234:has a rapidity and a 113:, but depends on the 85: 77: 69: 2249:Numerical relativity 2090:pulsar timing arrays 1502:Einstein A. (1917), 1043:, Leiden: E.J. Brill 693: 659: 576: 476: 274:conjugate hyperbolas 168:Lorentz ether theory 98:is the concept that 2141:Friedmann equations 2035:Hulse–Taylor binary 1997:Gravitational waves 1893:Riemannian geometry 1719:Proper acceleration 1704:Maxwell's equations 1650:Galilean relativity 1546:2001AmJPh..69.1257D 1464:1910Sci....31..767C 1263:English translation 1248:1905AnP...322..891E 1150:2006eins.book....1D 1117:English translation 1006:2012FoPh...42.1365M 952:Ehrenfest's paradox 925:proper-acceleration 284:Thought experiments 270:conjugate diameters 2461:History of physics 2456:Special relativity 2190:Reissner–Nordström 2108:Brans–Dicke theory 1939:Linearized gravity 1766:Length contraction 1684:Frame of reference 1661:Special relativity 1584:Special relativity 1430:2020-10-12 at the 1236:Annalen der Physik 1138:SĂ©minaire PoincarĂ© 913: 766: 714: 680: 646: 563: 383:spacetime diagrams 377:Spacetime diagrams 374: 366: 343: 335: 306: 172:In 1892 and 1895, 88: 80: 72: 2443: 2442: 2257: 2256: 2236:OzsvĂĄth–SchĂŒcking 1842: 1841: 1824:Minkowski diagram 1781:Thomas precession 1724:Relativistic mass 1554:10.1119/1.1407254 1530:(12): 1257–1261. 1419:978-81-935401-7-6 1167:978-3-7643-7435-8 990:(11): 1365–1383, 937:Andromeda paradox 640: 639: 557: 556: 222:is replaced with 208:Hermann Minkowski 64: 63: 2473: 2435: 2434: 2218:van Stockum dust 1990:Two-body problem 1908:Mach's principle 1855: 1796:Terrell rotation 1636: 1614: 1607: 1600: 1591: 1582: 1566: 1565: 1539: 1519: 1513: 1512: 1510: 1498: 1492: 1490: 1458:(803): 767–772, 1449: 1440: 1434: 1422: 1403: 1394: 1393: 1376: 1370: 1359: 1353: 1344: 1334: 1326: 1320: 1319: 1300: 1294: 1293: 1282: 1272: 1266: 1260: 1259: 1233: 1224: 1218: 1217: 1198: 1192: 1191: 1185: 1177: 1171: 1170: 1135: 1126: 1120: 1114: 1104: 1096: 1090: 1089: 1072: 1066: 1065: 1059: 1051: 1045: 1044: 1042: 1031: 1025: 1024: 999: 973: 942:Causal structure 891:relation of the 723: 721: 720: 715: 703: 689: 687: 686: 681: 669: 655: 653: 652: 647: 641: 638: 637: 628: 623: 622: 607: 606: 591: 586: 572: 570: 569: 564: 558: 555: 554: 545: 540: 539: 524: 523: 522: 521: 520: 511: 491: 486: 295:Einstein's train 243:Robert Goldblatt 59: 56: 50: 27: 19: 2481: 2480: 2476: 2475: 2474: 2472: 2471: 2470: 2446: 2445: 2444: 2439: 2425: 2253: 2157:BKL singularity 2147:LemaĂźtre–Tolman 2122: 2118:Quantum gravity 2100: 2094: 2080:geodetic effect 2054:(together with 2024:LISA Pathfinder 1963: 1912: 1898:Penrose diagram 1880: 1874: 1849: 1838: 1834:Minkowski space 1800: 1744: 1728: 1676: 1670: 1630: 1623: 1618: 1575: 1570: 1569: 1521: 1520: 1516: 1501: 1499: 1495: 1443: 1441: 1437: 1432:Wayback Machine 1420: 1405: 1404: 1397: 1380:Whittaker, E.T. 1378: 1377: 1373: 1360: 1356: 1328: 1327: 1323: 1317: 1302: 1301: 1297: 1291: 1274: 1273: 1269: 1242:(10): 891–921, 1231: 1226: 1225: 1221: 1215: 1200: 1199: 1195: 1179: 1178: 1174: 1168: 1133: 1128: 1127: 1123: 1115:. See also the 1098: 1097: 1093: 1087: 1074: 1073: 1069: 1053: 1052: 1048: 1033: 1032: 1028: 975: 974: 970: 965: 933: 905: 696: 691: 690: 662: 657: 656: 629: 614: 592: 579: 574: 573: 546: 531: 512: 492: 479: 474: 473: 423: 379: 327: 297: 292: 286: 216:Minkowski space 197:Albert Einstein 174:Hendrik Lorentz 170: 158:Main articles: 156: 135:Albert Einstein 131: 109: â€“ is not 60: 54: 51: 44: 32:This article's 28: 17: 12: 11: 5: 2479: 2477: 2469: 2468: 2463: 2458: 2448: 2447: 2441: 2440: 2430: 2427: 2426: 2424: 2423: 2416: 2411: 2406: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2356: 2351: 2346: 2344:Choquet-Bruhat 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2265: 2263: 2259: 2258: 2255: 2254: 2252: 2251: 2244: 2243: 2238: 2233: 2226: 2225: 2220: 2215: 2210: 2205: 2196:Axisymmetric: 2193: 2192: 2187: 2181: 2170: 2169: 2164: 2159: 2154: 2149: 2144: 2135:Cosmological: 2132: 2130: 2124: 2123: 2121: 2120: 2115: 2110: 2104: 2102: 2096: 2095: 2093: 2092: 2087: 2076:frame-dragging 2073: 2068: 2063: 2060:Einstein rings 2056:Einstein cross 2049: 2038: 2037: 2032: 2026: 2021: 2016: 2003: 1993: 1992: 1987: 1982: 1977: 1971: 1969: 1965: 1964: 1962: 1961: 1959:Ernst equation 1956: 1951: 1946: 1941: 1936: 1931: 1929:BSSN formalism 1926: 1920: 1918: 1914: 1913: 1911: 1910: 1905: 1900: 1895: 1890: 1884: 1882: 1876: 1875: 1873: 1872: 1867: 1861: 1859: 1852: 1844: 1843: 1840: 1839: 1837: 1836: 1831: 1826: 1821: 1816: 1810: 1808: 1802: 1801: 1799: 1798: 1793: 1788: 1786:Ladder paradox 1783: 1778: 1773: 1768: 1763: 1758: 1752: 1750: 1746: 1745: 1743: 1742: 1736: 1734: 1730: 1729: 1727: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1689:Speed of light 1686: 1680: 1678: 1672: 1671: 1669: 1668: 1663: 1658: 1652: 1642: 1640: 1633: 1625: 1624: 1619: 1617: 1616: 1609: 1602: 1594: 1588: 1587: 1574: 1573:External links 1571: 1568: 1567: 1514: 1493: 1435: 1418: 1395: 1371: 1354: 1352: 1351: 1349:Space and Time 1321: 1315: 1295: 1289: 1267: 1219: 1213: 1193: 1172: 1166: 1121: 1091: 1085: 1067: 1046: 1026: 967: 966: 964: 961: 960: 959: 954: 949: 944: 939: 932: 929: 904: 901: 730:speed of light 713: 709: 706: 702: 699: 679: 675: 672: 668: 665: 645: 636: 632: 627: 621: 617: 613: 610: 605: 601: 598: 595: 589: 585: 582: 562: 553: 549: 544: 538: 534: 530: 527: 519: 515: 510: 506: 502: 498: 495: 489: 485: 482: 422: 419: 417:simultaneous. 378: 375: 326: 323: 296: 293: 285: 282: 186:Henri PoincarĂ© 178:t' = t – v x/c 155: 152: 130: 127: 119:Henri PoincarĂ© 62: 61: 41:the key points 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2478: 2467: 2464: 2462: 2459: 2457: 2454: 2453: 2451: 2438: 2428: 2422: 2421: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2329:Chandrasekhar 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2289:Schwarzschild 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2266: 2264: 2260: 2250: 2246: 2245: 2242: 2239: 2237: 2234: 2232: 2228: 2227: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2206: 2203: 2199: 2195: 2194: 2191: 2188: 2185: 2182: 2180: 2176: 2175:Schwarzschild 2172: 2171: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2142: 2138: 2134: 2133: 2131: 2129: 2125: 2119: 2116: 2114: 2111: 2109: 2106: 2105: 2103: 2097: 2091: 2088: 2085: 2081: 2077: 2074: 2072: 2071:Shapiro delay 2069: 2067: 2064: 2061: 2057: 2053: 2050: 2047: 2043: 2040: 2039: 2036: 2033: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2014:collaboration 2011: 2007: 2004: 2002: 1998: 1995: 1994: 1991: 1988: 1986: 1983: 1981: 1980:Event horizon 1978: 1976: 1973: 1972: 1970: 1966: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1935: 1932: 1930: 1927: 1925: 1924:ADM formalism 1922: 1921: 1919: 1915: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1885: 1883: 1877: 1871: 1868: 1866: 1863: 1862: 1860: 1856: 1853: 1851: 1845: 1835: 1832: 1830: 1829:Biquaternions 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1811: 1809: 1807: 1803: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1756:Time dilation 1754: 1753: 1751: 1747: 1741: 1738: 1737: 1735: 1731: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1709:Proper length 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1681: 1679: 1673: 1667: 1664: 1662: 1659: 1656: 1653: 1651: 1647: 1644: 1643: 1641: 1637: 1634: 1632: 1626: 1622: 1615: 1610: 1608: 1603: 1601: 1596: 1595: 1592: 1585: 1581: 1577: 1576: 1572: 1563: 1559: 1555: 1551: 1547: 1543: 1538: 1537:gr-qc/0104077 1533: 1529: 1525: 1518: 1515: 1509: 1507: 1497: 1494: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1448: 1439: 1436: 1433: 1429: 1426: 1421: 1415: 1411: 1410: 1402: 1400: 1396: 1391: 1387: 1386: 1381: 1375: 1372: 1368: 1364: 1358: 1355: 1350: 1346: 1345: 1342: 1338: 1333: 1325: 1322: 1318: 1316:0-19-520438-7 1312: 1308: 1307: 1299: 1296: 1292: 1290:0-201-04679-2 1286: 1281: 1280: 1271: 1268: 1264: 1258: 1253: 1249: 1245: 1241: 1237: 1230: 1223: 1220: 1216: 1214:0-674-87747-0 1210: 1206: 1205: 1197: 1194: 1189: 1184: 1176: 1173: 1169: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1132: 1125: 1122: 1118: 1112: 1108: 1103: 1095: 1092: 1088: 1086:0-393-32604-7 1082: 1078: 1071: 1068: 1063: 1058: 1050: 1047: 1041: 1039: 1030: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 998: 993: 989: 985: 984: 979: 972: 969: 962: 958: 955: 953: 950: 948: 945: 943: 940: 938: 935: 934: 930: 928: 926: 920: 918: 909: 902: 900: 898: 894: 890: 886: 882: 878: 874: 870: 866: 861: 859: 855: 852:= 0 and with 851: 847: 843: 839: 835: 831: 827: 823: 817: 815: 811: 807: 803: 799: 795: 791: 787: 783: 779: 775: 771: 768:The equation 761: 757: 755: 751: 747: 743: 739: 735: 731: 727: 711: 707: 704: 700: 697: 677: 673: 670: 666: 663: 643: 634: 630: 625: 619: 615: 611: 608: 603: 599: 596: 593: 587: 583: 580: 560: 551: 547: 542: 536: 532: 528: 525: 517: 513: 508: 504: 500: 496: 493: 487: 483: 480: 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 430: 428: 420: 418: 416: 412: 406: 402: 400: 396: 392: 388: 384: 376: 370: 362: 358: 354: 350: 348: 339: 331: 324: 322: 320: 316: 310: 301: 291: 283: 281: 279: 275: 271: 266: 264: 260: 256: 252: 248: 244: 239: 237: 233: 229: 225: 221: 217: 213: 209: 204: 202: 198: 194: 192: 187: 183: 179: 175: 169: 165: 161: 153: 151: 147: 144: 140: 136: 128: 126: 124: 120: 116: 112: 108: 104: 103: 97: 93: 84: 76: 68: 58: 48: 42: 40: 35: 30: 26: 21: 20: 2419: 2113:Kaluza–Klein 1865:Introduction 1791:Twin paradox 1770: 1586:at Wikibooks 1527: 1523: 1517: 1505: 1496: 1455: 1451: 1438: 1408: 1383: 1374: 1362: 1357: 1340: 1336: 1324: 1304: 1298: 1278: 1270: 1261:. See also: 1239: 1235: 1222: 1202: 1196: 1187: 1175: 1141: 1137: 1124: 1110: 1106: 1094: 1076: 1070: 1061: 1049: 1037: 1029: 987: 981: 971: 921: 916: 914: 884: 880: 876: 872: 868: 862: 857: 853: 849: 845: 841: 837: 833: 829: 825: 821: 818: 813: 809: 805: 801: 797: 793: 789: 785: 781: 777: 773: 769: 767: 753: 749: 745: 741: 737: 733: 725: 469: 465: 461: 457: 453: 449: 445: 441: 437: 433: 431: 424: 414: 410: 407: 403: 398: 394: 390: 386: 380: 355: 351: 344: 318: 314: 311: 307: 267: 258: 257:, published 255:Project MUSE 246: 240: 205: 200: 195: 190: 177: 171: 148: 138: 132: 102:simultaneity 99: 95: 89: 55:October 2022 52: 36: 34:lead section 2202:Kerr–Newman 2173:Spherical: 2042:Other tests 1985:Singularity 1917:Formulation 1879:Fundamental 1733:Formulation 1714:Proper time 1675:Fundamental 887:. Note the 840:= 0.25 and 129:Description 2450:Categories 2354:Zel'dovich 2262:Scientists 2241:Alcubierre 2048:of Mercury 2046:precession 1975:Black hole 1858:Background 1850:relativity 1819:World line 1814:Light cone 1639:Background 1631:relativity 1621:Relativity 1511:, Springer 1425:Chapter IX 963:References 288:See also: 263:Ernst Mach 253:, through 251:Max Jammer 212:world line 2324:Robertson 2309:Friedmann 2304:Eddington 2294:de Sitter 2128:Solutions 2006:detectors 2001:astronomy 1968:Phenomena 1903:Geodesics 1806:Spacetime 1749:Phenomena 1562:119067219 1113:: 252–278 1022:254513121 997:1202.6578 865:worldline 612:− 597:− 529:− 497:− 241:In 1990, 206:In 1908, 39:summarize 2437:Category 2314:LemaĂźtre 2279:Einstein 2269:PoincarĂ© 2229:Others: 2213:Taub–NUT 2179:interior 2101:theories 2099:Advanced 2066:redshift 1881:concepts 1699:Rapidity 1677:concepts 1488:33246058 1480:17758464 1428:Archived 1382:(1910). 1144:: 1–22, 931:See also 778:t′ 774:x′ 770:t′ 701:′ 667:′ 584:′ 484:′ 462:z′ 458:y′ 454:x′ 450:t′ 224:rapidity 220:velocity 139:absolute 111:absolute 100:distant 2379:Hawking 2374:Penrose 2359:Novikov 2339:Wheeler 2284:Hilbert 2274:Lorentz 2231:pp-wave 2052:lensing 1848:General 1629:Special 1542:Bibcode 1460:Bibcode 1452:Science 1343:: 75–88 1244:Bibcode 1146:Bibcode 1002:Bibcode 728:is the 315:earlier 154:History 92:physics 2420:others 2409:Thorne 2399:Misner 2384:Taylor 2369:Geroch 2364:Ehlers 2334:Zwicky 2152:Kasner 1560:  1508:  1486:  1478:  1416:  1313:  1287:  1211:  1164:  1083:  1040:  1020:  893:slopes 848:− 0.25 724:where 460:, and 444:, and 319:before 304:times. 245:wrote 182:aether 166:, and 143:events 94:, the 2414:Weiss 2394:Bondi 2389:Hulse 2319:Milne 2223:discs 2167:Milne 2162:Gödel 2019:Virgo 1558:S2CID 1532:arXiv 1484:S2CID 1369:21(1) 1232:(PDF) 1134:(PDF) 1018:S2CID 992:arXiv 860:= 0. 764:line) 272:of a 2349:Kerr 2299:Weyl 2198:Kerr 2058:and 2012:and 2010:LIGO 1476:PMID 1414:ISBN 1311:ISBN 1285:ISBN 1209:ISBN 1162:ISBN 1081:ISBN 107:time 2404:Yau 2029:GEO 1550:doi 1468:doi 1390:441 1365:", 1252:doi 1240:322 1154:doi 1010:doi 814:t' 415:not 411:not 201:v/c 191:v/c 90:In 2452:: 2078:/ 2044:: 1999:: 1556:. 1548:. 1540:. 1528:69 1526:. 1482:, 1474:, 1466:, 1456:31 1454:, 1450:, 1423:, 1398:^ 1341:10 1339:, 1335:, 1250:, 1238:, 1234:, 1186:, 1160:, 1152:, 1140:, 1136:, 1109:, 1105:, 1060:, 1016:, 1008:, 1000:, 988:42 986:, 980:, 899:. 885:vx 883:= 871:= 828:, 802:vx 800:− 794:t' 788:, 776:, 756:. 750:vx 746:t' 456:, 452:, 440:, 436:, 238:. 162:, 125:. 2204:) 2200:( 2186:) 2177:( 2143:) 2139:( 2086:) 2082:( 2062:) 2031:) 2008:( 1657:) 1648:( 1613:e 1606:t 1599:v 1564:. 1552:: 1544:: 1534:: 1491:. 1470:: 1462:: 1392:. 1265:. 1254:: 1246:: 1156:: 1148:: 1142:1 1119:. 1111:5 1012:: 1004:: 994:: 881:t 877:v 875:/ 873:x 869:t 858:t 854:v 850:x 846:t 842:c 838:v 834:x 830:t 826:x 822:v 810:t 806:c 804:/ 798:t 790:t 786:x 782:t 754:c 752:/ 742:x 738:x 734:t 726:c 712:, 708:z 705:= 698:z 678:, 674:y 671:= 664:y 644:, 635:2 631:c 626:/ 620:2 616:v 609:1 604:t 600:v 594:x 588:= 581:x 561:, 552:2 548:c 543:/ 537:2 533:v 526:1 518:2 514:c 509:/ 505:x 501:v 494:t 488:= 481:t 470:v 466:x 446:z 442:y 438:x 434:t 399:t 395:x 391:x 387:t 57:) 53:( 43:.

Index


lead section
summarize
provide an accessible overview



physics
simultaneity
time
absolute
observer's reference frame
Henri Poincaré
special theory of relativity
Albert Einstein
events
History of special relativity
History of Lorentz transformations
Lorentz ether theory
Hendrik Lorentz
aether
Henri Poincaré
Albert Einstein
Hermann Minkowski
world line
Minkowski space
velocity
rapidity
hyperbolic orthogonality
inertial frame of reference

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑