Knowledge (XXG)

Synthetic diamond

Source 📝

323:, he spent about 40 years (1882–1922) and a considerable part of his fortune trying to reproduce the experiments of Moissan and Hannay, but also adapted processes of his own. Parsons was known for his painstakingly accurate approach and methodical record keeping; all his resulting samples were preserved for further analysis by an independent party. He wrote a number of articles—some of the earliest on HPHT diamond—in which he claimed to have produced small diamonds. However, in 1928, he authorized Dr. C. H. Desch to publish an article in which he stated his belief that no synthetic diamonds (including those of Moissan and others) had been produced up to that date. He suggested that most diamonds that had been produced up to that point were likely synthetic 613: 762:. The diamond yield is about 10% of the initial graphite weight. The estimated cost of diamond produced by this method is comparable to that of the HPHT method but the crystalline perfection of the product is significantly worse for the ultrasonic synthesis. This technique requires relatively simple equipment and procedures, and has been reported by two research groups, but had no industrial use as of 2008. Numerous process parameters, such as preparation of the initial graphite powder, the choice of ultrasonic power, synthesis time and the solvent, were not optimized, leaving a window for potential improvement of the efficiency and reduction of the cost of the ultrasonic synthesis. 1287:. The revised guides were substantially contrary to what had been advocated in 2016 by De Beers. The new guidelines remove the word "natural" from the definition of "diamond", thus including lab-grown diamonds within the scope of the definition of "diamond". The revised guide further states that "If a marketer uses 'synthetic' to imply that a competitor's lab-grown diamond is not an actual diamond, ... this would be deceptive." In July 2019, the third party diamond certification lab GIA (Gemological Institute of America) dropped the word 'synthetic' from its certification process and report for lab-grown diamonds, according to the FTC revision. 601:-shaped volume. The cubic press was created shortly thereafter to increase the volume to which pressure could be applied. A cubic press is typically smaller than a belt press and can more rapidly achieve the pressure and temperature necessary to create synthetic diamond. However, cubic presses cannot be easily scaled up to larger volumes: the pressurized volume can be increased by using larger anvils, but this also increases the amount of force needed on the anvils to achieve the same pressure. An alternative is to decrease the surface area to volume ratio of the pressurized volume, by using more anvils to converge upon a higher-order 715: 336: 33: 970: 656:
industrial applications, the flexibility and simplicity of CVD setups explain the popularity of CVD growth in laboratory research. The advantages of CVD diamond growth include the ability to grow diamond over large areas and on various substrates, and the fine control over the chemical impurities and thus properties of the diamond produced. Unlike HPHT, CVD process does not require high pressures, as the growth typically occurs at pressures under 27 kPa (3.9 psi).
648: 731:
immersed in water, the chamber cools rapidly after the explosion, suppressing conversion of newly produced diamond into more stable graphite. In a variation of this technique, a metal tube filled with graphite powder is placed in the detonation chamber. The explosion heats and compresses the graphite to an extent sufficient for its conversion into diamond. The product is always rich in graphite and other non-diamond carbon forms, and requires prolonged boiling in hot
1197: 258: 570: 629:(e.g., tungsten carbide or VK10 hard alloy). The outer octahedral cavity is pressed by 8 steel outer anvils. After mounting, the whole assembly is locked in a disc-type barrel with a diameter about 1 m (3 ft 3 in). The barrel is filled with oil, which pressurizes upon heating, and the oil pressure is transferred to the central cell. The synthesis capsule is heated up by a coaxial graphite heater, and the temperature is measured with a 1209:
economic scale. Indeed, by 2023, synthetic diamonds' share had increased to 17% of the overall diamond market. They are available in yellow, pink, green, orange, blue and, to a lesser extent, colorless (or white). The yellow color comes from nitrogen impurities in the manufacturing process, while the blue color comes from boron. Other colors, such as pink or green, are achievable after synthesis using irradiation. Several companies also offer
532:(CVD). William G. Eversole reportedly achieved vapor deposition of diamond over diamond substrate in 1953, but it was not reported until 1962. Diamond film deposition was independently reproduced by Angus and coworkers in 1968 and by Deryagin and Fedoseev in 1970. Whereas Eversole and Angus used large, expensive, single-crystal diamonds as substrates, Deryagin and Fedoseev succeeded in making diamond films on non-diamond materials ( 469: 803:). Large, clear and transparent single-crystal diamonds are typically used as gemstones. Polycrystalline diamond (PCD) consists of numerous small grains, which are easily seen by the naked eye through strong light absorption and scattering; it is unsuitable for gems and is used for industrial applications such as mining and cutting tools. Polycrystalline diamond is often described by the average size (or 1146:(at room temperature). Diamond is also distinguished from most other semiconductors by the lack of a stable native oxide. This makes it difficult to fabricate surface MOS devices, but it does create the potential for UV radiation to gain access to the active semiconductor without absorption in a surface layer. Because of these properties, it is employed in applications such as the 540:
relative lack of universal knowledge for identifying large quantities of melee efficiently, not all dealers have made an effort to test diamond melee to correctly identify whether it is of natural or synthetic origin. However, international laboratories are now beginning to tackle the issue head-on, with significant improvements in synthetic melee identification being made.
269:, played a significant role. His groundbreaking discovery that a diamond's crystal lattice is similar to carbon's crystal structure paved the way for initial attempts to produce diamonds. After it was discovered that diamond was pure carbon in 1797, many attempts were made to convert various cheap forms of carbon into diamond. The earliest successes were reported by 1379:, in which this physicist states that he has, on his part, succeeded in making carbon crystallize by methods different from those of Mr. Gannal, and that a sealed packet which he deposited with the Secretary in 1824 contains the details of his initial procedures. Mr. Arago announced that he knew another person who had arrived at similar results, and 1058:. Those synthetic polycrystalline diamond windows are shaped as disks of large diameters (about 10 cm for gyrotrons) and small thicknesses (to reduce absorption) and can only be produced with the CVD technique. Single crystal slabs of dimensions of length up to approximately 10 mm are becoming increasingly important in several areas of 154: 477:
seeds. The container was heated and the pressure was raised to about 5.5 GPa (800,000 psi). The crystals grow as they flow from the center to the ends of the tube, and extending the length of the process produces larger crystals. Initially, a week-long growth process produced gem-quality stones of around 5 mm (0.20 in) (1
450:", which both dissolved carbon and accelerated its conversion into diamond. The largest diamond he produced was 0.15 mm (0.0059 in) across; it was too small and visually imperfect for jewelry, but usable in industrial abrasives. Hall's co-workers were able to replicate his work, and the discovery was published in the major journal 1030:. Efficient heat dissipation prolongs the lifetime of those electronic devices, and the devices' high replacement costs justify the use of efficient, though relatively expensive, diamond heat sinks. In semiconductor technology, synthetic diamond heat spreaders prevent silicon and other semiconducting devices from overheating. 791:(luster), and chemical stability (combined with marketing), make it a popular gemstone. High thermal conductivity is also important for technical applications. Whereas high optical dispersion is an intrinsic property of all diamonds, their other properties vary depending on how the diamond was created. 1208:
are grown by HPHT or CVD methods, and represented approximately 2% of the gem-quality diamond market as of 2013. However, there are indications that the market share of synthetic jewelry-quality diamonds may grow as advances in technology allow for larger higher-quality synthetic production on a more
660:
optimizing the substrate temperature (about 800 °C (1,470 °F)) during the growth through a series of test runs. Moreover, optimizing the gas mixture composition and flow rates is paramount to ensure uniform and high-quality diamond growth. The gases always include a carbon source, typically
659:
The CVD growth involves substrate preparation, feeding varying amounts of gases into a chamber and energizing them. The substrate preparation includes choosing an appropriate material and its crystallographic orientation; cleaning it, often with a diamond powder to abrade a non-diamond substrate; and
588:
The original GE invention by Tracy Hall uses the belt press wherein the upper and lower anvils supply the pressure load to a cylindrical inner cell. This internal pressure is confined radially by a belt of pre-stressed steel bands. The anvils also serve as electrodes providing electric current to the
476:
Synthetic gem-quality diamond crystals were first produced in 1970 by GE, then reported in 1971. The first successes used a pyrophyllite tube seeded at each end with thin pieces of diamond. The graphite feed material was placed in the center and the metal solvent (nickel) between the graphite and the
655:
Chemical vapor deposition is a method by which diamond can be grown from a hydrocarbon gas mixture. Since the early 1980s, this method has been the subject of intensive worldwide research. Whereas the mass production of high-quality diamond crystals make the HPHT process the more suitable choice for
359:
Due to questions on the patent process and the reasonable belief that no other serious diamond synthesis research occurred globally, the board of ASEA opted against publicity and patent applications. Thus the announcement of the ASEA results occurred shortly after the GE press conference of February
1272:
Around 2016, the price of synthetic diamond gemstones (e.g., 1 carat stones) began dropping "precipitously" by roughly 30% in one year, becoming clearly lower than that of mined diamonds. As of 2017, synthetic diamonds sold as jewelry were typically selling for 15–20% less than natural equivalents;
1216:
Gem-quality diamonds grown in a lab can be chemically, physically and optically identical to naturally occurring ones. The mined diamond industry has undertaken legal, marketing and distribution countermeasures to try to protect its market from the emerging presence of synthetic diamonds. Synthetic
830:
direction (along the longest diagonal of the cubic diamond lattice). Nanocrystalline diamond produced through CVD diamond growth can have a hardness ranging from 30% to 75% of that of single crystal diamond, and the hardness can be controlled for specific applications. Some synthetic single-crystal
955:
mounted in a fine copper tip. One thermistor functions as a heating device while the other measures the temperature of the copper tip: if the stone being tested is a diamond, it will conduct the tip's thermal energy rapidly enough to produce a measurable temperature drop. This test takes about 2–3
730:
10 in) in diameter) can be formed by detonating certain carbon-containing explosives in a metal chamber. These are called "detonation nanodiamonds". During the explosion, the pressure and temperature in the chamber become high enough to convert the carbon of the explosives into diamond. Being
624:
is claimed to be the most compact, efficient, and economical of all the diamond-producing presses. In the center of a BARS device, there is a ceramic cylindrical "synthesis capsule" of about 2 cm (0.12 cu in) in size. The cell is placed into a cube of pressure-transmitting material,
520:
Diamond Research Laboratory has grown stones of up to 25 carats (5.0 g) for research purposes. Stable HPHT conditions were kept for six weeks to grow high-quality diamonds of this size. For economic reasons, the growth of most synthetic diamonds is terminated when they reach a mass of 1 carat
351:(Allmänna Svenska Elektriska Aktiebolaget), Sweden's major electrical equipment manufacturing company. Starting in 1942, ASEA employed a team of five scientists and engineers as part of a top-secret diamond-making project code-named QUINTUS. The team used a bulky split-sphere apparatus designed by 1126:
Synthetic diamond transistors have been produced in the laboratory. They remain functional at much higher temperatures than silicon devices, and are resistant to chemical and radiation damage. While no diamond transistors have yet been successfully integrated into commercial electronics, they are
770:
In 2024, scientists announced a method that utilizes injecting methane and hydrogen gases onto a liquid metal alloy of gallium, iron, nickel and silicon (77.25/11.00/11.00/0.25 ratio) at approximately 1,025 °C to crystallize diamond at 1 atmosphere of pressure. The crystallization is a ‘seedless’
426:
container, the finished grit being squeezed out of the container into a gasket. The team recorded diamond synthesis on one occasion, but the experiment could not be reproduced because of uncertain synthesis conditions, and the diamond was later shown to have been a natural diamond used as a seed.
1181:
reactions that cannot ordinarily be studied and in some cases degrade redox-reactive organic contaminants in water supplies. Because diamond is mechanically and chemically stable, it can be used as an electrode under conditions that would destroy traditional materials. As an electrode, synthetic
849:
Every diamond contains atoms other than carbon in concentrations detectable by analytical techniques. Those atoms can aggregate into macroscopic phases called inclusions. Impurities are generally avoided, but can be introduced intentionally as a way to control certain properties of the diamond.
1268:
According to a report from the Gem & Jewellery Export Promotional Council, synthetic diamonds accounted for 0.28% of diamond produced for use as gemstones in 2014. In April 2022, CNN Business reported that engagement rings featuring a synthetic or a lab grown diamond jumped 63% compared to
539:
From 2013, reports emerged of a rise in undisclosed synthetic melee diamonds (small round diamonds typically used to frame a central diamond or embellish a band) being found in set jewelry and within diamond parcels sold in the trade. Due to the relatively low cost of diamond melee, as well as
548:
There are several methods used to produce synthetic diamonds. The original method uses high pressure and high temperature (HPHT) and is still widely used because of its relatively low cost. The process involves large presses that can weigh hundreds of tons to produce a pressure of 5 GPa
1008:
onto the tool. This is typically referred to in industry as polycrystalline diamond (PCD). PCD-tipped tools can be found in mining and cutting applications. For the past fifteen years, work has been done to coat metallic tools with CVD diamond, and though the work shows promise, it has not
827:, the hardest known material on this scale. Diamond is also the hardest known natural material for its resistance to indentation. The hardness of synthetic diamond depends on its purity, crystalline perfection and orientation: hardness is higher for flawless, pure crystals oriented to the 157:
Synthetic diamonds, which have a different shade due to the different content of nitrogen impurities. Yellow diamonds are obtained with a higher nitrogen content in the carbon lattice, and transparent diamonds come only from pure carbon. The smallest yellow diamond size is around 0.3
581:) press. Diamond seeds are placed at the bottom of the press. The internal part of the press is heated above 1,400 °C (2,550 °F) and melts the solvent metal. The molten metal dissolves the high purity carbon source, which is then transported to the small diamond seeds and 2957:
Galimov, É. M.; Kudin, A. M.; Skorobogatskii, V. N.; Plotnichenko, V. G.; Bondarev, O. L.; Zarubin, B. G.; Strazdovskii, V. V.; Aronin, A. S.; Fisenko, A. V.; Bykov, I. V.; Barinov, A. Yu. (2004). "Experimental Corroboration of the Synthesis of Diamond in the Cavitation Process".
997:. These are by far the largest industrial applications of synthetic diamond. While natural diamond is also used for these purposes, synthetic HPHT diamond is more popular, mostly because of better reproducibility of its mechanical properties. Diamond is not suitable for machining 1017:
Most materials with high thermal conductivity are also electrically conductive, such as metals. In contrast, pure synthetic diamond has high thermal conductivity, but negligible electrical conductivity. This combination is invaluable for electronics where diamond is used as a
456:. He was the first person to grow a synthetic diamond with a reproducible, verifiable and well-documented process. He left GE in 1955, and three years later developed a new apparatus for the synthesis of diamond—a tetrahedral press with four anvils—to avoid violating a 699:
windows of the growth chamber or from the silicon substrate. Therefore, silica windows are either avoided or moved away from the substrate. Boron-containing species in the chamber, even at very low trace levels, also make it unsuitable for the growth of pure diamond.
850:
Growth processes of synthetic diamond, using solvent-catalysts, generally lead to formation of a number of impurity-related complex centers, involving transition metal atoms (such as nickel, cobalt or iron), which affect the electronic properties of the material.
596:
The second type of press design is the cubic press. A cubic press has six anvils which provide pressure simultaneously onto all faces of a cube-shaped volume. The first multi-anvil press design was a tetrahedral press, using four anvils to converge upon a
293:. The molten iron was then rapidly cooled by immersion in water. The contraction generated by the cooling supposedly produced the high pressure required to transform graphite into diamond. Moissan published his work in a series of articles in the 1890s. 355:
and Anders Kämpe. Pressure was maintained within the device at an estimated 8.4 GPa (1,220,000 psi) and a temperature of 2,400 °C (4,350 °F) for an hour. A few small diamonds were produced, but not of gem quality or size.
117:
Numerous claims of diamond synthesis were reported between 1879 and 1928; most of these attempts were carefully analyzed but none was confirmed. In the 1940s, systematic research of diamond creation began in the United States, Sweden and the
511:
under short-wavelength ultraviolet light, but were inert under long-wave UV. Among natural diamonds, only the rarer blue gems exhibit these properties. Unlike natural diamonds, all the GE stones showed strong yellow fluorescence under
893:
to more than 2000 W/mK, depending on the defects, grain boundary structures. As the growth of diamond in CVD, the grains grow with the film thickness, leading to a gradient thermal conductivity along the film thickness direction.
1247:
In May 2015, a record was set for an HPHT colorless diamond at 10.02 carats. The faceted jewel was cut from a 32.2-carat stone that was grown in about 300 hours. By 2022, gem-quality diamonds of 16–20 carats were being produced.
1074:. Both the CVD and HPHT processes are also used to create designer optically transparent diamond anvils as a tool for measuring electric and magnetic properties of materials at ultra high pressures using a diamond anvil cell. 4724:
Ueda, K.; Kasu, M.; Yamauchi, Y.; Makimoto, T.; Schwitters, M.; Twitchen, D. J.; Scarsbrook, G. A.; Coe, S. E. (July 1, 2006). "Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz".
4941:
Benmoussa, A; Soltani, A; Haenen, K; Kroth, U; Mortet, V; Barkad, H A; Bolsee, D; Hermans, C; Richter, M; De Jaeger, J C; Hochedez, J F (2008). "New developments on diamond photodetector for VUV Solar Observations".
244:
and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special
4879:
Bucciolini, M.; Borchi, E; Bruzzi, M; Casati, M; Cirrone, P; Cuttone, G; Deangelis, C; Lovik, I; Onori, S; Raffaele, L.; Sciortino, S. (2005). "Diamond dosimetry: Outcomes of the CANDIDO and CONRADINFN projects".
989:. As the hardest known naturally occurring material, diamond can be used to polish, cut, or wear away any material, including other diamonds. Common industrial applications of this ability include diamond-tipped 950:
Diamond's thermal conductivity is made use of by jewelers and gemologists who may employ an electronic thermal probe to separate diamonds from their imitations. These probes consist of a pair of battery-powered
4815:
Railkar, T. A.; Kang, W. P.; Windischmann, Henry; Malshe, A. P.; Naseem, H. A.; Davidson, J. L.; Brown, W. D. (2000). "A critical review of chemical vapor-deposited (CVD) diamond for electronic applications".
1122:
of diamond (5.5 eV) gives it excellent dielectric properties. Combined with the high mechanical stability of diamond, those properties are being used in prototype high-power switches for power stations.
5208: 430:
Hall achieved the first commercially successful synthesis of diamond on December 16, 1954, and this was announced on February 15, 1955. His breakthrough came when he used a press with a hardened steel
3523:
Gong, Yan; Luo, Da; Choe, Myeonggi; Kim, Yongchul; Ram, Babu; Zafari, Mohammad; Seong, Won Kyung; Bakharev, Pavel; Wang, Meihui; Park, In Kee; Lee, Seulyi; Shin, Tae Joo; Lee, Zonghoon; Lee, Geunsik;
481:
or 0.2 g), and the process conditions had to be as stable as possible. The graphite feed was soon replaced by diamond grit because that allowed much better control of the shape of the final crystal.
4362:
Mildren, Richard P.; Sabella, Alexander; Kitzler, Ondrej; Spence, David J.; McKay, Aaron M. (2013). "Ch. 8 Diamond Raman Laser Design and Performance". In Mildren, Rich P.; Rabeau, James R. (eds.).
3156:
Pal'Yanov, N.; Sokol, A.G.; Borzdov, M.; Khokhryakov, A.F. (2002). "Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study".
2537:
Burns, R. C.; Cvetkovic, V.; Dodge, C. N.; Evans, D. J. F.; Rooney, Marie-Line T.; Spear, P. M.; Welbourn, C. M. (1990). "Growth-sector dependence of optical features in large synthetic diamonds".
695:
During the growth, the chamber materials are etched off by the plasma and can incorporate into the growing diamond. In particular, CVD diamond is often contaminated by silicon originating from the
434:"belt" strained to its elastic limit wrapped around the sample, producing pressures above 10 GPa (1,500,000 psi) and temperatures above 2,000 °C (3,630 °F). The press used a 4170:
Coelho, R.T.; Yamada, S.; Aspinwall, D.K.; Wise, M.L.H. (1995). "The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminum-based alloys including MMC".
577:
In the HPHT method, there are three main press designs used to supply the pressure and temperature necessary to produce synthetic diamond: the belt press, the cubic press and the split-sphere (
5747: 312:
replicated Moissan's and Ruff's experiments, producing a synthetic diamond. Despite the claims of Moissan, Ruff, and Hershey, other experimenters were unable to reproduce their synthesis.
5801:
16 C.F.R. Part 23: Guides for the Jewelry, Precious Metals, and Pewter Industries: Federal Trade Commission Letter Declining to Amend the Guides with Respect to Use of the Term "Cultured"
3281:
State-of-the-Art Program on Compound Semiconductors XXXIX and Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics IV: proceedings of the Electrochemical Society
1066:. Recent advances in the HPHT and CVD synthesis techniques have improved the purity and crystallographic structure perfection of single-crystalline diamond enough to replace silicon as a 5177: 1428: 5526: 4628:
Isberg, J.; Hammersberg, J; Johansson, E; Wikström, T; Twitchen, DJ; Whitehead, AJ; Coe, SE; Scarsbrook, GA (2002). "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond".
4019:
Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y.; Li, Chao; Yates, Luke; Foley, Brian M.; Goorsky, Mark; Cola, Baratunde A.; Faili, Firooz; Graham, Samuel (February 7, 2018).
593:
pressure, rather than steel belts, to confine the internal pressure. Belt presses are still used today, but they are built on a much larger scale than those of the original design.
1001:
at high speeds, as carbon is soluble in iron at the high temperatures created by high-speed machining, leading to greatly increased wear on diamond tools compared to alternatives.
5822: 3981:
Catledge, S. A.; Vohra, Yogesh K. (1999). "Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations".
5717: 3460:
Khachatryan, A.Kh.; Aloyan, S.G.; May, P.W.; Sargsyan, R.; Khachatryan, V.A.; Baghdasaryan, V.S. (2008). "Graphite-to-diamond transformation induced by ultrasonic cavitation".
2258: 5559: 399:
interrupted the project. It was resumed in 1951 at the Schenectady Laboratories of GE, and a high-pressure diamond group was formed with Francis P. Bundy and H. M. Strong.
1240:-inscribed serial numbers on all of its gemstones. The company web site shows an example of the lettering of one of its laser inscriptions, which includes both the words " 3129:
Loshak, M. G. & Alexandrova, L. I. (2001). "Rise in the efficiency of the use of cemented carbides as a matrix of diamond-containing studs of rock destruction tool".
4679:
Russell, S. A. O.; Sharabi, S.; Tallaire, A.; Moran, D. A. J. (October 1, 2012). "Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz".
3349: 1474: 664:, and hydrogen with a typical ratio of 1:99. Hydrogen is essential because it selectively etches off non-diamond carbon. The gases are ionized into chemically active 3757:
Yan, Chih-Shiue; Mao, Ho-Kwang; Li, Wei; Qian, Jiang; Zhao, Yusheng; Hemley, Russell J. (2005). "Ultrahard diamond single crystals from chemical vapor deposition".
2784: 87:(imitations of diamond made of superficially similar non-diamond materials), synthetic diamonds are composed of the same material as naturally formed diamonds—pure 5691: 4021:"Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance" 775:
methods. Injection of methane and hydrogen results in a diamond nucleus after around 15 minutes and eventually a continuous diamond film after around 150 minutes.
5776: 500:
produced blue ones. Removing nitrogen also slowed the growth process and reduced the crystalline quality, so the process was normally run with nitrogen present.
4232:
Sakamoto, M.; Endriz, J. G. & Scifres, D. R. (1992). "120 W CW output power from monolithic AlGaAs (800 nm) laser diode array mounted on diamond heatsink".
5344: 1723:
Royère, C. (1999). "The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?".
1229:
wavelengths. The DiamondView tester from De Beers uses UV fluorescence to detect trace impurities of nitrogen, nickel or other metals in HPHT or CVD diamonds.
787:
is considered to be the most important quality of a diamond. Purity and high crystalline perfection make diamonds transparent and clear, whereas its hardness,
5200: 2836: 369: 5593: 3792:
Larico, R.; Justo, J. F.; Machado, W. V. M.; Assali, L. V. C. (2009). "Electronic properties and hyperfine fields of nickel-related complexes in diamond".
5465: 4469: 3235:
Barjon, J.; Rzepka, E.; Jomard, F.; Laroche, J.-M.; Ballutaud, D.; Kociniewski, T.; Chevallier, J. (2005). "Silicon incorporation in CVD diamond layers".
5495: 503:
Although the GE stones and natural diamonds were chemically identical, their physical properties were not the same. The colorless stones produced strong
119: 5657: 3956: 2754: 981:
Most industrial applications of synthetic diamond have long been associated with their hardness; this property makes diamond the ideal material for
79:
that is produced in a controlled technological process (in contrast to naturally formed diamond, which is created through geological processes and
4396: 4197:
Ahmed, W.; Sein, H.; Ali, N.; Gracio, J.; Woodwards, R. (2003). "Diamond films grown on cemented WC-Co dental burs using an improved CVD method".
3845:
Assali, L. V. C.; Machado, W. V. M.; Justo, J. F. (2011). "3d transition metal impurities in diamond: electronic properties and chemical trends".
1451: 5743: 5410: 901:
within the crystal. The thermal conductivity of pure diamond is the highest of any known solid. Single crystals of synthetic diamond enriched in
210:
are used at high-energy research facilities and are available commercially. Due to its unique combination of thermal and chemical stability, low
1395:
gave a reading of the minutes of experiments made on November 26, 1828 on the powder presented as artificial diamond by Mr. Cagniard de Latour."
5173: 2587:
Abbaschian, Reza; Zhu, Henry; Clarke, Carter (2005). "High pressure-high temperature growth of diamond crystals using split sphere apparatus".
1933: 927:
of any material, 30 W/cm·K at room temperature, 7.5 times higher than that of copper. Natural diamond's conductivity is reduced by 1.1% by the
1418: 5903: 5882: 5861: 5518: 4791: 4346: 4294: 4154: 4078:
Wei, Lanhua; Kuo, P.; Thomas, R.; Anthony, T.; Banholzer, W. (1993). "Thermal conductivity of isotopically modified single crystal diamond".
3694: 3593: 3289: 3207: 3062: 2198: 2048: 1927: 1900: 1873: 391:
companies to further develop diamond synthesis. They were able to heat carbon to about 3,000 °C (5,430 °F) under a pressure of 3.5
5022:
Nebel, C.E.; Uetsuka, H.; Rezek, B.; Shin, D.; Tokuda, N.; Nakamura, T. (2007). "Inhomogeneous DNA bonding to polycrystalline CVD diamond".
3213: 1114:, which reaches 4500 cm/(V·s) for electrons in single-crystal CVD diamond. High mobility is favorable for high-frequency operation and 3496: 3078:
Hall, H. T. (1958). "Ultrahigh-Pressure Research: At ultrahigh pressures new and sometimes unexpected chemical and physical events occur".
1766: 1660: 1641: 1604: 4770:
Isberg, J.; Gabrysch, M.; Tajani, A. & Twitchen, D.J. (2006). "High-field Electrical Transport in Single Crystal CVD Diamond Diodes".
1265:
for synthetic diamonds has been increasing, albeit from a small base, as customers look for stones that are ethically sound and cheaper.
1177:, which would interact with DNA thereby changing electrical conductivity of the diamond film. In addition, diamonds can be used to detect 5309:
Collins, A.T.; Connor, A.; Ly, C-H.; Shareef, A.; Spear, P.M. (2005). "High-temperature annealing of optical centers in type-I diamond".
3700: 3625: 3599: 3295: 2054: 1549: 5652: 5151: 4379: 1622: 844: 5814: 1795: 304:
claimed in 1917 to have produced diamonds up to 7 mm (0.28 in) in diameter, but later retracted his statement. In 1926, Dr.
5713: 1283:
approved a substantial revision to its Jewelry Guides, with changes that impose new rules on how the trade can describe diamonds and
2814: 2244: 755: 5548: 1955: 1500: 1276:
In May 2018, De Beers announced that it would introduce a new jewelry brand called "Lightbox" that features synthetic diamonds.
1236:
of laboratory-grown diamonds has made public statements about being "committed to disclosure" of the nature of its diamonds, and
1039: 719: 5800: 5446: 1173:
to the surface of polycrystalline diamond films produced through CVD. Such DNA-modified films can be used for detecting various
549:(730,000 psi) at 1,500 °C (2,730 °F). The second method, using chemical vapor deposition (CVD), creates a carbon 5624: 3318: 4862: 4056: 3004: 824: 528:
of hydrocarbon gases at the relatively low temperature of 800 °C (1,470 °F). This low-pressure process is known as
99: 1106:. Making a p–n junction by sequential doping of synthetic diamond with boron and phosphorus produces light-emitting diodes ( 2454: 2394: 2345: 1478: 352: 4120:
Wenckus, J. F. (December 18, 1984) "Method and means of rapidly distinguishing a simulated diamond from natural diamond"
2776: 553:
over a substrate onto which the carbon atoms deposit to form diamond. Other methods include explosive formation (forming
5683: 4727: 4681: 492:
were common, especially "plate-like" ones from the nickel. Removing all nitrogen from the process by adding aluminum or
3425:
Dolmatov, V. Yu. (2006). "Development of a rational technology for synthesis of high-quality detonation nanodiamonds".
5971: 5769: 3317:
Iakoubovskii, K.; Baidakova, M.V.; Wouters, B.H.; Stesmans, A.; Adriaenssens, G.J.; Vul', A.Ya.; Grobet, P.J. (2000).
1376: 1151: 457: 5913: 1986:"Further Comments on Attempts by H. Moissan, J. B. Hannay and Sir Charles Parsons to Make Diamonds in the Laboratory" 1352:, and into the product of his experiments, which have presented properties similar to those of particles of diamond." 1165:
Conductive CVD diamond is a useful electrode under many circumstances. Photochemical methods have been developed for
122:, which culminated in the first reproducible synthesis in 1953. Further research activity yielded the discoveries of 5961: 3898:
Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004).
1597: 2846: 2648:
Angus, John C.; Will, Herbert A.; Stanko, Wayne S. (1968). "Growth of Diamond Seed Crystals by Vapor Deposition".
418:
for his work in 1946. Bundy and Strong made the first improvements, then more were made by Hall. The GE team used
5585: 1269:
previous year, while the number of engagement rings sold with a natural diamond declined 25% in the same period.
920: 772: 642: 582: 529: 135: 5378: 5352: 5057:
Gandini, D. (2000). "Oxidation of carbonylic acids at boron-doped diamond electrodes for wastewater treatment".
5462: 4520: 4465: 1838: 1280: 1004:
The usual form of diamond in cutting tools is micron-sized grains dispersed in a metal matrix (usually cobalt)
986: 862: 316: 215: 5483: 5231: 5100:
Michaud, P.-A. (2000). "Preparation of peroxodisulfuric acid using Boron-Doped Diamond thin film electrodes".
1392: 5647: 1118:
made from diamond have already demonstrated promising high-frequency performance above 50 GHz. The wide
3899: 1380: 1115: 1087: 854: 270: 195: 4577:
Koizumi, S.; Watanabe, K; Hasegawa, M; Kanda, H (2001). "Ultraviolet Emission from a Diamond pn Junction".
335: 5273: 4416: 3648: 1131: 1110:) producing UV light of 235 nm. Another useful property of synthetic diamond for electronics is high 709: 554: 415: 143: 138:, respectively). These two processes still dominate synthetic diamond production. A third method in which 5770:"DPA Petition on Proposed Revisions to the Guides for the Jewelry, Precious Metals and Pewter Industries" 4985:
Panizza, M. & Cerisola, G. (2005). "Application of diamond electrodes to electrochemical processes".
2750: 1182:
diamond can be used in waste water treatment of organic effluents and the production of strong oxidants.
1308: 1222: 897:
Unlike most electrical insulators, pure diamond is an excellent conductor of heat because of the strong
890: 388: 5401: 4442: 162:
The properties of synthetic diamonds depend on the manufacturing process. Some have properties such as
3722:
Sumiya, H. (2005). "Super-hard diamond indenter prepared from high-purity synthetic diamond crystal".
2295:
Bovenkerk, H. P.; Bundy, F. P.; Chrenko, R. M.; Codella, P. J.; Strong, H. M.; Wentorf, R. H. (1993).
1255:
has led to human rights abuses in Africa and other diamond mining countries. The 2006 Hollywood movie
5318: 5265: 5066: 5031: 4951: 4889: 4825: 4736: 4690: 4637: 4586: 4551: 4504: 4408: 4241: 4206: 4087: 3990: 3924: 3864: 3811: 3766: 3731: 3640: 3536: 3469: 3383: 3333: 3244: 3167: 3087: 2967: 2928: 2882: 2704: 2657: 2596: 2546: 2469: 2409: 2360: 2308: 2150: 2101: 1997: 1257: 1103: 1099: 1042:. These properties make diamond superior to any other existing window material used for transmitting 924: 865:), allowing it to be used in electronic applications. Nitrogen impurities hinder movement of lattice 858: 343:
The first known (but initially not reported) diamond synthesis was achieved on February 16, 1953, in
286: 246: 219: 199: 167: 4421: 4395:
Khounsary, Ali M.; Smither, Robert K.; Davey, Steve; Purohit, Ankor (1992). Khounsary, Ali M (ed.).
3653: 2695:
Deryagin, B. V.; Fedoseev, D. V. (1970). "Epitaxial Synthesis of Diamond in the Metastable Region".
1917: 1062:
including heatspreaders inside laser cavities, diffractive optics and as the optical gain medium in
285:
crucible in a furnace. Whereas Hannay used a flame-heated tube, Moissan applied his newly developed
146:
synthesis, entered the market in the late 1990s. A fourth method, treating graphite with high-power
5405: 5278: 2841: 1341: 1233: 1135: 1067: 736: 665: 647: 489: 237:. It is estimated that 98% of industrial-grade diamond demand is supplied with synthetic diamonds. 4146: 5291: 5082: 4967: 4919: 4841: 4797: 4752: 4706: 4661: 4610: 4491:
Jackson, D. D.; Aracne-Ruddle, C.; Malba, V.; Weir, S. T.; Catledge, S. A.; Vohra, Y. K. (2003).
4434: 3948: 3914: 3880: 3854: 3827: 3801: 3442: 3407: 3260: 3197: 3103: 2983: 2898: 2720: 2485: 2425: 2326: 2119: 1705: 1697: 1226: 1191: 1127:
promising for use in exceptionally high-power situations and hostile non-oxidizing environments.
874: 788: 407: 305: 111: 5928: 1754: 1657: 1638: 1601: 484:
The first gem-quality stones were always yellow to brown in color because of contamination with
257: 3626:"Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear" 5966: 5940: 5899: 5893: 5878: 5872: 5857: 4787: 4653: 4602: 4375: 4342: 4319: 4290: 4150: 4103: 4048: 4040: 3940: 3690: 3684: 3666: 3589: 3583: 3552: 3399: 3285: 3279: 3203: 3111: 3058: 2250: 2240: 2194: 2044: 2038: 1923: 1896: 1890: 1869: 1732: 1619: 1527: 1372: 1297: 1111: 870: 754:-sized diamond crystals can be synthesized from a suspension of graphite in organic liquid at 400: 309: 266: 211: 171: 799:
Diamond can be one single, continuous crystal or it can be made up of many smaller crystals (
5326: 5283: 5143: 5131: 5109: 5074: 5039: 5002: 4994: 4959: 4897: 4833: 4779: 4744: 4698: 4645: 4594: 4559: 4512: 4426: 4367: 4249: 4214: 4179: 4095: 4032: 3998: 3932: 3872: 3819: 3774: 3739: 3658: 3544: 3477: 3434: 3391: 3341: 3252: 3175: 3158: 3138: 3095: 2975: 2936: 2890: 2712: 2665: 2604: 2554: 2477: 2417: 2368: 2316: 2182: 2158: 2109: 2005: 1830: 1789: 1689: 1539: 1349: 1313: 1284: 1210: 1095: 771:
process, which further separates it from conventional high-pressure and high-temperature or
626: 550: 451: 419: 396: 384: 380: 373: 218:, synthetic diamond is becoming the most popular material for optical windows in high-power 207: 142:-sized diamond grains are created in a detonation of carbon-containing explosives, known as 84: 4783: 3054: 3047: 2190: 5469: 5450: 4866: 3524: 2873:
Werner, M; Locher, R (1998). "Growth and application of undoped and doped diamond films".
1865: 1664: 1645: 1626: 1608: 1262: 1196: 969: 578: 524:
In the 1950s, research started in the Soviet Union and the US on the growth of diamond by
508: 297: 249:
devices and techniques have been developed to distinguish synthetic and natural diamonds.
2806: 815:, usually referred to as "nanocrystalline" and "microcrystalline" diamond, respectively. 536:
and metals), which led to massive research on inexpensive diamond coatings in the 1980s.
186:. Electronic applications of synthetic diamond are being developed, including high-power 150:, has been demonstrated in the laboratory, but as of 2008 had no commercial application. 36:
Lab-grown diamonds of various colors grown by the high-pressure-and-temperature technique
5322: 5269: 5070: 5035: 4963: 4955: 4893: 4829: 4740: 4694: 4641: 4590: 4555: 4508: 4412: 4245: 4210: 4136: 4091: 3994: 3928: 3868: 3815: 3770: 3735: 3644: 3540: 3473: 3387: 3337: 3248: 3171: 3091: 2971: 2932: 2886: 2708: 2661: 2600: 2550: 2473: 2413: 2364: 2312: 2154: 2105: 2001: 739:
is used primarily in polishing applications. It is mainly produced in China, Russia and
5453:
for Gemesis diamond, International Gemological Institute, 2007. Retrieved May 27, 2015.
1252: 735:(about 1 day at 250 °C (482 °F)) to dissolve them. The recovered nanodiamond 621: 602: 411: 290: 5287: 4218: 3662: 3345: 3179: 3142: 2894: 1959: 569: 5955: 5443: 5402:"DeBeers Pleads to Price-Fixing: Firm Pays $ 10 million, Can Fully Reenter U.S." 5295: 4801: 4493:"Magnetic susceptibility measurements at high pressure using designer diamond anvils" 4438: 4183: 3884: 3831: 3624:
Blank, V.; Popov, M.; Pivovarov, G.; Lvova, N.; Gogolinsky, K.; Reshetov, V. (1998).
2987: 2902: 2724: 2558: 1892:
The Book of Diamonds: Their Curious Lore, Properties, Tests and Synthetic Manufacture
1750: 1709: 1143: 1083: 1047: 1019: 998: 974: 898: 689: 681: 392: 320: 274: 191: 5086: 4998: 4971: 4845: 4756: 4710: 4665: 4614: 3446: 3264: 2716: 2489: 1273:
the relative price was expected to decline further as production economics improve.
5616: 4310:"The diamond window for a milli-wave zone high power electromagnetic wave output". 3952: 3501: 3411: 2453:
Bovenkerk, H. P.; Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H. (1959).
2429: 2330: 1423: 1218: 982: 832: 828: 677: 673: 630: 606: 504: 478: 435: 324: 265:
In the early stages of diamond synthesis, the founding figure of modern chemistry,
174:
that are superior to those of most naturally formed diamonds. Synthetic diamond is
103: 91: 5043: 4859: 4563: 3481: 3395: 3374:
Decarli, P.; Jamieson, J. (June 1961). "Formation of Diamond by Explosive Shock".
3049:
Multianvil cells and high-pressure experimental methods, in Treatise of Geophysics
3008: 2940: 2608: 2183: 5929:"First Diamond Synthesis: 50 Years Later, A Murky Picture Of Who Deserves Credit" 5851: 3099: 2919:
Osawa, E (2007). "Recent progress and perspectives in single-digit nanodiamond".
4142: 4099: 2493: 2433: 2376: 2089: 1677: 1383:
announced that Mr. Gannal had spoken to him eight years ago about his attempts."
1302: 1174: 1155: 1071: 1063: 1023: 866: 804: 800: 784: 732: 714: 598: 203: 5744:"Orwell's '1984', De Beers' Lobbying, & the New FTC Lab Diamond Guidelines" 4901: 3876: 3823: 3548: 1038:
Diamond is hard, chemically inert, and has high thermal conductivity and a low
5147: 5078: 4837: 4542:
Denisenko, A.; Kohn, E. (2005). "Diamond power devices. Concepts and limits".
4371: 4272: 4122: 3497:"Forget Billions of Years: Scientists Have Grown Diamonds in Just 150 Minutes" 3438: 2635: 1345: 1158:
solar observations). A diamond VUV detector recently was used in the European
1091: 1027: 952: 812: 759: 590: 558: 147: 5944: 4702: 4323: 4044: 2254: 1834: 1046:
and microwave radiation. Therefore, synthetic diamond is starting to replace
422:
anvils within a hydraulic press to squeeze the carbonaceous sample held in a
4748: 4649: 4598: 990: 929: 878: 808: 669: 525: 423: 344: 301: 183: 139: 95: 5201:"Global Rough Diamond Production Estimated to Hit Over 135M Carats in 2015" 4657: 4606: 4107: 4052: 4036: 3944: 3778: 3556: 3403: 3256: 3115: 2114: 1736: 1693: 1544: 289:, in which an electric arc was struck between carbon rods inside blocks of 32: 4253: 2234: 625:
such as pyrophyllite ceramics, which is pressed by inner anvils made from
5374: 4020: 3919: 3527:(April 24, 2024). "Growth of diamond in liquid metal at 1 atm pressure". 1205: 1166: 1119: 1055: 1043: 1005: 994: 743:, and started reaching the market in bulk quantities by the early 2000s. 517: 493: 485: 447: 278: 261:
Moissan trying to create synthetic diamonds using an electric arc furnace
241: 234: 179: 163: 5007: 3936: 1452:"Introducing the Largest Lab Grown Diamond in the World: Pride of India" 496:
produced colorless "white" stones, and removing the nitrogen and adding
468: 134:, named for their production method (high-pressure high-temperature and 5517:
Murphy, Hannah; Biesheuvel, Thomas; Elmquist, Sonja (August 27, 2015).
3107: 1241: 1139: 740: 661: 609:. However, such a press would be complex and difficult to manufacture. 533: 175: 80: 76: 5330: 5113: 4516: 4430: 3743: 2979: 2669: 2481: 2372: 1701: 1332:
As early as 1828, investigators claimed to have synthesized diamonds:
368: 153: 5256:
Walker, J. (1979). "Optical absorption and luminescence in diamond".
4270:. (August 2, 2005) "Diamond-silicon hybrid integrated heat spreader" 4002: 2421: 2321: 2296: 2163: 2138: 2123: 2010: 1985: 1059: 751: 696: 443: 439: 282: 187: 88: 4492: 4287:
Materials for infrared windows and domes: properties and performance
1818: 319:. A prominent scientist and engineer known for his invention of the 102:. As of 2023 the heaviest synthetic diamond ever made weighs 30.18 17: 4397:"Diamond Monochromator for High Heat Flux Synchrotron X-ray Beams" 3859: 3806: 1237: 1195: 1178: 1147: 968: 947:
naturally present, which acts as an inhomogeneity in the lattice.
713: 685: 646: 611: 568: 513: 497: 467: 431: 367: 334: 256: 152: 2393:
Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H. (1955).
1200:
Colorless gem cut from diamond grown by chemical vapor deposition
5853:
The diamond formula: diamond synthesis-a gemological perspective
1419:"Lab-grown diamonds: girl's best friend or cut-price sparklers?" 1388:
Procès-verbaux des séances de l'Académie (Académie des sciences)
1368:
Procès-verbaux des séances de l'Académie (Académie des sciences)
1340:, November 3, 1828: "There was given a reading of a letter from 1337:
Procès-verbaux des séances de l'Académie (Académie des sciences)
1159: 612: 348: 107: 1244:
created" and the serial number prefix "LG" (laboratory grown).
315:
The most definitive replication attempts were performed by Sir
5687: 4869:, Vanderbilt University Research News. Retrieved May 27, 2015. 2214:
Liander, H. & Lundblad, E. (1955). "Artificial diamonds".
1170: 1107: 296:
Many other scientists tried to replicate his experiments. Sir
1070:
and window material in high-power radiation sources, such as
5472:. Jckonline.com (May 27, 2015). Retrieved September 1, 2015. 5174:"How High Quality Synthetic Diamonds Will Impact the Market" 2239:. Jan-Erik Pettersson. Stockholm: Sveriges Tekniska Museum. 889:
The thermal conductivity of CVD diamond ranges from tens of
3319:"Structure and defects of detonation synthesis nanodiamond" 1956:"Science: Dr. J. Willard Hershey and the Synthetic Diamond" 395:(510,000 psi) for a few seconds. Soon thereafter, the 5519:"Want to Make a Diamond in Just 10 Weeks? Use a Microwave" 2236:
Daedalus 1988 : Sveriges Tekniska Museums Årsbok 1988
1794:. London and New York's Harper Brothers. pp. 140 ff. 1344:, who communicated some investigations into the action of 807:) of the crystals that make it up. Grain sizes range from 281:
at up to 3,500 °C (6,330 °F) with iron inside a
2090:"Some notes on carbon at high temperatures and pressures" 2040:
50 years progress in crystal growth: a reprint collection
1532:
Philosophical Transactions of the Royal Society of London
5815:"How GIA Is Changing Its Reports for Lab-Grown Diamonds" 5482:
Wang, Wuyi; Persaud, Stephanie; Myagkaya, Elina (2022).
2633:
Eversole, W. G. (April 17, 1962) "Synthesis of diamond"
438:
container in which graphite was dissolved within molten
4915: 4818:
Critical Reviews in Solid State and Materials Sciences
4172:
International Journal of Machine Tools and Manufacture
1755:"Nouvelles expériences sur la reproduction du diamant" 4860:"Designing diamond circuits for extreme environments" 3196:
Koizumi, S.; Nebel, C. E. & Nesladek, M. (2008).
1094:. Since these elements contain one more or one fewer 472:
A scalpel with single-crystal synthetic diamond blade
5874:
Gems: their sources, descriptions and identification
5617:"Why Lab Created Diamonds are a Poor Value Purchase" 5558:. The Gem & Jewellery Export Promotion Council. 3007:. International Diamond Laboratories. Archived from 2777:"Industry worries about undisclosed synthetic melee" 1501:"Lab Grown Diamonds: A Miracle of Modern Technology" 589:
compressed cell. A variation of the belt press uses
5232:"How 2023 became the year of the lab-grown diamond" 4466:"Diamonds for Modern Synchrotron Radiation Sources" 1637:Academy of Sciences], November 10, 1828, volume 9, 1154:and BOLD (Blind to the Optical Light Detectors for 5484:"New Record Size for CVD Laboratory-Grown Diamond" 3046: 2139:"The Problem of Artificial Production of Diamonds" 1823:Zeitschrift für Anorganische und Allgemeine Chemie 1656:Academy of Sciences], December 1, 1828, volume 9, 5737: 5735: 5716:. U.S. Federal Trade Commission. July 24, 2018. 5714:"FTC Approves Final Revisions to Jewelry Guides" 5377:. Associated Press via NBC News. July 13, 2004. 4464:Heartwig, J.; et al. (September 13, 2006). 831:diamonds and HPHT nanocrystalline diamonds (see 5803:, U.S. Federal Trade Commission, July 21, 2008. 5684:"De Beers admits defeat over man-made diamonds" 1922:. Heathside Press, New York. pp. 127–132. 1475:"The state of 2013 global rough diamond supply" 3686:Properties, Growth and Applications of Diamond 1098:than carbon, they turn synthetic diamond into 1009:significantly replaced traditional PCD tools. 993:and saws, and the use of diamond powder as an 5677: 5675: 5375:"De Beers pleads guilty in price fixing case" 4774:. Diamond and Other New Carbon Materials IV. 4014: 4012: 3053:. Vol. 2. Elsevier, Amsterdam. pp.  2952: 2950: 2448: 2446: 835:) are harder than any known natural diamond. 651:Free-standing single-crystal CVD diamond disc 460:secrecy order on the GE patent applications. 8: 3284:. The Electrochemical Society. p. 363. 3131:Int. J. Refractory Metals and Hard Materials 1678:"On the Artificial Formation of the Diamond" 1386: 1366: 1335: 5892:Spear, K. E. & Dismukes, J. P. (1994). 5549:"Synthetic Diamonds – Promoting Fair Trade" 5125: 5123: 4468:. European Synchrotron Radiation Facility. 2751:"Melee Diamonds: Tiny Diamonds, Big Impact" 1979: 1977: 521:(200 mg) to 1.5 carats (300 mg). 379:In 1941, an agreement was made between the 240:Both CVD and HPHT diamonds can be cut into 1895:. Kessinger Publishing. pp. 123–130. 1355:"Artificial production of real diamonds", 1082:Synthetic diamond has potential uses as a 446:or iron. Those metals acted as a "solvent- 5400:Pressler, Margaret Webb (July 14, 2004). 5277: 5006: 4420: 3918: 3858: 3805: 3683:Neves, A. J. & Nazaré, M. H. (2001). 3652: 2320: 2176: 2174: 2162: 2113: 2009: 1543: 756:atmospheric pressure and room temperature 5463:Company Grows 10 Carat Synthetic Diamond 5345:"Memorial Diamonds Deliver Eternal Life" 4339:Introduction to the physics of gyrotrons 3619: 3617: 3191: 3189: 2999: 2997: 2914: 2912: 2532: 2530: 214:and high optical transparency in a wide 182:, in cutting and polishing tools and in 31: 5529:from the original on September 30, 2018 5102:Electrochemical and Solid-State Letters 3199:Physics and Applications of CVD Diamond 2837:"Swiss lab introduces melee identifier" 2582: 2580: 2189:. Cambridge University Press. pp.  1769:from the original on September 11, 2017 1409: 1325: 277:in 1893. Their method involved heating 27:Diamond created by controlled processes 5782:from the original on February 22, 2017 5775:. De Beers Technologies UK. May 2016. 5750:from the original on November 27, 2018 5627:from the original on November 20, 2018 5413:from the original on November 12, 2012 5132:"The Many Facets of Man-Made Diamonds" 4916:"Blind to the Optical Light Detectors" 4025:ACS Applied Materials & Interfaces 3355:from the original on December 22, 2015 3040: 3038: 2868: 2866: 2864: 1620:Artificial production of real diamonds 783:Traditionally, the absence of crystal 406:The Schenectady group improved on the 372:A belt press produced in the 1980s by 124:high pressure high temperature diamond 5720:from the original on January 12, 2019 5694:from the original on November 9, 2020 5660:from the original on January 13, 2017 5498:from the original on February 8, 2023 5180:from the original on November 3, 2013 5154:from the original on October 28, 2008 4523:from the original on October 20, 2020 2290: 2288: 1936:from the original on November 5, 2012 1841:from the original on October 25, 2020 1798:from the original on November 5, 2012 1581: 1579: 1130:Synthetic diamond is already used as 1050:as the output window of high-power CO 857:, but diamond with boron added is an 823:The hardness of diamond is 10 on the 585:, forming a large synthetic diamond. 403:and others joined the project later. 339:First synthetic diamonds by ASEA 1953 114:ever found weighs 3167 ct (633.4 g). 7: 5381:from the original on January 1, 2015 5199:Zimnisky, Paul (February 10, 2015). 5130:Yarnell, Amanda (February 2, 2004). 4944:Semiconductor Science and Technology 4784:10.4028/www.scientific.net/AST.48.73 3427:Russian Journal of Applied Chemistry 1431:from the original on October 1, 2022 726:Diamond nanocrystals (5 nm (2.0 5916:. In Daedalus 1988. ISBN 9176160181 5615:Fried, Michael (January 20, 2017). 5584:Kavilanz, Parija (April 27, 2022). 5211:from the original on March 22, 2015 5059:Journal of Applied Electrochemistry 4472:from the original on March 24, 2015 4138:Turning And Mechanical Manipulation 4059:from the original on March 20, 2022 3703:from the original on March 20, 2022 3602:from the original on March 20, 2022 3298:from the original on March 20, 2022 3216:from the original on March 20, 2022 3202:. Wiley VCH. pp. 50, 200–240. 3045:Ito, E. (2007). G. Schubert (ed.). 2261:from the original on March 20, 2022 2057:from the original on March 20, 2022 1552:from the original on April 25, 2016 1477:. Resource Investor. Archived from 1473:Zimnisky, Paul (January 22, 2013). 1450:Suman Tagadiya (February 4, 2023). 845:Crystallographic defects in diamond 766:Crystallization inside liquid metal 5825:from the original on July 11, 2021 5646:Zimnisky, Paul (January 9, 2017). 5565:from the original on July 13, 2014 4922:from the original on June 21, 2009 4858:Salisbury, David (August 4, 2011) 4772:Advances in Science and Technology 2845:. National Jeweler. Archived from 2783:. jckonline.com. January 2, 2014. 2757:from the original on June 12, 2018 1958:. McPherson Museum. Archived from 1725:Annales Pharmaceutiques Françaises 877:, thereby increasing hardness and 25: 5813:Graff, Michelle (April 4, 2019). 5682:Kottasová, Ivana (May 29, 2018). 5230:Pearl, Diana (October 26, 2023). 4882:Nuclear Instruments and Methods A 3962:from the original on June 7, 2011 2817:from the original on May 18, 2015 2787:from the original on May 18, 2015 2233:Sveriges Tekniska Museum (1988). 1417:Fisher, Alice (October 1, 2022). 1363:(278): 300–301 (December 6, 1828) 1261:helped to publicize the problem. 1217:diamonds can be distinguished by 853:For instance, pure diamond is an 202:. Synthetic diamond detectors of 5596:from the original on May 5, 2022 4918:. Royal Observatory of Belgium. 4289:. SPIE Press. pp. 303–334. 2094:Proceedings of the Royal Society 1819:"Über die Bildung von Diamanten" 1040:coefficient of thermal expansion 275:Ferdinand Frédéric Henri Moissan 100:chemical and physical properties 5933:Chemical & Engineering News 5444:Laboratory Grown Diamond Report 5351:. June 23, 2009. Archived from 5136:Chemical & Engineering News 4999:10.1016/j.electacta.2005.04.023 2717:10.1070/RC1970v039n09ABEH002022 2346:"Ultra-high pressure apparatus" 1090:with impurities like boron and 565:High pressure, high temperature 5742:Payne, Jason (July 25, 2018). 4403:. High Heat Flux Engineering. 4364:Optical Engineering of Diamond 3900:"Superconductivity in diamond" 3495:David Nield (April 25, 2024). 1600:], November 3, 1828, volume 9, 1528:"On the nature of the diamond" 1305:inspired by Hannay and Moissan 1213:grown using cremated remains. 1204:Synthetic diamonds for use as 1026:, laser arrays and high-power 825:Mohs scale of mineral hardness 1: 5914:Om konsten att göra diamanter 5431: 5044:10.1016/j.diamond.2007.02.015 5024:Diamond and Related Materials 4964:10.1088/0268-1242/23/3/035026 4564:10.1016/j.diamond.2004.12.043 4544:Diamond and Related Materials 4219:10.1016/S0925-9635(03)00074-8 4199:Diamond and Related Materials 3663:10.1016/S0925-9635(97)00232-X 3633:Diamond and Related Materials 3482:10.1016/j.diamond.2008.01.112 3396:10.1126/science.133.3467.1821 3346:10.1016/S0925-9635(99)00354-4 3326:Diamond and Related Materials 3180:10.1016/S0024-4937(01)00079-2 3143:10.1016/S0263-4368(00)00039-1 2941:10.1016/j.diamond.2007.08.008 2921:Diamond and Related Materials 2609:10.1016/j.diamond.2005.09.007 2521: 2297:"Errors in diamond synthesis" 2279: 2024: 5871:O'Donoghue, Michael (2006). 4728:IEEE Electron Device Letters 4682:IEEE Electron Device Letters 4184:10.1016/0890-6955(95)93044-7 3585:Handbook of Electrochemistry 3100:10.1126/science.128.3322.445 3029: 2571: 2559:10.1016/0022-0248(90)90126-6 2509: 2075: 1916:Hershey, J. Willard (1940). 1889:Hershey, J. Willard (2004). 1348:placed in contact with pure 873:) and put the lattice under 668:in the growth chamber using 98:3D form—and share identical 5288:10.1088/0034-4885/42/10/001 4366:. Wiley. pp. 239–276. 4100:10.1103/PhysRevLett.70.3764 2895:10.1088/0034-4885/61/12/002 1663:September 11, 2017, at the 1644:September 11, 2017, at the 1607:September 11, 2017, at the 1152:Stanford Linear Accelerator 965:Machining and cutting tools 722:) of detonation nanodiamond 458:U.S. Department of Commerce 5988: 5311:Journal of Applied Physics 4902:10.1016/j.nima.2005.06.030 4865:November 18, 2011, at the 4341:. JHU Press. p. 229. 4337:Nusinovich, G. S. (2004). 3983:Journal of Applied Physics 3877:10.1103/PhysRevB.84.155205 3824:10.1103/PhysRevB.79.115202 3582:Zoski, Cynthia G. (2007). 3569: 3549:10.1038/s41586-024-07339-7 2807:"Diamond Melee definition" 2737: 2682: 2621: 1585: 1570: 1526:Tennant, Smithson (1797). 1189: 1132:radiation detection device 842: 707: 640: 616:Schematic of a BARS system 544:Manufacturing technologies 5877:. Butterworth-Heinemann. 5856:. Butterworth-Heinemann. 5449:October 21, 2012, at the 5148:10.1021/cen-v082n005.p026 4838:10.1080/10408430008951119 4372:10.1002/9783527648603.ch8 3689:. IET. pp. 142–147. 3588:. Elsevier. p. 136. 3439:10.1134/S1070427206120019 3278:Kopf, R. F., ed. (2003). 2539:Journal of Crystal Growth 2043:. Elsevier. p. 194. 2037:Feigelson, R. S. (2004). 1788:Crookes, William (1909). 1375:communicated a note from 1301:(1895): a short story by 921:isotopically pure diamond 839:Impurities and inclusions 773:chemical vapor deposition 643:Chemical vapor deposition 637:Chemical vapor deposition 573:Schematic of a belt press 530:chemical vapor deposition 300:claimed success in 1909. 136:chemical vapor deposition 5648:"A New Diamond Industry" 5176:. Kitco. July 12, 2013. 4703:10.1109/LED.2012.2210020 4499:(Submitted manuscript). 4135:Holtzapffel, C. (1856). 2697:Russian Chemical Reviews 2455:"Preparation of diamond" 1835:10.1002/zaac.19170990109 1281:Federal Trade Commission 1116:field-effect transistors 704:Detonation of explosives 317:Charles Algernon Parsons 196:field-effect transistors 112:heaviest natural diamond 5912:Lundblad, Erik (1988). 5850:Barnard, A. S. (2000). 5317:(8): 083517–083517–10. 5079:10.1023/A:1026526729357 4749:10.1109/LED.2006.876325 4650:10.1126/science.1074374 4599:10.1126/science.1060258 3759:Physica Status Solidi A 3237:Physica Status Solidi A 2811:Encyclopædia Britannica 1279:In July 2018, the U.S. 861:(and, in some cases, a 561:of graphite solutions. 555:detonation nanodiamonds 271:James Ballantyne Hannay 5523:Bloomberg Businessweek 4285:Harris, D. C. (1999). 4037:10.1021/acsami.7b16812 3779:10.1002/pssa.200409033 3730:(2): 026112–026112–3. 3257:10.1002/pssa.200561920 2115:10.1098/rspa.1907.0062 2088:Parson, C. A. (1907). 1694:10.1098/rspl.1879.0144 1676:Hannay, J. B. (1879). 1625:June 29, 2014, at the 1545:10.1098/rstl.1797.0005 1387: 1377:Mr. Cagniard de Latour 1371:, November 10, 1828: " 1367: 1336: 1201: 978: 723: 710:Detonation nanodiamond 652: 617: 574: 473: 416:Nobel Prize in Physics 376: 340: 262: 159: 37: 5468:June 1, 2015, at the 4445:on September 17, 2008 4273:U.S. patent 6,924,170 4123:U.S. patent 4,488,821 2849:on September 10, 2015 2636:U.S. patent 3,030,188 2181:Hazen, R. M. (1999). 2137:Desch, C. H. (1928). 1984:Lonsdale, K. (1962). 1391:, December 1, 1828: " 1309:Synthetic alexandrite 1199: 972: 747:Ultrasound cavitation 718:Electron micrograph ( 717: 650: 641:Further information: 615: 572: 471: 371: 338: 260: 208:high-energy particles 200:light-emitting diodes 156: 35: 4266:Ravi, Kramadhati V. 2595:(11–12): 1916–1919. 2344:Hall, H. T. (1960). 1688:(200–205): 450–461. 1104:n-type semiconductor 1086:, because it can be 925:thermal conductivity 885:Thermal conductivity 869:(defects within the 859:electrical conductor 855:electrical insulator 287:electric arc furnace 168:thermal conductivity 5819:Nationaljeweler.com 5406:The Washington Post 5355:on October 17, 2012 5323:2005JAP....97h3517C 5270:1979RPPh...42.1605W 5071:1988JApEl..18..410W 5036:2007DRM....16.1648N 4987:Electrochimica Acta 4956:2008SeScT..23c5026B 4894:2005NIMPA.552..189B 4830:2000CRSSM..25..163R 4741:2006IEDL...27..570U 4695:2012IEDL...33.1471R 4642:2002Sci...297.1670I 4636:(5587): 1670–1672. 4591:2001Sci...292.1899K 4585:(5523): 1899–1901. 4556:2005DRM....14..491D 4509:2003RScI...74.2467J 4413:1993SPIE.1739..628K 4254:10.1049/el:19920123 4246:1992ElL....28..197S 4234:Electronics Letters 4211:2003DRM....12.1300A 4092:1993PhRvL..70.3764W 3995:1999JAP....86..698C 3937:10.1038/nature02449 3929:2004Natur.428..542E 3869:2011PhRvB..84o5205A 3816:2009PhRvB..79k5202L 3771:2004PSSAR.201R..25Y 3736:2005RScI...76b6112S 3645:1998DRM.....7..427B 3541:2024Natur.629..348G 3474:2008DRM....17..931K 3388:1961Sci...133.1821D 3382:(3467): 1821–1822. 3338:2000DRM.....9..861I 3249:2005PSSAR.202.2177B 3172:2002Litho..60..145P 3092:1958Sci...128..445H 2972:2004DokPh..49..150G 2933:2007DRM....16.2018O 2887:1998RPPh...61.1665W 2709:1970RuCRv..39..783D 2662:1968JAP....39.2915A 2601:2005DRM....14.1916A 2551:1990JCrGr.104..257B 2499:on January 8, 2014. 2474:1959Natur.184.1094B 2468:(4693): 1094–1098. 2439:on January 8, 2014. 2414:1955Natur.176...51B 2395:"Man-made diamonds" 2382:on January 8, 2014. 2365:1960RScI...31..125H 2313:1993Natur.365...19B 2155:1928Natur.121..799C 2106:1907RSPSA..79..532P 2002:1962Natur.196..104L 1962:on January 12, 2016 1860:Nassau, K. (1980). 1598:Academy of Sciences 1481:on January 28, 2013 1357:Mechanics' Magazine 1068:diffraction grating 923:, have the highest 464:Further development 5972:1953 introductions 5653:The Mining Journal 4497:Rev. Sci. Instrum. 3570:Spear and Dismukes 3462:Diam. Relat. Mater 2753:. April 11, 2017. 2738:Spear and Dismukes 2683:Spear and Dismukes 2622:Spear and Dismukes 2589:Diam. Relat. Mater 2185:The diamond makers 1868:. pp. 12–25. 1682:Proc. R. Soc. Lond 1586:Spear and Dismukes 1571:Spear and Dismukes 1225:, ultraviolet, or 1202: 1192:Diamond (gemstone) 979: 875:compressive stress 789:optical dispersion 724: 692:, or other means. 653: 618: 575: 474: 377: 364:GE diamond project 353:Baltzar von Platen 341: 306:J. Willard Hershey 263: 160: 81:obtained by mining 53:laboratory-created 38: 5962:Synthetic diamond 5927:Schulz, William. 5905:978-0-471-53589-8 5895:Synthetic diamond 5884:978-0-7506-5856-0 5863:978-0-7506-4244-6 5488:Gems and Gemology 5331:10.1063/1.1866501 5264:(10): 1605–1659. 5114:10.1149/1.1390963 5065:(12): 1345–1350. 4793:978-3-03813-096-3 4689:(10): 1471–1473. 4517:10.1063/1.1544084 4431:10.1117/12.140532 4348:978-0-8018-7921-0 4296:978-0-8194-3482-1 4156:978-1-879335-39-4 4086:(24): 3764–3767. 3913:(6982): 542–545. 3744:10.1063/1.1850654 3724:Rev. Sci. Instrum 3696:978-0-85296-785-0 3672:on July 21, 2011. 3595:978-0-444-51958-0 3535:(8011): 348–354. 3433:(12): 1913–1918. 3291:978-1-56677-391-1 3243:(11): 2177–2181. 3209:978-3-527-40801-6 3086:(3322): 445–449. 3064:978-0-8129-2275-2 2980:10.1134/1.1710678 2927:(12): 2018–2022. 2881:(12): 1665–1710. 2670:10.1063/1.1656693 2482:10.1038/1841094a0 2373:10.1063/1.1716907 2353:Rev. Sci. Instrum 2200:978-0-521-65474-6 2149:(3055): 799–800. 2050:978-0-444-51650-3 1996:(4850): 104–106. 1929:978-0-486-41816-2 1902:978-1-4179-7715-4 1875:978-0-8019-6773-3 1817:Ruff, O. (1917). 1588:, pp. 23, 512–513 1298:The Diamond Maker 1285:diamond simulants 1211:memorial diamonds 1013:Thermal conductor 871:crystal structure 758:using ultrasonic 414:, who received a 310:McPherson College 267:Antoine Lavoisier 212:thermal expansion 194:, high-frequency 172:electron mobility 85:diamond simulants 49:lab-grown diamond 16:(Redirected from 5979: 5948: 5909: 5888: 5867: 5835: 5834: 5832: 5830: 5810: 5804: 5798: 5792: 5791: 5789: 5787: 5781: 5774: 5766: 5760: 5759: 5757: 5755: 5739: 5730: 5729: 5727: 5725: 5710: 5704: 5703: 5701: 5699: 5679: 5670: 5669: 5667: 5665: 5643: 5637: 5636: 5634: 5632: 5612: 5606: 5605: 5603: 5601: 5581: 5575: 5574: 5572: 5570: 5564: 5553: 5545: 5539: 5538: 5536: 5534: 5514: 5508: 5507: 5505: 5503: 5479: 5473: 5460: 5454: 5441: 5435: 5429: 5423: 5422: 5420: 5418: 5397: 5391: 5390: 5388: 5386: 5371: 5365: 5364: 5362: 5360: 5341: 5335: 5334: 5306: 5300: 5299: 5281: 5253: 5247: 5246: 5244: 5242: 5227: 5221: 5220: 5218: 5216: 5205:Kitco Commentary 5196: 5190: 5189: 5187: 5185: 5170: 5164: 5163: 5161: 5159: 5127: 5118: 5117: 5097: 5091: 5090: 5054: 5048: 5047: 5030:(8): 1648–1651. 5019: 5013: 5012: 5010: 4982: 4976: 4975: 4938: 4932: 4931: 4929: 4927: 4912: 4906: 4905: 4888:(1–2): 189–196. 4876: 4870: 4856: 4850: 4849: 4812: 4806: 4805: 4767: 4761: 4760: 4721: 4715: 4714: 4676: 4670: 4669: 4625: 4619: 4618: 4574: 4568: 4567: 4550:(3–7): 491–498. 4539: 4533: 4532: 4530: 4528: 4488: 4482: 4481: 4479: 4477: 4461: 4455: 4454: 4452: 4450: 4441:. Archived from 4424: 4392: 4386: 4385: 4359: 4353: 4352: 4334: 4328: 4327: 4307: 4301: 4300: 4282: 4276: 4275: 4264: 4258: 4257: 4229: 4223: 4222: 4205:(8): 1300–1306. 4194: 4188: 4187: 4167: 4161: 4160: 4132: 4126: 4125: 4118: 4112: 4111: 4075: 4069: 4068: 4066: 4064: 4031:(5): 4808–4815. 4016: 4007: 4006: 4003:10.1063/1.370787 3978: 3972: 3971: 3969: 3967: 3961: 3922: 3920:cond-mat/0404156 3904: 3895: 3889: 3888: 3862: 3842: 3836: 3835: 3809: 3789: 3783: 3782: 3754: 3748: 3747: 3719: 3713: 3712: 3710: 3708: 3680: 3674: 3673: 3671: 3665:. Archived from 3656: 3639:(2–5): 427–431. 3630: 3621: 3612: 3611: 3609: 3607: 3579: 3573: 3567: 3561: 3560: 3525:Ruoff, Rodney S. 3520: 3514: 3513: 3511: 3509: 3492: 3486: 3485: 3457: 3451: 3450: 3422: 3416: 3415: 3371: 3365: 3364: 3362: 3360: 3354: 3332:(3–6): 861–865. 3323: 3314: 3308: 3307: 3305: 3303: 3275: 3269: 3268: 3232: 3226: 3225: 3223: 3221: 3193: 3184: 3183: 3166:(3–4): 145–159. 3153: 3147: 3146: 3126: 3120: 3119: 3075: 3069: 3068: 3052: 3042: 3033: 3027: 3021: 3020: 3018: 3016: 3005:"HPHT synthesis" 3001: 2992: 2991: 2954: 2945: 2944: 2916: 2907: 2906: 2870: 2859: 2858: 2856: 2854: 2842:National Jeweler 2833: 2827: 2826: 2824: 2822: 2803: 2797: 2796: 2794: 2792: 2773: 2767: 2766: 2764: 2762: 2747: 2741: 2735: 2729: 2728: 2692: 2686: 2680: 2674: 2673: 2645: 2639: 2638: 2631: 2625: 2619: 2613: 2612: 2584: 2575: 2569: 2563: 2562: 2534: 2525: 2519: 2513: 2507: 2501: 2500: 2498: 2492:. Archived from 2459: 2450: 2441: 2440: 2438: 2432:. Archived from 2422:10.1038/176051a0 2399: 2390: 2384: 2383: 2381: 2375:. Archived from 2350: 2341: 2335: 2334: 2324: 2322:10.1038/365019a0 2292: 2283: 2277: 2271: 2270: 2268: 2266: 2230: 2224: 2223: 2211: 2205: 2204: 2188: 2178: 2169: 2168: 2166: 2164:10.1038/121799a0 2134: 2128: 2127: 2117: 2100:(533): 532–535. 2085: 2079: 2073: 2067: 2066: 2064: 2062: 2034: 2028: 2022: 2016: 2015: 2013: 2011:10.1038/196104a0 1981: 1972: 1971: 1969: 1967: 1952: 1946: 1945: 1943: 1941: 1919:Book of Diamonds 1913: 1907: 1906: 1886: 1880: 1879: 1862:Gems made by Man 1857: 1851: 1850: 1848: 1846: 1814: 1808: 1807: 1805: 1803: 1785: 1779: 1778: 1776: 1774: 1747: 1741: 1740: 1720: 1714: 1713: 1673: 1667: 1654: 1648: 1635: 1629: 1617: 1611: 1595: 1589: 1583: 1574: 1568: 1562: 1561: 1559: 1557: 1547: 1523: 1517: 1516: 1514: 1512: 1507:. April 13, 2023 1497: 1491: 1490: 1488: 1486: 1470: 1464: 1463: 1461: 1459: 1447: 1441: 1440: 1438: 1436: 1414: 1398: 1390: 1370: 1350:carbon disulfide 1339: 1330: 1314:List of diamonds 1150:detector at the 1112:carrier mobility 1096:valence electron 1034:Optical material 946: 944: 943: 936: 935: 918: 917: 916: 909: 908: 899:covalent bonding 729: 627:cemented carbide 420:tungsten carbide 397:Second World War 381:General Electric 230: 229: 228: 73:cultured diamond 41:Laboratory-grown 21: 5987: 5986: 5982: 5981: 5980: 5978: 5977: 5976: 5952: 5951: 5926: 5923: 5906: 5891: 5885: 5870: 5864: 5849: 5846: 5840: 5838: 5828: 5826: 5812: 5811: 5807: 5799: 5795: 5785: 5783: 5779: 5772: 5768: 5767: 5763: 5753: 5751: 5741: 5740: 5733: 5723: 5721: 5712: 5711: 5707: 5697: 5695: 5681: 5680: 5673: 5663: 5661: 5645: 5644: 5640: 5630: 5628: 5621:The Diamond Pro 5614: 5613: 5609: 5599: 5597: 5583: 5582: 5578: 5568: 5566: 5562: 5551: 5547: 5546: 5542: 5532: 5530: 5516: 5515: 5511: 5501: 5499: 5481: 5480: 5476: 5470:Wayback Machine 5461: 5457: 5451:Wayback Machine 5442: 5438: 5430: 5426: 5416: 5414: 5399: 5398: 5394: 5384: 5382: 5373: 5372: 5368: 5358: 5356: 5343: 5342: 5338: 5308: 5307: 5303: 5258:Rep. Prog. Phys 5255: 5254: 5250: 5240: 5238: 5229: 5228: 5224: 5214: 5212: 5198: 5197: 5193: 5183: 5181: 5172: 5171: 5167: 5157: 5155: 5129: 5128: 5121: 5099: 5098: 5094: 5056: 5055: 5051: 5021: 5020: 5016: 4984: 4983: 4979: 4940: 4939: 4935: 4925: 4923: 4914: 4913: 4909: 4878: 4877: 4873: 4867:Wayback Machine 4857: 4853: 4814: 4813: 4809: 4794: 4769: 4768: 4764: 4723: 4722: 4718: 4678: 4677: 4673: 4627: 4626: 4622: 4576: 4575: 4571: 4541: 4540: 4536: 4526: 4524: 4490: 4489: 4485: 4475: 4473: 4463: 4462: 4458: 4448: 4446: 4422:10.1.1.261.1970 4394: 4393: 4389: 4382: 4381:978-352764860-3 4361: 4360: 4356: 4349: 4336: 4335: 4331: 4309: 4308: 4304: 4297: 4284: 4283: 4279: 4271: 4265: 4261: 4231: 4230: 4226: 4196: 4195: 4191: 4169: 4168: 4164: 4157: 4134: 4133: 4129: 4121: 4119: 4115: 4080:Phys. Rev. Lett 4077: 4076: 4072: 4062: 4060: 4018: 4017: 4010: 3980: 3979: 3975: 3965: 3963: 3959: 3902: 3897: 3896: 3892: 3844: 3843: 3839: 3791: 3790: 3786: 3756: 3755: 3751: 3721: 3720: 3716: 3706: 3704: 3697: 3682: 3681: 3677: 3669: 3654:10.1.1.520.7265 3628: 3623: 3622: 3615: 3605: 3603: 3596: 3581: 3580: 3576: 3568: 3564: 3522: 3521: 3517: 3507: 3505: 3494: 3493: 3489: 3459: 3458: 3454: 3424: 3423: 3419: 3373: 3372: 3368: 3358: 3356: 3352: 3321: 3316: 3315: 3311: 3301: 3299: 3292: 3277: 3276: 3272: 3234: 3233: 3229: 3219: 3217: 3210: 3195: 3194: 3187: 3155: 3154: 3150: 3128: 3127: 3123: 3077: 3076: 3072: 3065: 3044: 3043: 3036: 3028: 3024: 3014: 3012: 3003: 3002: 2995: 2960:Doklady Physics 2956: 2955: 2948: 2918: 2917: 2910: 2875:Rep. Prog. Phys 2872: 2871: 2862: 2852: 2850: 2835: 2834: 2830: 2820: 2818: 2805: 2804: 2800: 2790: 2788: 2775: 2774: 2770: 2760: 2758: 2749: 2748: 2744: 2736: 2732: 2694: 2693: 2689: 2681: 2677: 2647: 2646: 2642: 2634: 2632: 2628: 2620: 2616: 2586: 2585: 2578: 2570: 2566: 2536: 2535: 2528: 2520: 2516: 2508: 2504: 2496: 2457: 2452: 2451: 2444: 2436: 2408:(4471): 51–55. 2397: 2392: 2391: 2387: 2379: 2348: 2343: 2342: 2338: 2294: 2293: 2286: 2278: 2274: 2264: 2262: 2247: 2232: 2231: 2227: 2213: 2212: 2208: 2201: 2180: 2179: 2172: 2136: 2135: 2131: 2087: 2086: 2082: 2074: 2070: 2060: 2058: 2051: 2036: 2035: 2031: 2023: 2019: 1983: 1982: 1975: 1965: 1963: 1954: 1953: 1949: 1939: 1937: 1930: 1915: 1914: 1910: 1903: 1888: 1887: 1883: 1876: 1866:Chilton Book Co 1859: 1858: 1854: 1844: 1842: 1816: 1815: 1811: 1801: 1799: 1787: 1786: 1782: 1772: 1770: 1749: 1748: 1744: 1722: 1721: 1717: 1675: 1674: 1670: 1665:Wayback Machine 1655: 1651: 1646:Wayback Machine 1636: 1632: 1627:Wayback Machine 1618: 1614: 1609:Wayback Machine 1596: 1592: 1584: 1577: 1569: 1565: 1555: 1553: 1525: 1524: 1520: 1510: 1508: 1499: 1498: 1494: 1484: 1482: 1472: 1471: 1467: 1457: 1455: 1449: 1448: 1444: 1434: 1432: 1416: 1415: 1411: 1407: 1402: 1401: 1331: 1327: 1322: 1293: 1263:Consumer demand 1194: 1188: 1138:and has a wide 1080: 1053: 1036: 1022:for high-power 1015: 973:Diamonds in an 967: 962: 942: 940: 939: 938: 934: 932: 931: 930: 928: 915: 913: 912: 911: 907: 905: 904: 903: 902: 887: 847: 841: 821: 811:to hundreds of 797: 781: 768: 749: 727: 712: 706: 645: 639: 567: 546: 509:phosphorescence 466: 366: 333: 298:William Crookes 273:in 1879 and by 255: 227: 224: 223: 222: 220: 61:artisan-created 47:), also called 28: 23: 22: 15: 12: 11: 5: 5985: 5983: 5975: 5974: 5969: 5964: 5954: 5953: 5950: 5949: 5922: 5921:External links 5919: 5918: 5917: 5910: 5904: 5898:. Wiley-IEEE. 5889: 5883: 5868: 5862: 5845: 5842: 5837: 5836: 5805: 5793: 5761: 5731: 5705: 5671: 5638: 5607: 5586:"CNN Business" 5576: 5540: 5509: 5474: 5455: 5436: 5424: 5392: 5366: 5336: 5301: 5279:10.1.1.467.443 5248: 5222: 5191: 5165: 5119: 5092: 5049: 5014: 4993:(2): 191–199. 4977: 4933: 4907: 4871: 4851: 4824:(3): 163–277. 4807: 4792: 4762: 4735:(7): 570–572. 4716: 4671: 4620: 4569: 4534: 4483: 4456: 4387: 4380: 4354: 4347: 4329: 4302: 4295: 4277: 4259: 4240:(2): 197–199. 4224: 4189: 4178:(5): 761–774. 4162: 4155: 4127: 4113: 4070: 4008: 3973: 3890: 3853:(15): 155205. 3837: 3800:(11): 115202. 3784: 3749: 3714: 3695: 3675: 3613: 3594: 3574: 3562: 3515: 3487: 3468:(6): 931–936. 3452: 3417: 3366: 3309: 3290: 3270: 3227: 3208: 3185: 3148: 3121: 3070: 3063: 3034: 3022: 3011:on May 1, 2009 2993: 2966:(3): 150–153. 2946: 2908: 2860: 2828: 2798: 2768: 2742: 2730: 2703:(9): 783–788. 2687: 2675: 2640: 2626: 2614: 2576: 2564: 2545:(2): 257–279. 2526: 2514: 2502: 2442: 2385: 2336: 2284: 2272: 2245: 2225: 2206: 2199: 2170: 2129: 2080: 2068: 2049: 2029: 2017: 1973: 1947: 1928: 1908: 1901: 1881: 1874: 1852: 1809: 1780: 1759:Comptes Rendus 1751:Moissan, Henri 1742: 1715: 1668: 1649: 1630: 1612: 1590: 1575: 1563: 1518: 1492: 1465: 1454:. Diamondrensu 1442: 1408: 1406: 1403: 1400: 1399: 1397: 1396: 1384: 1381:Mr. Gay-Lussac 1364: 1353: 1324: 1323: 1321: 1318: 1317: 1316: 1311: 1306: 1292: 1289: 1253:diamond mining 1190:Main article: 1187: 1184: 1136:radiation hard 1079: 1076: 1051: 1035: 1032: 1014: 1011: 999:ferrous alloys 966: 963: 961: 958: 941: 933: 914: 906: 886: 883: 863:superconductor 843:Main article: 840: 837: 820: 817: 796: 793: 780: 777: 767: 764: 748: 745: 708:Main article: 705: 702: 638: 635: 622:BARS apparatus 603:platonic solid 566: 563: 545: 542: 465: 462: 412:Percy Bridgman 365: 362: 332: 329: 254: 251: 225: 216:spectral range 206:(UV) light or 192:power stations 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5984: 5973: 5970: 5968: 5965: 5963: 5960: 5959: 5957: 5946: 5942: 5938: 5934: 5930: 5925: 5924: 5920: 5915: 5911: 5907: 5901: 5897: 5896: 5890: 5886: 5880: 5876: 5875: 5869: 5865: 5859: 5855: 5854: 5848: 5847: 5843: 5841: 5824: 5820: 5816: 5809: 5806: 5802: 5797: 5794: 5778: 5771: 5765: 5762: 5749: 5745: 5738: 5736: 5732: 5719: 5715: 5709: 5706: 5693: 5689: 5685: 5678: 5676: 5672: 5659: 5655: 5654: 5649: 5642: 5639: 5626: 5622: 5618: 5611: 5608: 5595: 5591: 5587: 5580: 5577: 5561: 5557: 5550: 5544: 5541: 5528: 5524: 5520: 5513: 5510: 5497: 5493: 5489: 5485: 5478: 5475: 5471: 5467: 5464: 5459: 5456: 5452: 5448: 5445: 5440: 5437: 5433: 5428: 5425: 5412: 5408: 5407: 5403: 5396: 5393: 5380: 5376: 5370: 5367: 5354: 5350: 5346: 5340: 5337: 5332: 5328: 5324: 5320: 5316: 5312: 5305: 5302: 5297: 5293: 5289: 5285: 5280: 5275: 5271: 5267: 5263: 5259: 5252: 5249: 5237: 5233: 5226: 5223: 5210: 5206: 5202: 5195: 5192: 5179: 5175: 5169: 5166: 5153: 5149: 5145: 5141: 5137: 5133: 5126: 5124: 5120: 5115: 5111: 5107: 5103: 5096: 5093: 5088: 5084: 5080: 5076: 5072: 5068: 5064: 5060: 5053: 5050: 5045: 5041: 5037: 5033: 5029: 5025: 5018: 5015: 5009: 5004: 5000: 4996: 4992: 4988: 4981: 4978: 4973: 4969: 4965: 4961: 4957: 4953: 4950:(3): 035026. 4949: 4945: 4937: 4934: 4921: 4917: 4911: 4908: 4903: 4899: 4895: 4891: 4887: 4883: 4875: 4872: 4868: 4864: 4861: 4855: 4852: 4847: 4843: 4839: 4835: 4831: 4827: 4823: 4819: 4811: 4808: 4803: 4799: 4795: 4789: 4785: 4781: 4777: 4773: 4766: 4763: 4758: 4754: 4750: 4746: 4742: 4738: 4734: 4730: 4729: 4720: 4717: 4712: 4708: 4704: 4700: 4696: 4692: 4688: 4684: 4683: 4675: 4672: 4667: 4663: 4659: 4655: 4651: 4647: 4643: 4639: 4635: 4631: 4624: 4621: 4616: 4612: 4608: 4604: 4600: 4596: 4592: 4588: 4584: 4580: 4573: 4570: 4565: 4561: 4557: 4553: 4549: 4545: 4538: 4535: 4522: 4518: 4514: 4510: 4506: 4502: 4498: 4494: 4487: 4484: 4471: 4467: 4460: 4457: 4444: 4440: 4436: 4432: 4428: 4423: 4418: 4414: 4410: 4406: 4402: 4398: 4391: 4388: 4383: 4377: 4373: 4369: 4365: 4358: 4355: 4350: 4344: 4340: 4333: 4330: 4325: 4321: 4317: 4313: 4306: 4303: 4298: 4292: 4288: 4281: 4278: 4274: 4269: 4263: 4260: 4255: 4251: 4247: 4243: 4239: 4235: 4228: 4225: 4220: 4216: 4212: 4208: 4204: 4200: 4193: 4190: 4185: 4181: 4177: 4173: 4166: 4163: 4158: 4152: 4148: 4144: 4140: 4139: 4131: 4128: 4124: 4117: 4114: 4109: 4105: 4101: 4097: 4093: 4089: 4085: 4081: 4074: 4071: 4058: 4054: 4050: 4046: 4042: 4038: 4034: 4030: 4026: 4022: 4015: 4013: 4009: 4004: 4000: 3996: 3992: 3988: 3984: 3977: 3974: 3958: 3954: 3950: 3946: 3942: 3938: 3934: 3930: 3926: 3921: 3916: 3912: 3908: 3901: 3894: 3891: 3886: 3882: 3878: 3874: 3870: 3866: 3861: 3856: 3852: 3848: 3841: 3838: 3833: 3829: 3825: 3821: 3817: 3813: 3808: 3803: 3799: 3795: 3788: 3785: 3780: 3776: 3772: 3768: 3764: 3760: 3753: 3750: 3745: 3741: 3737: 3733: 3729: 3725: 3718: 3715: 3702: 3698: 3692: 3688: 3687: 3679: 3676: 3668: 3664: 3660: 3655: 3650: 3646: 3642: 3638: 3634: 3627: 3620: 3618: 3614: 3601: 3597: 3591: 3587: 3586: 3578: 3575: 3572:, pp. 308–309 3571: 3566: 3563: 3558: 3554: 3550: 3546: 3542: 3538: 3534: 3530: 3526: 3519: 3516: 3504: 3503: 3498: 3491: 3488: 3483: 3479: 3475: 3471: 3467: 3463: 3456: 3453: 3448: 3444: 3440: 3436: 3432: 3428: 3421: 3418: 3413: 3409: 3405: 3401: 3397: 3393: 3389: 3385: 3381: 3377: 3370: 3367: 3351: 3347: 3343: 3339: 3335: 3331: 3327: 3320: 3313: 3310: 3297: 3293: 3287: 3283: 3282: 3274: 3271: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3238: 3231: 3228: 3215: 3211: 3205: 3201: 3200: 3192: 3190: 3186: 3181: 3177: 3173: 3169: 3165: 3161: 3160: 3152: 3149: 3144: 3140: 3136: 3132: 3125: 3122: 3117: 3113: 3109: 3105: 3101: 3097: 3093: 3089: 3085: 3081: 3074: 3071: 3066: 3060: 3056: 3051: 3050: 3041: 3039: 3035: 3031: 3026: 3023: 3010: 3006: 3000: 2998: 2994: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2961: 2953: 2951: 2947: 2942: 2938: 2934: 2930: 2926: 2922: 2915: 2913: 2909: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2869: 2867: 2865: 2861: 2848: 2844: 2843: 2838: 2832: 2829: 2816: 2812: 2808: 2802: 2799: 2786: 2782: 2778: 2772: 2769: 2756: 2752: 2746: 2743: 2740:, pp. 265–266 2739: 2734: 2731: 2726: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2691: 2688: 2684: 2679: 2676: 2671: 2667: 2663: 2659: 2655: 2651: 2650:J. Appl. Phys 2644: 2641: 2637: 2630: 2627: 2623: 2618: 2615: 2610: 2606: 2602: 2598: 2594: 2590: 2583: 2581: 2577: 2573: 2568: 2565: 2560: 2556: 2552: 2548: 2544: 2540: 2533: 2531: 2527: 2523: 2518: 2515: 2511: 2506: 2503: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2456: 2449: 2447: 2443: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2396: 2389: 2386: 2378: 2374: 2370: 2366: 2362: 2358: 2354: 2347: 2340: 2337: 2332: 2328: 2323: 2318: 2314: 2310: 2306: 2302: 2298: 2291: 2289: 2285: 2281: 2276: 2273: 2260: 2256: 2252: 2248: 2246:91-7616-018-1 2242: 2238: 2237: 2229: 2226: 2221: 2217: 2210: 2207: 2202: 2196: 2192: 2187: 2186: 2177: 2175: 2171: 2165: 2160: 2156: 2152: 2148: 2144: 2140: 2133: 2130: 2125: 2121: 2116: 2111: 2107: 2103: 2099: 2095: 2091: 2084: 2081: 2077: 2072: 2069: 2056: 2052: 2046: 2042: 2041: 2033: 2030: 2026: 2021: 2018: 2012: 2007: 2003: 1999: 1995: 1991: 1987: 1980: 1978: 1974: 1961: 1957: 1951: 1948: 1935: 1931: 1925: 1921: 1920: 1912: 1909: 1904: 1898: 1894: 1893: 1885: 1882: 1877: 1871: 1867: 1863: 1856: 1853: 1840: 1836: 1832: 1829:(1): 73–104. 1828: 1824: 1820: 1813: 1810: 1797: 1793: 1792: 1784: 1781: 1768: 1764: 1760: 1756: 1752: 1746: 1743: 1738: 1734: 1731:(2): 116–30. 1730: 1726: 1719: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1672: 1669: 1666: 1662: 1659: 1653: 1650: 1647: 1643: 1640: 1634: 1631: 1628: 1624: 1621: 1616: 1613: 1610: 1606: 1603: 1599: 1594: 1591: 1587: 1582: 1580: 1576: 1572: 1567: 1564: 1551: 1546: 1541: 1537: 1533: 1529: 1522: 1519: 1506: 1502: 1496: 1493: 1480: 1476: 1469: 1466: 1453: 1446: 1443: 1430: 1426: 1425: 1420: 1413: 1410: 1404: 1394: 1389: 1385: 1382: 1378: 1374: 1369: 1365: 1362: 1358: 1354: 1351: 1347: 1343: 1338: 1334: 1333: 1329: 1326: 1319: 1315: 1312: 1310: 1307: 1304: 1300: 1299: 1295: 1294: 1290: 1288: 1286: 1282: 1277: 1274: 1270: 1266: 1264: 1260: 1259: 1258:Blood Diamond 1254: 1249: 1245: 1243: 1239: 1235: 1230: 1228: 1224: 1220: 1214: 1212: 1207: 1198: 1193: 1185: 1183: 1180: 1176: 1172: 1168: 1163: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1128: 1124: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1084:semiconductor 1077: 1075: 1073: 1069: 1065: 1061: 1057: 1049: 1048:zinc selenide 1045: 1041: 1033: 1031: 1029: 1025: 1021: 1020:heat spreader 1012: 1010: 1007: 1002: 1000: 996: 992: 988: 987:cutting tools 984: 983:machine tools 976: 975:angle grinder 971: 964: 959: 957: 954: 948: 945: 926: 922: 900: 895: 892: 884: 882: 880: 876: 872: 868: 864: 860: 856: 851: 846: 838: 836: 834: 829: 826: 818: 816: 814: 810: 806: 802: 795:Crystallinity 794: 792: 790: 786: 778: 776: 774: 765: 763: 761: 757: 753: 746: 744: 742: 738: 734: 721: 716: 711: 703: 701: 698: 693: 691: 690:electron beam 687: 683: 682:welding torch 679: 678:arc discharge 675: 671: 667: 663: 657: 649: 644: 636: 634: 632: 628: 623: 614: 610: 608: 604: 600: 594: 592: 586: 584: 580: 571: 564: 562: 560: 556: 552: 543: 541: 537: 535: 531: 527: 522: 519: 515: 510: 506: 501: 499: 495: 491: 487: 482: 480: 470: 463: 461: 459: 455: 454: 449: 445: 441: 437: 433: 428: 425: 421: 417: 413: 409: 404: 402: 398: 394: 390: 386: 382: 375: 370: 363: 361: 357: 354: 350: 346: 337: 330: 328: 326: 322: 321:steam turbine 318: 313: 311: 307: 303: 299: 294: 292: 288: 284: 280: 276: 272: 268: 259: 252: 250: 248: 247:spectroscopic 243: 238: 236: 232: 217: 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 173: 169: 165: 155: 151: 149: 145: 141: 137: 133: 129: 125: 121: 115: 113: 109: 105: 101: 97: 93: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 34: 30: 19: 5936: 5932: 5894: 5873: 5852: 5844:Bibliography 5839: 5827:. Retrieved 5818: 5808: 5796: 5784:. Retrieved 5764: 5752:. Retrieved 5722:. Retrieved 5708: 5696:. Retrieved 5662:. Retrieved 5651: 5641: 5631:November 19, 5629:. Retrieved 5620: 5610: 5598:. Retrieved 5590:CNN Business 5589: 5579: 5569:February 12, 5567:. Retrieved 5555: 5543: 5531:. Retrieved 5522: 5512: 5500:. Retrieved 5491: 5487: 5477: 5458: 5439: 5427: 5417:November 26, 5415:. Retrieved 5404: 5395: 5383:. Retrieved 5369: 5357:. Retrieved 5353:the original 5348: 5339: 5314: 5310: 5304: 5261: 5257: 5251: 5239:. Retrieved 5235: 5225: 5213:. Retrieved 5204: 5194: 5182:. Retrieved 5168: 5156:. Retrieved 5142:(5): 26–31. 5139: 5135: 5105: 5101: 5095: 5062: 5058: 5052: 5027: 5023: 5017: 5008:11567/244765 4990: 4986: 4980: 4947: 4943: 4936: 4924:. Retrieved 4910: 4885: 4881: 4874: 4854: 4821: 4817: 4810: 4775: 4771: 4765: 4732: 4726: 4719: 4686: 4680: 4674: 4633: 4629: 4623: 4582: 4578: 4572: 4547: 4543: 4537: 4525:. Retrieved 4500: 4496: 4486: 4474:. Retrieved 4459: 4447:. Retrieved 4443:the original 4404: 4400: 4390: 4363: 4357: 4338: 4332: 4318:: 27. 1999. 4315: 4311: 4305: 4286: 4280: 4267: 4262: 4237: 4233: 4227: 4202: 4198: 4192: 4175: 4171: 4165: 4137: 4130: 4116: 4083: 4079: 4073: 4061:. Retrieved 4028: 4024: 3986: 3982: 3976: 3964:. Retrieved 3910: 3906: 3893: 3850: 3847:Phys. Rev. B 3846: 3840: 3797: 3794:Phys. Rev. B 3793: 3787: 3762: 3758: 3752: 3727: 3723: 3717: 3705:. Retrieved 3685: 3678: 3667:the original 3636: 3632: 3604:. Retrieved 3584: 3577: 3565: 3532: 3528: 3518: 3506:. Retrieved 3502:ScienceAlert 3500: 3490: 3465: 3461: 3455: 3430: 3426: 3420: 3379: 3375: 3369: 3357:. Retrieved 3329: 3325: 3312: 3300:. Retrieved 3280: 3273: 3240: 3236: 3230: 3218:. Retrieved 3198: 3163: 3157: 3151: 3134: 3130: 3124: 3083: 3079: 3073: 3048: 3025: 3013:. Retrieved 3009:the original 2963: 2959: 2924: 2920: 2878: 2874: 2851:. Retrieved 2847:the original 2840: 2831: 2819:. Retrieved 2810: 2801: 2789:. Retrieved 2780: 2771: 2759:. Retrieved 2745: 2733: 2700: 2696: 2690: 2678: 2653: 2649: 2643: 2629: 2617: 2592: 2588: 2567: 2542: 2538: 2517: 2505: 2494:the original 2465: 2461: 2434:the original 2405: 2401: 2388: 2377:the original 2356: 2352: 2339: 2307:(6441): 19. 2304: 2300: 2275: 2265:November 20, 2263:. Retrieved 2235: 2228: 2219: 2216:ASEA Journal 2215: 2209: 2184: 2146: 2142: 2132: 2097: 2093: 2083: 2071: 2059:. Retrieved 2039: 2032: 2020: 1993: 1989: 1964:. Retrieved 1960:the original 1950: 1938:. Retrieved 1918: 1911: 1891: 1884: 1861: 1855: 1843:. Retrieved 1826: 1822: 1812: 1800:. Retrieved 1790: 1783: 1771:. Retrieved 1762: 1758: 1745: 1728: 1724: 1718: 1685: 1681: 1671: 1652: 1633: 1615: 1593: 1566: 1556:February 23, 1554:. Retrieved 1535: 1531: 1521: 1509:. Retrieved 1504: 1495: 1483:. Retrieved 1479:the original 1468: 1456:. Retrieved 1445: 1433:. Retrieved 1424:The Guardian 1422: 1412: 1360: 1356: 1328: 1296: 1278: 1275: 1271: 1267: 1256: 1251:Traditional 1250: 1246: 1231: 1219:spectroscopy 1215: 1203: 1175:biomolecules 1164: 1129: 1125: 1081: 1072:synchrotrons 1064:Raman lasers 1037: 1024:laser diodes 1016: 1003: 980: 960:Applications 949: 896: 888: 867:dislocations 852: 848: 833:hyperdiamond 822: 798: 782: 769: 750: 725: 694: 674:hot filament 658: 654: 631:thermocouple 619: 607:dodecahedron 605:, such as a 595: 587: 583:precipitates 576: 547: 538: 523: 505:fluorescence 502: 483: 475: 452: 436:pyrophyllite 429: 410:designed by 405: 378: 358: 342: 314: 295: 264: 239: 161: 131: 127: 123: 120:Soviet Union 116: 92:crystallized 72: 68: 64: 60: 56: 52: 48: 44: 40: 39: 29: 5664:January 14, 4503:(4): 2467. 4407:: 628–642. 4312:New Diamond 4145:. pp.  4143:Holtzapffel 4063:October 16, 2656:(6): 2915. 2624:, pp. 25–26 2512:, pp. 40–43 1966:January 12, 1765:: 320–326. 1538:: 123–127. 1505:klenota.com 1485:February 4, 1393:Mr. Thenard 1303:H. G. Wells 1078:Electronics 1054:lasers and 1028:transistors 953:thermistors 813:micrometers 801:polycrystal 733:nitric acid 599:tetrahedron 393:gigapascals 389:Carborundum 204:ultraviolet 176:widely used 132:CVD diamond 110:), and the 5956:Categories 5786:August 21, 5724:August 17, 5432:O'Donoghue 4527:August 21, 4401:Proc. SPIE 3989:(1): 698. 3765:(4): R25. 2522:O'Donoghue 2359:(2): 125. 2280:O'Donoghue 2025:O'Donoghue 1940:August 15, 1802:August 18, 1435:October 1, 1405:References 1346:phosphorus 1342:Mr. Gannal 1167:covalently 1092:phosphorus 991:drill bits 809:nanometers 805:grain size 779:Properties 760:cavitation 559:sonication 490:Inclusions 401:Tracy Hall 360:15, 1955. 184:heat sinks 148:ultrasound 144:detonation 83:). Unlike 65:artificial 5945:0009-2347 5556:gjepc.org 5359:August 8, 5296:250857323 5274:CiteSeerX 5207:. Kitco. 5184:August 1, 5108:(2): 77. 4802:137379434 4778:: 73–76. 4439:137212507 4417:CiteSeerX 4324:1340-4792 4045:1944-8244 3966:April 24, 3885:118553722 3860:1307.3278 3832:119227072 3807:1208.3207 3649:CiteSeerX 3508:April 25, 2988:120882885 2903:250878100 2781:JCKOnline 2725:250819894 2255:841614801 2078:, pp. 6–7 1773:March 10, 1710:135789069 1658:page 151: 1639:page 140: 1602:page 137: 1511:April 13, 1373:Mr. Arago 1234:one maker 1232:At least 1206:gemstones 1186:Gemstones 1162:program. 1056:gyrotrons 956:seconds. 919:(99.9%), 879:toughness 672:power, a 670:microwave 591:hydraulic 526:pyrolysis 424:catlinite 345:Stockholm 302:Otto Ruff 235:gyrotrons 180:abrasives 140:nanometer 96:isotropic 69:synthetic 5967:Crystals 5829:July 11, 5823:Archived 5777:Archived 5754:July 29, 5748:Archived 5718:Archived 5692:Archived 5658:Archived 5625:Archived 5594:Archived 5560:Archived 5533:July 19, 5527:Archived 5502:June 21, 5496:Archived 5466:Archived 5447:Archived 5434:, p. 115 5411:Archived 5379:Archived 5215:March 7, 5209:Archived 5178:Archived 5158:March 2, 5152:Archived 5087:97692319 4972:93845703 4920:Archived 4863:Archived 4846:96368363 4757:27756719 4711:15626986 4666:27736134 4658:12215638 4615:10675358 4607:11397942 4521:Archived 4470:Archived 4108:10053956 4057:Archived 4053:29328632 3957:Archived 3945:15057827 3701:Archived 3600:Archived 3557:38658760 3447:96810777 3404:17818997 3359:March 4, 3350:Archived 3296:Archived 3265:93807288 3214:Archived 3116:17834381 3032:, p. 150 2815:Archived 2785:Archived 2755:Archived 2574:, p. 166 2524:, p. 320 2490:44669031 2282:, p. 474 2259:Archived 2055:Archived 2027:, p. 473 1934:Archived 1845:June 29, 1839:Archived 1796:Archived 1791:Diamonds 1767:Archived 1753:(1894). 1737:10365467 1661:Archived 1642:Archived 1623:Archived 1605:Archived 1573:, p. 309 1550:Archived 1458:June 11, 1429:Archived 1291:See also 1223:infrared 1169:linking 1134:. It is 1120:band gap 1044:infrared 1006:sintered 995:abrasive 819:Hardness 666:radicals 518:De Beers 494:titanium 486:nitrogen 448:catalyst 432:toroidal 279:charcoal 188:switches 164:hardness 57:man-made 5698:May 30, 5385:May 27, 5349:Reuters 5319:Bibcode 5266:Bibcode 5241:May 23, 5067:Bibcode 5032:Bibcode 4952:Bibcode 4890:Bibcode 4826:Bibcode 4737:Bibcode 4691:Bibcode 4638:Bibcode 4630:Science 4587:Bibcode 4579:Science 4552:Bibcode 4505:Bibcode 4409:Bibcode 4242:Bibcode 4207:Bibcode 4088:Bibcode 3991:Bibcode 3953:4423950 3925:Bibcode 3865:Bibcode 3812:Bibcode 3767:Bibcode 3732:Bibcode 3641:Bibcode 3537:Bibcode 3470:Bibcode 3412:9805441 3384:Bibcode 3376:Science 3334:Bibcode 3245:Bibcode 3168:Bibcode 3137:: 5–9. 3108:1756408 3088:Bibcode 3080:Science 3055:197–230 3030:Barnard 2968:Bibcode 2929:Bibcode 2883:Bibcode 2853:May 10, 2821:May 10, 2791:May 10, 2761:June 9, 2705:Bibcode 2685:, p. 42 2658:Bibcode 2597:Bibcode 2572:Barnard 2547:Bibcode 2510:Barnard 2470:Bibcode 2430:4266566 2410:Bibcode 2361:Bibcode 2331:4348180 2309:Bibcode 2151:Bibcode 2102:Bibcode 2076:Barnard 1998:Bibcode 1242:Gemesis 1221:in the 1142:of 5.5 1140:bandgap 741:Belarus 662:methane 534:silicon 374:KOBELCO 253:History 77:diamond 5943:  5902:  5881:  5860:  5600:May 5, 5294:  5276:  5085:  4970:  4926:May 5, 4844:  4800:  4790:  4755:  4709:  4664:  4656:  4613:  4605:  4476:May 5, 4449:May 5, 4437:  4419:  4378:  4345:  4322:  4293:  4153:  4149:–178. 4106:  4051:  4043:  3951:  3943:  3907:Nature 3883:  3830:  3707:May 3, 3693:  3651:  3606:May 3, 3592:  3555:  3529:Nature 3445:  3410:  3402:  3302:May 3, 3288:  3263:  3220:May 3, 3206:  3159:Lithos 3114:  3106:  3061:  3015:May 5, 2986:  2901:  2723:  2488:  2462:Nature 2428:  2402:Nature 2329:  2301:Nature 2253:  2243:  2197:  2193:–113. 2143:Nature 2122:  2061:May 3, 2047:  1990:Nature 1926:  1899:  1872:  1735:  1708:  1702:113601 1700:  1100:p-type 1060:optics 752:Micron 737:powder 697:silica 557:) and 551:plasma 516:. The 514:X-rays 453:Nature 444:cobalt 440:nickel 408:anvils 385:Norton 383:(GE), 325:spinel 283:carbon 231:lasers 130:) and 94:in an 89:carbon 5939:(5). 5780:(PDF) 5773:(PDF) 5563:(PDF) 5552:(PDF) 5494:(1). 5292:S2CID 5083:S2CID 4968:S2CID 4842:S2CID 4798:S2CID 4753:S2CID 4707:S2CID 4662:S2CID 4611:S2CID 4435:S2CID 4268:et al 3960:(PDF) 3949:S2CID 3915:arXiv 3903:(PDF) 3881:S2CID 3855:arXiv 3828:S2CID 3802:arXiv 3670:(PDF) 3629:(PDF) 3443:S2CID 3408:S2CID 3353:(PDF) 3322:(PDF) 3261:S2CID 3104:JSTOR 2984:S2CID 2899:S2CID 2721:S2CID 2497:(PDF) 2486:S2CID 2458:(PDF) 2437:(PDF) 2426:S2CID 2398:(PDF) 2380:(PDF) 2349:(PDF) 2327:S2CID 2222:: 97. 2124:92683 2120:JSTOR 1706:S2CID 1698:JSTOR 1320:Notes 1238:laser 1227:X-ray 1179:redox 1148:BaBar 1088:doped 977:blade 785:flaws 688:, an 686:laser 676:, an 498:boron 479:carat 106:(6.0 75:, is 71:, or 5941:ISSN 5900:ISBN 5879:ISBN 5858:ISBN 5831:2021 5788:2018 5756:2018 5726:2018 5700:2018 5666:2017 5633:2018 5602:2022 5571:2016 5535:2022 5504:2022 5419:2008 5387:2015 5361:2009 5243:2024 5217:2015 5186:2013 5160:2004 4928:2009 4788:ISBN 4654:PMID 4603:PMID 4529:2018 4478:2009 4451:2009 4405:1739 4376:ISBN 4343:ISBN 4320:ISSN 4291:ISBN 4151:ISBN 4104:PMID 4065:2020 4049:PMID 4041:ISSN 3968:2009 3941:PMID 3709:2021 3691:ISBN 3608:2021 3590:ISBN 3553:PMID 3510:2024 3400:PMID 3361:2013 3304:2021 3286:ISBN 3222:2021 3204:ISBN 3112:PMID 3059:ISBN 3017:2009 2855:2015 2823:2015 2793:2015 2763:2018 2267:2021 2251:OCLC 2241:ISBN 2195:ISBN 2063:2021 2045:ISBN 1968:2016 1942:2009 1924:ISBN 1897:ISBN 1870:ISBN 1847:2019 1804:2011 1775:2014 1733:PMID 1558:2016 1513:2023 1487:2013 1460:2024 1437:2022 1160:LYRA 1108:LEDs 985:and 891:W/mK 684:, a 680:, a 620:The 579:BARS 507:and 387:and 349:ASEA 331:ASEA 291:lime 242:gems 233:and 198:and 170:and 128:HPHT 18:HPHT 5688:CNN 5327:doi 5284:doi 5236:CNN 5144:doi 5110:doi 5075:doi 5040:doi 5003:hdl 4995:doi 4960:doi 4898:doi 4886:552 4834:doi 4780:doi 4745:doi 4699:doi 4646:doi 4634:297 4595:doi 4583:292 4560:doi 4513:doi 4427:doi 4368:doi 4250:doi 4215:doi 4180:doi 4147:176 4096:doi 4033:doi 3999:doi 3933:doi 3911:428 3873:doi 3820:doi 3775:doi 3763:201 3740:doi 3659:doi 3545:doi 3533:629 3478:doi 3435:doi 3392:doi 3380:133 3342:doi 3253:doi 3241:202 3176:doi 3139:doi 3096:doi 3084:128 2976:doi 2937:doi 2891:doi 2713:doi 2666:doi 2605:doi 2555:doi 2543:104 2478:doi 2466:184 2418:doi 2406:176 2369:doi 2317:doi 2305:365 2191:100 2159:doi 2147:121 2110:doi 2098:79a 2006:doi 1994:196 1831:doi 1763:118 1690:doi 1540:doi 1171:DNA 1156:VUV 1102:or 720:TEM 347:by 308:of 190:at 178:in 45:LGD 5958:: 5937:82 5935:. 5931:. 5821:. 5817:. 5746:. 5734:^ 5690:. 5686:. 5674:^ 5656:. 5650:. 5623:. 5619:. 5592:. 5588:. 5554:. 5525:. 5521:. 5492:58 5490:. 5486:. 5409:. 5347:. 5325:. 5315:97 5313:. 5290:. 5282:. 5272:. 5262:42 5260:. 5234:. 5203:. 5150:. 5140:82 5138:. 5134:. 5122:^ 5104:. 5081:. 5073:. 5063:20 5061:. 5038:. 5028:16 5026:. 5001:. 4991:51 4989:. 4966:. 4958:. 4948:23 4946:. 4896:. 4884:. 4840:. 4832:. 4822:25 4820:. 4796:. 4786:. 4776:48 4751:. 4743:. 4733:27 4731:. 4705:. 4697:. 4687:33 4685:. 4660:. 4652:. 4644:. 4632:. 4609:. 4601:. 4593:. 4581:. 4558:. 4548:14 4546:. 4519:. 4511:. 4501:74 4495:. 4433:. 4425:. 4415:. 4399:. 4374:. 4316:15 4314:. 4248:. 4238:28 4236:. 4213:. 4203:12 4201:. 4176:35 4174:. 4141:. 4102:. 4094:. 4084:70 4082:. 4055:. 4047:. 4039:. 4029:10 4027:. 4023:. 4011:^ 3997:. 3987:86 3985:. 3955:. 3947:. 3939:. 3931:. 3923:. 3909:. 3905:. 3879:. 3871:. 3863:. 3851:84 3849:. 3826:. 3818:. 3810:. 3798:79 3796:. 3773:. 3761:. 3738:. 3728:76 3726:. 3699:. 3657:. 3647:. 3635:. 3631:. 3616:^ 3598:. 3551:. 3543:. 3531:. 3499:. 3476:. 3466:17 3464:. 3441:. 3431:79 3429:. 3406:. 3398:. 3390:. 3378:. 3348:. 3340:. 3328:. 3324:. 3294:. 3259:. 3251:. 3239:. 3212:. 3188:^ 3174:. 3164:60 3162:. 3135:19 3133:. 3110:. 3102:. 3094:. 3082:. 3057:. 3037:^ 2996:^ 2982:. 2974:. 2964:49 2962:. 2949:^ 2935:. 2925:16 2923:. 2911:^ 2897:. 2889:. 2879:61 2877:. 2863:^ 2839:. 2813:. 2809:. 2779:. 2719:. 2711:. 2701:39 2699:. 2664:. 2654:39 2652:. 2603:. 2593:14 2591:. 2579:^ 2553:. 2541:. 2529:^ 2484:. 2476:. 2464:. 2460:. 2445:^ 2424:. 2416:. 2404:. 2400:. 2367:. 2357:31 2355:. 2351:. 2325:. 2315:. 2303:. 2299:. 2287:^ 2257:. 2249:. 2220:28 2218:. 2173:^ 2157:. 2145:. 2141:. 2118:. 2108:. 2096:. 2092:. 2053:. 2004:. 1992:. 1988:. 1976:^ 1932:. 1864:. 1837:. 1827:99 1825:. 1821:. 1761:. 1757:. 1729:57 1727:. 1704:. 1696:. 1686:30 1684:. 1680:. 1578:^ 1548:. 1536:87 1534:. 1530:. 1503:. 1427:. 1421:. 1361:10 1359:, 1144:eV 881:. 633:. 488:. 442:, 327:. 221:CO 166:, 158:mm 104:ct 67:, 63:, 59:, 55:, 51:, 5947:. 5908:. 5887:. 5866:. 5833:. 5790:. 5758:. 5728:. 5702:. 5668:. 5635:. 5604:. 5573:. 5537:. 5506:. 5421:. 5389:. 5363:. 5333:. 5329:: 5321:: 5298:. 5286:: 5268:: 5245:. 5219:. 5188:. 5162:. 5146:: 5116:. 5112:: 5106:3 5089:. 5077:: 5069:: 5046:. 5042:: 5034:: 5011:. 5005:: 4997:: 4974:. 4962:: 4954:: 4930:. 4904:. 4900:: 4892:: 4848:. 4836:: 4828:: 4804:. 4782:: 4759:. 4747:: 4739:: 4713:. 4701:: 4693:: 4668:. 4648:: 4640:: 4617:. 4597:: 4589:: 4566:. 4562:: 4554:: 4531:. 4515:: 4507:: 4480:. 4453:. 4429:: 4411:: 4384:. 4370:: 4351:. 4326:. 4299:. 4256:. 4252:: 4244:: 4221:. 4217:: 4209:: 4186:. 4182:: 4159:. 4110:. 4098:: 4090:: 4067:. 4035:: 4005:. 4001:: 3993:: 3970:. 3935:: 3927:: 3917:: 3887:. 3875:: 3867:: 3857:: 3834:. 3822:: 3814:: 3804:: 3781:. 3777:: 3769:: 3746:. 3742:: 3734:: 3711:. 3661:: 3643:: 3637:7 3610:. 3559:. 3547:: 3539:: 3512:. 3484:. 3480:: 3472:: 3449:. 3437:: 3414:. 3394:: 3386:: 3363:. 3344:: 3336:: 3330:9 3306:. 3267:. 3255:: 3247:: 3224:. 3182:. 3178:: 3170:: 3145:. 3141:: 3118:. 3098:: 3090:: 3067:. 3019:. 2990:. 2978:: 2970:: 2943:. 2939:: 2931:: 2905:. 2893:: 2885:: 2857:. 2825:. 2795:. 2765:. 2727:. 2715:: 2707:: 2672:. 2668:: 2660:: 2611:. 2607:: 2599:: 2561:. 2557:: 2549:: 2480:: 2472:: 2420:: 2412:: 2371:: 2363:: 2333:. 2319:: 2311:: 2269:. 2203:. 2167:. 2161:: 2153:: 2126:. 2112:: 2104:: 2065:. 2014:. 2008:: 2000:: 1970:. 1944:. 1905:. 1878:. 1849:. 1833:: 1806:. 1777:. 1739:. 1712:. 1692:: 1560:. 1542:: 1515:. 1489:. 1462:. 1439:. 1052:2 937:C 910:C 728:× 226:2 126:( 108:g 43:( 20:)

Index

HPHT
Six non-faceted diamond crystals of 2–3 mm (0.079–0.118 in) size; they are yellow, green-yellow, green-blue, light-blue, light-blue and dark blue.
diamond
obtained by mining
diamond simulants
carbon
crystallized
isotropic
chemical and physical properties
ct
g
heaviest natural diamond
Soviet Union
chemical vapor deposition
nanometer
detonation
ultrasound

hardness
thermal conductivity
electron mobility
widely used
abrasives
heat sinks
switches
power stations
field-effect transistors
light-emitting diodes
ultraviolet
high-energy particles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.