Knowledge (XXG)

Flat no-leads package

Source 📝

38: 600: 156:. Saw singulation cuts a large set of packages in parts. In punch singulation, a single package is moulded into shape. The cross section shows a saw-singulated body with an attached thermal head pad. The lead frame is made of copper alloy and a thermally conductive adhesive is used for attaching the silicon die to the thermal pad. The silicon die is electrically connected to the lead frame by 1–2  133: 294:-9071A attempted to address this by focusing on 2nd level interconnects (i.e. package to PCB substrate). The challenge with this standard is that it has been more adopted by OEMs than component manufacturers, who tend to view it as an application-specific issue. As a result there has been much experimental testing and 241:, however this may affect overall reliability of the joints. Stencil design is another key parameter in QFN design process. Proper aperture design and stencil thickness can help produce more consistent joints (i.e. minimal voiding, outgassing, and floating parts) with proper thickness, leading to improved reliability. 338:
Different manufacturers use different names for this package: ML (micro-leadframe) versus FN (flat no-lead), in addition there are versions with pads on all four sides (quad) and pads on just two sides (dual), thickness varying between 0.9–1.0 mm for normal packages and 0.4 mm for extremely
236:
is able to bond to both the top and sides of the copper pad. The copper etching process also generally has tighter control than the solder masking process, resulting in more consistent joints. This does have the potential to affect the thermal and electrical performance of the joints, so it can be
206:
This package offers a variety of benefits including reduced lead inductance, a small sized "near chip scale" footprint, thin profile and low weight. It also uses perimeter I/O pads to ease PCB trace routing, and the exposed copper die-pad technology offers good thermal and electrical performance.
266:
Component packaging is often driven by the consumer electronics market with less consideration given to higher reliability industries such as automotive and aviation. It can therefore be challenging to integrate component package families, such as the QFN, into high reliability environments. QFN
194:
In contrast, the air-cavity QFN is usually made up of three parts; a copper leadframe, plastic-moulded body (open, and not sealed), and either a ceramic or plastic lid. It is usually more expensive due to its construction, and can be used for microwave applications up to 20–25 GHz.
655:. The die attach paddle is exposed on the bottom of the package surface to provide an efficient heat path when soldered directly to the circuit board. This also enables stable ground by use of down bonds or by electrical connection through a conductive die attach material. 257:
of 3 or higher is recommended. Several other issues with QFN manufacturing include: part floating due to excessive solder paste under the center thermal pad, large solder voiding, poor reworkable characteristics, and optimization of the solder reflow profile.
215:
Improved packaging technologies and component miniaturization can often lead to new or unexpected design, manufacturing, and reliability issues. This has been the case with QFN packages, especially when it comes to adoption by new non-consumer electronic
248:
can be a concern. If there is a large amount of moisture absorption into the package then heating during reflow can lead to excessive component warpage. This often results in the corners of the component lifting off the
900:
Wilde, J., and Zukowski, E. "Comparative Analysis for μBGA and QFN Reliability." 8th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2007 IEEE,
937:
Serebreni, M., Blattau, N., Sharon, G., Hillman, C., Mccluskey, P. "Semi-analytical fatigue life model for reliability assessment of solder joints in qfn packages under thermal cycling". SMTA ICSR, 2017. Toronto,
305:
Serebreni et al. proposed a semi-analytical model to assess the reliability QFN solder joints under thermal cycling. This model generates effective mechanical properties for the QFN package, and calculates the
190:
Less-expensive plastic-moulded QFNs are usually limited to applications up to ~2–3 GHz. It is usually composed of just 2 parts, a plastic compound and copper lead frame, and does not come with a lid.
928:
Birzer, C., et al. "Reliability Investigations of Leadless QFN Packages until End-of-Life with Application-Specific Board-Level Stress Tests." Electronics Components and Technology Conference, 2006.
314:
using a model proposed by Chen and Nelson. The dissipated strain energy density is then determined from these values and used to predict characteristic cycles to failure using a 2-parameter
662:(DRMLF) package. This is an MLF package with two rows of lands for devices requiring up to 164 I/O. Typical applications include hard disk drives, USB controllers, and wireless LAN. 791: 882:
Yan Tee, T., et al. "Comprehensive board-level solder joint reliability modeling and testing of QFN and PowerQFN packages." Microelectronics Reliability 43 (2003): 1329–1338.
1023: 651:
plastic encapsulated package with a copper leadframe substrate. This package uses perimeter lands on the bottom of the package to provide electrical contact to the
855:
JEDEC JESD22B113, March 2006, Board Level Cycling Bend Test Method for Interconnect Reliability Characterization of Components for Handheld Electronic Products
330:, but the leads do not extend out from the package sides. It is hence difficult to hand-solder a QFN package, inspect solder joint quality, or probe lead(s). 769: 1418: 756: 168: 805: 279:(CTE) mismatch as compared to leaded packages. For example, under accelerated thermal cycling conditions between -40 °C to 125 °C, various 891:
Vianco, P. and Neilsen, M. K. "Thermal mechanical fatigue of a 56 I/O plastic quad-flat nolead (PQFN) package." SMTA International Conference, 2015.
910:
De Vries, J., et al. "Solder-joint reliability of HVQFN-packages subjected to thermal cycling." Microelectronics Reliability 49 (2009): 331-339.
792:
http://www.dfrsolutions.com/hubfs/Resources/services/Understanding-Criticality-of-Stencil-Aperture-Design-and-Implementation-QFN-Package.pdf
207:
These features make the QFN an ideal choice for many new applications where size, weight, thermal and electrical performance are important.
1330: 1016: 725: 816: 873:
Syed, A. and Kang, W. "Board level assembly and reliability considerations for QFN type packages." SMTA International Conference, 2003
1387: 1267: 986: 1257: 1252: 638: 276: 1009: 947:
Chen, W. T., and C. W. Nelson. "Thermal stress in bonded joints." IBM Journal of Research and Development 23.2 (1979): 179-188.
919:
17. Li, L. et al. "Board level reliability and assembly process of advanced QFN packages." SMTA International Conference, 2012.
237:
helpful to consult the package manufacturer for optimal performance parameters. SMD pads can be used to reduce the chances of
228:
Some key QFN design considerations are pad and stencil design. When it comes to bond pad design two approaches can be taken:
1061: 864:
IPC IPC-9701A, February 2006, Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments
770:
http://www.dfrsolutions.com/hubfs/Resources/services/Manufacturing-and-Reliability-Challenges-With-QFN.pdf?t=1503583170559
1413: 283:(QFP) components can last over 10,000 thermal cycles whereas QFN components tend to fail at around 1,000-3,000 cycles. 1296: 1444:
It is relatively common to find packages that contain other components than their designated ones, such as diodes or
633:). These package generally have an exposed die attach pad to improve thermal performance. This package is similar to 806:
http://www.dfrsolutions.com/hubfs/Resources/services/The-Reliability-Challenges-of-QFN-Packaging.pdf?t=1502980151115
232:
defined (SMD) or non-solder mask defined (NSMD). A NSMD approach typically leads to more reliable joints, since the
1301: 1262: 1247: 1232: 254: 819:, Seelig, K., and Pigeon, K. "Overcoming the Challenges of the QFN Package," Proceedings of SMTAI, October, 2011. 1428: 1092: 615: 105: 73: 31: 698:
Design requirements for outlines of solid state and related products, JEDEC PUBLICATION 95, DESIGN GUIDE 4.23
1433: 1272: 311: 89: 996: 1465: 1242: 1216: 459: 1423: 1392: 1032: 652: 295: 250: 157: 101: 85: 69: 244:
There are also issues on the manufacturing side. For larger QFN components, moisture absorption during
817:
http://www.aimsolder.com/sites/default/files/overcoming_the_challenges_of_the_qfn_package_rev_2013.pdf
275:. The significantly lower standoff in QFN packages can lead to higher thermomechanical strains due to 1408: 1291: 1237: 1084: 591: 574: 537: 315: 1350: 1073: 780: 272: 100:
lead frame substrate. Perimeter lands on the package bottom provide electrical connections to the
1377: 1367: 648: 634: 611: 109: 93: 77: 65: 732: 37: 1445: 1306: 750: 677: 587: 550: 327: 291: 280: 117: 113: 710: 1199: 1193: 1187: 1175: 1163: 1157: 1145: 1049: 978: 969: 524: 426: 245: 97: 72:. Flat no-leads, also known as micro leadframe (MLF) and SON (small-outline no leads), is a 637:(CSP) in construction. MLPD are designed to provide a footprint-compatible replacement for 1382: 1335: 1325: 990: 238: 121: 253:, causing improper joint formation. To reduce the risk of warpage issues during reflow a 965: 27:
Integrated circuit package with contacts on all 4 sides, on the underside of the package
1340: 983: 299: 268: 1459: 960: 671: 307: 161: 145: 658:
A more recent design variation which allows for higher density connections is the
599: 974: 618: 229: 141: 621:
circuits designs. It is available in 3 versions which are MLPQ (Q stands for
1372: 198:
QFN packages can have a single row of contacts or a double row of contacts.
298:
across various QFN package variants to characterize their reliability and
132: 1001: 290:, however this has primarily focused on die and 1st level interconnects. 167:
The pads of a saw-singulated package can either be completely under the
383: 1181: 1169: 1151: 1139: 1067: 1055: 233: 17: 140:
The figure shows the cross section of a flat no-lead package with a
104:. Flat no-lead packages usually, but not always, include an exposed 1133: 1127: 1121: 1115: 1041: 598: 287: 131: 112:(into the PCB). Heat transfer can be further facilitated by metal 36: 1109: 1103: 1097: 781:
https://www.microsemi.com/document-portal/doc_view/130006-qfn-an
1005: 837:
JEDEC JESD22-A105C, January 2011, Power and Temperature Cycling
41:
28-pin QFN, upside down to show contacts and thermal/ground pad
217: 286:
Historically, reliability testing has been mainly driven by
116:
in the thermal pad. The QFN package is similar to the
183:, with an air cavity designed into the package, and 1401: 1349: 1318: 1281: 1225: 1209: 1083: 1039: 271:issues, especially thermomechanical fatigue due to 171:, or they can fold around the edge of the package. 76:, one of several package technologies that connect 828:JEDEC JESD22-A104D, May 2005, Temperature Cycling 211:Design, manufacturing, and reliability challenges 96:plastic encapsulated package made with a planar 553:and others (such as Atmel, ROHM Semiconductor) 436:quad flat no-lead package with top-exposed pad 1017: 8: 846:JEDEC JESD22-A106B, June 2004, Thermal Shock 712:Smaller Packages = Bigger Thermal Challenges 997:Linear Technology - QFN Package Users Guide 975:Edge Protection Technology for QFN Packages 30:"QFN" redirects here. For the airport, see 1419:List of integrated circuit packaging types 1024: 1010: 1002: 341: 267:components are known to be susceptible to 801: 799: 413:extremely thin dual flat no-lead package 1076:(SOD-123 / SOD-323 / SOD-523 / SOD-923) 689: 148:. There are two types of body designs, 755:: CS1 maint: archived copy as title ( 748: 179:Two types of QFN packages are common: 64:) physically and electrically connect 961:Board mounting notes for QFN packages 674:Chip packaging and package types list 561:Heatsink Very-thin Quad Flat package 7: 403:ultra-thin dual flat no-lead package 108:to improve heat transfer out of the 187:with air in the package minimized. 326:The QFN package is similar to the 25: 639:small-outline integrated circuit 521:dual-row micro-leadframe package 277:coefficient of thermal expansion 1058:(DO-7 / DO-26 / DO-35 / DO-41) 993:magazine, July - August 2000.] 446:thin quad flat no-lead package 393:thin dual flat no-lead package 370:dual quad flat no-lead package 1: 501:micro-leadframe package micro 469:leadless plastic chip carrier 339:thin. Abbreviations include: 1448:in transistor packages, etc. 1414:Integrated circuit packaging 511:micro-leadframe package quad 491:micro-leadframe package dual 322:Comparison to other packages 715:, Microchip Technology Inc. 584:ultrathin quad flat no-lead 547:very thin quad flat no-lead 534:dual-row quad flat no-lead 483:Amkor Technology and Atmel 1482: 629:), and MLPD (D stands for 456:leadless leadframe package 362:Atmel, ROHM Semiconductor 255:moisture sensitivity level 128:Flat no-lead cross-section 29: 1442: 660:dual row micro lead frame 423:quad flat no-lead package 359:dual flat no-lead package 92:. Flat no-lead is a near 1429:Surface-mount technology 608:Micro lead frame package 603:Micro lead frame package 224:Design and manufacturing 106:thermally conductive pad 74:surface-mount technology 32:Narsaq Kujalleq Heliport 1434:Through-hole technology 571:ultra dual flat no-lead 296:finite element analysis 1064:(MELF / SOD-80 / LL34) 1033:Semiconductor packages 625:), MLPM (M stands for 614:QFN packages, used in 604: 460:National Semiconductor 137: 70:printed circuit boards 42: 1424:Printed circuit board 653:printed circuit board 610:(MLP) is a family of 602: 251:printed circuit board 135: 40: 1409:Electronic packaging 592:Microchip Technology 575:Microchip Technology 538:Microchip Technology 185:plastic-moulded QFNs 635:chip scale packages 66:integrated circuits 1446:voltage regulators 989:2011-09-30 at the 612:integrated circuit 605: 138: 58:dual-flat no-leads 50:quad-flat no-leads 43: 1453: 1452: 1202:(Super-247) (SMT) 1196:(Super-220) (SMT) 1070:(SMA / SMB / SMC) 709:Bonnie C. Baker, 678:Quad flat package 641:(SOIC) packages. 597: 596: 588:Texas Instruments 551:Texas Instruments 328:quad flat package 281:quad flat package 150:punch singulation 118:quad-flat package 48:packages such as 16:(Redirected from 1473: 1026: 1019: 1012: 1003: 984:ChipScale Review 979:Amkor Technology 970:Amkor Technology 948: 945: 939: 935: 929: 926: 920: 917: 911: 908: 902: 898: 892: 889: 883: 880: 874: 871: 865: 862: 856: 853: 847: 844: 838: 835: 829: 826: 820: 814: 808: 803: 794: 789: 783: 778: 772: 767: 761: 760: 754: 746: 744: 743: 737: 731:. Archived from 730: 722: 716: 707: 701: 700: 694: 647:(MLF) is a near 645:Micro lead frame 525:Amkor Technology 427:Amkor Technology 342: 21: 1481: 1480: 1476: 1475: 1474: 1472: 1471: 1470: 1456: 1455: 1454: 1449: 1438: 1397: 1345: 1314: 1277: 1221: 1205: 1079: 1035: 1030: 991:Wayback Machine 966:MicroLeadFrame® 957: 952: 951: 946: 942: 936: 932: 927: 923: 918: 914: 909: 905: 899: 895: 890: 886: 881: 877: 872: 868: 863: 859: 854: 850: 845: 841: 836: 832: 827: 823: 815: 811: 804: 797: 790: 786: 779: 775: 768: 764: 747: 741: 739: 735: 728: 726:"Archived copy" 724: 723: 719: 708: 704: 696: 695: 691: 686: 668: 616:surface mounted 480:micro-leadframe 336: 324: 273:thermal cycling 264: 239:solder bridging 226: 213: 204: 181:air-cavity QFNs 177: 175:Different types 154:saw singulation 130: 122:ball grid array 35: 28: 23: 22: 15: 12: 11: 5: 1479: 1477: 1469: 1468: 1458: 1457: 1451: 1450: 1443: 1440: 1439: 1437: 1436: 1431: 1426: 1421: 1416: 1411: 1405: 1403: 1402:Related topics 1399: 1398: 1396: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1362: 1359: 1355: 1353: 1347: 1346: 1344: 1343: 1338: 1333: 1328: 1322: 1320: 1316: 1315: 1313: 1312: 1309: 1304: 1299: 1294: 1289: 1285: 1283: 1279: 1278: 1276: 1275: 1270: 1268:TSSOP / HTSSOP 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1229: 1227: 1223: 1222: 1220: 1219: 1213: 1211: 1207: 1206: 1204: 1203: 1197: 1191: 1185: 1179: 1173: 1167: 1161: 1155: 1149: 1143: 1137: 1131: 1125: 1119: 1113: 1107: 1101: 1095: 1089: 1087: 1081: 1080: 1078: 1077: 1071: 1065: 1059: 1053: 1046: 1044: 1037: 1036: 1031: 1029: 1028: 1021: 1014: 1006: 1000: 999: 994: 981: 972: 963: 956: 955:External links 953: 950: 949: 940: 930: 921: 912: 903: 893: 884: 875: 866: 857: 848: 839: 830: 821: 809: 795: 784: 773: 762: 717: 702: 688: 687: 685: 682: 681: 680: 675: 667: 664: 595: 594: 585: 582: 578: 577: 572: 569: 565: 564: 562: 559: 555: 554: 548: 545: 541: 540: 535: 532: 528: 527: 522: 519: 515: 514: 512: 509: 505: 504: 502: 499: 495: 494: 492: 489: 485: 484: 481: 478: 474: 473: 472:ASAT Holdings 470: 467: 463: 462: 457: 454: 450: 449: 447: 444: 440: 439: 437: 434: 430: 429: 424: 421: 417: 416: 414: 411: 407: 406: 404: 401: 397: 396: 394: 391: 387: 386: 381: 379: 375: 374: 371: 368: 364: 363: 360: 357: 353: 352: 349: 346: 335: 332: 323: 320: 300:solder fatigue 269:solder fatigue 263: 260: 225: 222: 212: 209: 203: 200: 176: 173: 136:QFN side view. 129: 126: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1478: 1467: 1466:Chip carriers 1464: 1463: 1461: 1447: 1441: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1406: 1404: 1400: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1363: 1360: 1357: 1356: 1354: 1352: 1348: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1323: 1321: 1317: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1287: 1286: 1284: 1280: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1230: 1228: 1224: 1218: 1215: 1214: 1212: 1208: 1201: 1198: 1195: 1192: 1190:(D3PAK) (SMT) 1189: 1186: 1184:(D2PAK) (SMT) 1183: 1180: 1178:(I2PAK) (SMT) 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1094: 1091: 1090: 1088: 1086: 1082: 1075: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1047: 1045: 1043: 1038: 1034: 1027: 1022: 1020: 1015: 1013: 1008: 1007: 1004: 998: 995: 992: 988: 985: 982: 980: 976: 973: 971: 967: 964: 962: 959: 958: 954: 944: 941: 934: 931: 925: 922: 916: 913: 907: 904: 897: 894: 888: 885: 879: 876: 870: 867: 861: 858: 852: 849: 843: 840: 834: 831: 825: 822: 818: 813: 810: 807: 802: 800: 796: 793: 788: 785: 782: 777: 774: 771: 766: 763: 758: 752: 738:on 2006-08-28 734: 727: 721: 718: 714: 713: 706: 703: 699: 693: 690: 683: 679: 676: 673: 670: 669: 665: 663: 661: 656: 654: 650: 646: 642: 640: 636: 632: 628: 624: 620: 617: 613: 609: 601: 593: 589: 586: 583: 580: 579: 576: 573: 570: 567: 566: 563: 560: 557: 556: 552: 549: 546: 543: 542: 539: 536: 533: 530: 529: 526: 523: 520: 517: 516: 513: 510: 507: 506: 503: 500: 497: 496: 493: 490: 487: 486: 482: 479: 476: 475: 471: 468: 465: 464: 461: 458: 455: 452: 451: 448: 445: 442: 441: 438: 435: 432: 431: 428: 425: 422: 419: 418: 415: 412: 409: 408: 405: 402: 399: 398: 395: 392: 389: 388: 385: 382: 380: 377: 376: 372: 369: 366: 365: 361: 358: 355: 354: 351:Manufacturer 350: 347: 344: 343: 340: 333: 331: 329: 321: 319: 317: 316:Weibull curve 313: 309: 303: 301: 297: 293: 289: 284: 282: 278: 274: 270: 261: 259: 256: 252: 247: 246:solder reflow 242: 240: 235: 231: 223: 221: 219: 210: 208: 201: 199: 196: 192: 188: 186: 182: 174: 172: 170: 165: 163: 159: 155: 151: 147: 143: 134: 127: 125: 123: 120:(QFP), and a 119: 115: 111: 107: 103: 99: 95: 91: 90:through-holes 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 46:Flat no-leads 39: 33: 19: 1393:WL-CSP / WLP 1263:TSOP / HTSOP 1172:(DPAK) (SMT) 1166:(IPAK) (SMT) 1160:(TH / Panel) 1154:(TH / Panel) 1148:(TH / Panel) 1142:(TH / Panel) 1130:(TH / Panel) 1100:(TH / Panel) 943: 933: 924: 915: 906: 896: 887: 878: 869: 860: 851: 842: 833: 824: 812: 787: 776: 765: 740:. Retrieved 733:the original 720: 711: 705: 697: 692: 672:Chip carrier 659: 657: 644: 643: 630: 626: 622: 607: 606: 337: 325: 308:shear stress 304: 285: 265: 243: 227: 214: 205: 197: 193: 189: 184: 180: 178: 166: 153: 149: 146:wire bonding 139: 81: 61: 57: 53: 49: 45: 44: 1311:QUIP / QUIL 348:Description 262:Reliability 230:solder mask 1319:Grid array 1258:SOP / SSOP 1210:Single row 1093:SOT / TSOT 742:2008-09-26 684:References 619:electronic 302:behavior. 202:Advantages 162:gold wires 142:lead frame 94:chip scale 1373:Flip Chip 1292:QIP / QIL 1253:SO / SOIC 1243:Flat Pack 1238:DIP / DIL 1217:SIP / SIL 1085:3...5-pin 544:VQFN/WQFN 160:diameter 1460:Category 1282:Quad row 1226:Dual row 987:Archived 751:cite web 666:See also 334:Variants 88:without 82:surfaces 1052:(DO-27) 1040:Single 433:QFN-TEP 384:iC-Haus 345:Package 169:package 124:(BGA). 80:to the 1200:TO-274 1194:TO-273 1188:TO-268 1182:TO-263 1176:TO-262 1170:TO-252 1164:TO-251 1158:TO-247 1152:TO-220 1146:TO-202 1140:TO-126 1068:DO-214 1062:DO-213 1056:DO-204 1050:DO-201 558:HVQFN 531:DRQFN 373:Atmel 312:strain 234:solder 98:copper 56:) and 1351:Wafer 1134:TO-92 1128:TO-66 1122:TO-39 1116:TO-18 1042:diode 977:from 968:from 901:2007. 736:(PDF) 729:(PDF) 627:micro 518:DRMLF 400:UTDFN 288:JEDEC 18:HVQFN 1388:UICC 1331:eWLB 1297:PLCC 1248:MSOP 1136:(TH) 1124:(TH) 1118:(TH) 1112:(TH) 1110:TO-8 1106:(TH) 1104:TO-5 1098:TO-3 757:link 631:dual 623:quad 590:and 581:UQFN 568:UDFN 508:MLPQ 498:MLPM 488:MLPD 466:LPCC 443:TQFN 410:XDFN 390:TDFN 378:cDFN 367:DQFN 310:and 218:OEMs 158:thou 152:and 144:and 114:vias 86:PCBs 1378:PoP 1368:CSP 1364:COG 1361:COF 1358:COB 1341:PGA 1336:LGA 1326:BGA 1307:QFP 1302:QFN 1288:LCC 1273:ZIP 1233:DFN 1074:SOD 938:ON. 649:CSP 477:MLF 453:LLP 420:QFN 356:DFN 292:IPC 102:PCB 84:of 78:ICs 68:to 62:DFN 54:QFN 1462:: 1383:QP 798:^ 753:}} 749:{{ 318:. 220:. 164:. 110:IC 1025:e 1018:t 1011:v 759:) 745:. 60:( 52:( 34:. 20:)

Index

HVQFN
Narsaq Kujalleq Heliport

integrated circuits
printed circuit boards
surface-mount technology
ICs
PCBs
through-holes
chip scale
copper
PCB
thermally conductive pad
IC
vias
quad-flat package
ball grid array

lead frame
wire bonding
thou
gold wires
package
OEMs
solder mask
solder
solder bridging
solder reflow
printed circuit board
moisture sensitivity level

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.