Knowledge (XXG)

Haber process

Source 📝

3999: 3933: 2053: 5209:, "Rate considerations: Increasing the pressure brings the molecules closer together. In this particular instance, it will increase their chances of hitting and sticking to the surface of the catalyst where they can react. The higher the pressure the better in terms of the rate of a gas reaction. Economic considerations: Very high pressures are expensive to produce on two counts. Extremely strong pipes and containment vessels are needed to withstand the very high pressure. That increases capital costs when the plant is built". 3622:
pressure-bearing steel tube in which a low-carbon iron lining tube was inserted and filled with the catalyst. Hydrogen that diffused through the inner steel pipe escaped to the outside via thin holes in the outer steel jacket, the so-called Bosch holes. A disadvantage of the tubular reactors was the relatively high-pressure loss, which had to be applied again by compression. The development of hydrogen-resistant chromium-molybdenum steels made it possible to construct single-walled pipes.
555:), thereby increasing the single-pass ammonia conversion and making nearly complete liquefaction at ambient temperature feasible. Claude proposed to have three or four converters with liquefaction steps in series, thereby avoiding recycling. Most plants continue to use the original Haber process (20 MPa (200 bar; 2,900 psi) and 500 °C (932 °F)), albeit with improved single-pass conversion and lower energy consumption due to process and catalyst optimization. 402: 3987: 2061: 564: 3626: 5197:, However, 400–450 °C isn't a low temperature! Rate considerations: The lower the temperature you use, the slower the reaction becomes. A manufacturer is trying to produce as much ammonia as possible per day. It makes no sense to try to achieve an equilibrium mixture which contains a very high proportion of ammonia if it takes several years for the reaction to reach that equilibrium".. 2968: 1861: 36: 843: 3836: 2166:(FeO) so that particles with a core of magnetite become surrounded by a shell of wüstite. The further reduction of magnetite and wüstite leads to the formation of α-iron, which forms together with the promoters the outer shell. The involved processes are complex and depend on the reduction temperature: At lower temperatures, wüstite 80: 3924:
atoms on the Ru(0001) surface. The number of B5 sites depends on the size and shape of the ruthenium particles, the ruthenium precursor and the amount of ruthenium used. The reinforcing effect of the basic carrier used in the ruthenium catalyst is similar to the promoter effect of alkali metals used in the iron catalyst.
2011:
removed as a liquid. Unreacted hydrogen and nitrogen gases are returned to the reaction vessel for another round. While most ammonia is removed (typically down to 2–5 mol.%), some ammonia remains in the recycle stream. In academic literature, a more complete separation of ammonia has been proposed by absorption in
1617: 4048:
The energy-intensity of the process contributes to climate change and other environmental problems such as the leaching of nitrates into groundwater, rivers, ponds, and lakes; expanding dead zones in coastal ocean waters, resulting from recurrent eutrophication; atmospheric deposition of nitrates and
3923:
As with all Haber–Bosch catalysts, nitrogen dissociation is the rate-determining step for ruthenium-activated carbon catalysts. The active center for ruthenium is a so-called B5 site, a 5-fold coordinated position on the Ru(0001) surface where two ruthenium atoms form a step edge with three ruthenium
3716:
on the Haber–Bosch catalysts still take place at temperatures of −196 °C (−320.8 °F) at a measurable rate; the exchange between deuterium and hydrogen on the ammonia molecule also takes place at room temperature. Since the adsorption of both molecules is rapid, it cannot determine the speed
3637:
Alternatively, the reaction mixture between the catalyst layers is cooled using heat exchangers, whereby the hydrogen-nitrogen mixture is preheated to the reaction temperature. Reactors of this type have three catalyst beds. In addition to good temperature control, this reactor type has the advantage
3621:
The actual production of ammonia takes place in the ammonia reactor. The first reactors were bursting under high pressure because the atomic hydrogen in the carbonaceous steel partially recombined into methane and produced cracks in the steel. Bosch, therefore, developed tube reactors consisting of a
3240:
The methane gas reacts in the primary reformer only partially. To increase the hydrogen yield and keep the content of inert components (i. e. methane) as low as possible, the remaining methane gas is converted in a second step with oxygen to hydrogen and carbon monoxide in the secondary reformer. The
2758: 336: 3645:
The reaction product is continuously removed for maximum yield. The gas mixture is cooled to 450 °C in a heat exchanger using water, freshly supplied gases, and other process streams. The ammonia also condenses and is separated in a pressure separator. Unreacted nitrogen and hydrogen are then
2154:
and the promoter aggregates must be evenly distributed in the magnetite melt. Rapid cooling of the magnetite, which has an initial temperature of about 3500 °C, produces the desired precursor. Unfortunately, the rapid cooling ultimately forms a catalyst of reduced abrasion resistance. Despite
1611:
favors the forward reaction because 4 moles of reactant produce 2 moles of product, and the pressure used (15–25 MPa (150–250 bar; 2,200–3,600 psi)) alters the equilibrium concentrations to give a substantial ammonia yield. The reason for this is evident in the equilibrium
3720:
In addition to the reaction conditions, the adsorption of nitrogen on the catalyst surface depends on the microscopic structure of the catalyst surface. Iron has different crystal surfaces, whose reactivity is very different. The Fe(111) and Fe(211) surfaces have by far the highest activity. The
446:
the task of scaling up Haber's tabletop machine to industrial scale. He succeeded in 1910. Haber and Bosch were later awarded Nobel Prizes, in 1918 and 1931 respectively, for their work in overcoming the chemical and engineering problems of large-scale, continuous-flow, high-pressure technology.
2936:
of the nitrogen molecule, high temperatures are still required for an appropriate reaction rate. At the industrially used reaction temperature of 450 to 550 °C an optimum between the decomposition of ammonia into the starting materials and the effectiveness of the catalyst is achieved. The
2043:
steps each operate at absolute pressures of about 25 to 35 bar, while the ammonia synthesis loop operates at temperatures of 300–500 °C (572–932 °F) and pressures ranging from 60 to 180 bar depending upon the method used. The resulting ammonia must then be separated from the residual
2010:
While removing the ammonia from the system increases the reaction yield, this step is not used in practice, since the temperature is too high; instead it is removed from the gases leaving the reaction vessel. The hot gases are cooled under high pressure, allowing the ammonia to condense and be
595:
of carbon-containing material, mostly natural gas, but other potential carbon sources include coal, petroleum, peat, biomass, or waste. As of 2012, the global production of ammonia produced from natural gas using the steam reforming process was 72%. Hydrogen can also be produced from water and
3954:
of the dissociation of nitrogen, the homogeneous gas phase reaction is not realizable. The catalyst avoids this problem as the energy gain resulting from the binding of nitrogen atoms to the catalyst surface overcompensates for the necessary dissociation energy so that the reaction is finally
3633:
Modern ammonia reactors are designed as multi-storey reactors with a low-pressure drop, in which the catalysts are distributed as fills over about ten storeys one above the other. The gas mixture flows through them one after the other from top to bottom. Cold gas is injected from the side for
437:
needed to demonstrate the Haber process at a laboratory scale. They demonstrated their process in the summer of 1909 by producing ammonia from the air, drop by drop, at the rate of about 125 mL (4 US fl oz) per hour. The process was purchased by the German chemical company
3775:
of the metal to the π* orbitals of nitrogen, which strengthens the iron-nitrogen bond. The nitrogen in the α state is more strongly bound with 31 kJmol. The resulting N–N bond weakening could be experimentally confirmed by a reduction of the wave numbers of the N–N stretching oscillation to
2006:
Economically, reactor pressurization is expensive: pipes, valves, and reaction vessels need to be strong enough, and safety considerations affect operating at 20 MPa. Compressors take considerable energy, as work must be done on the (compressible) gas. Thus, the compromise used gives a
478:
which would have prevented such supplies from reaching Germany. The Haber process proved so essential to the German war effort that it is considered virtually certain Germany would have been defeated in a matter of months without it. Synthetic ammonia from the Haber process was used for the
4037:
With average crop yields remaining at the 1900 level the crop harvest in the year 2000 would have required nearly four times more land and the cultivated area would have claimed nearly half of all ice-free continents, rather than under 15% of the total land area that is required
3598:
with ammonia, which would clog (as solids) pipelines and apparatus within a short time. In the following process step, the carbon dioxide must therefore be removed from the gas mixture. In contrast to carbon monoxide, carbon dioxide can easily be removed from the gas mixture by
2177:
with a diameter of about 30 nanometers. These crystallites form a bimodal pore system with pore diameters of about 10 nanometers (produced by the reduction of the magnetite phase) and of 25 to 50 nanometers (produced by the reduction of the wüstite phase). With the exception of
5283: 2379:. A drawback of activated-carbon-supported ruthenium-based catalysts is the methanation of the support in the presence of hydrogen. Their activity is strongly dependent on the catalyst carrier and the promoters. A wide range of substances can be used as carriers, including 3748:
The adsorption of nitrogen is similar to the chemisorption of carbon monoxide. On a Fe(111) surface, the adsorption of nitrogen first leads to an adsorbed γ-species with an adsorption energy of 24 kJmol and an N-N stretch vibration of 2100 cm. Since the nitrogen is
4033:. The Haber process consumes 3–5% of the world's natural gas production (around 1–2% of the world's energy supply). In combination with advances in breeding, herbicides, and pesticides, these fertilizers have helped to increase the productivity of agricultural land: 5311:, "At each pass of the gases through the reactor, only about 15% of the nitrogen and hydrogen converts to ammonia. (This figure also varies from plant to plant.) By continual recycling of the unreacted nitrogen and hydrogen, the overall conversion is about 98%". 2347:
show such strong bonds. Further, the formation of surface nitrides makes, for example, chromium catalysts ineffective. Metals to the right of the iron group, in contrast, adsorb nitrogen too weakly for ammonia synthesis. Haber initially used catalysts based on
2135:, which in turn is surrounded by an outer shell of metallic iron. The catalyst maintains most of its bulk volume during the reduction, resulting in a highly porous high-surface-area material, which enhances its catalytic effectiveness. Minor components include 3413: 3235: 3589: 2218:
investigations it was shown that wüstite reacts first to metallic iron. This leads to a gradient of iron(II) ions, whereby these diffuse from the magnetite through the wüstite to the particle surface and precipitate there as iron nuclei.
2194:
of the water in the gas mixture produced during catalyst formation is thus kept as low as possible, target values are below 3 gm. For this reason, the reduction is carried out at high gas exchange, low pressure, and low temperatures. The
2185:
During the reduction of the iron oxide with synthesis gas, water vapor is formed. This water vapor must be considered for high catalyst quality as contact with the finely divided iron would lead to premature aging of the catalyst through
2904: 2410:; however, this can be mitigated by a special treatment of the carbon at 1500 °C, thus prolonging the catalyst lifetime. In addition, the finely dispersed carbon poses a risk of explosion. For these reasons and due to its low 2557: 135: 4559: 2339:(i. e. the nitrogen molecule must be split into nitrogen atoms upon adsorption). If the binding of the nitrogen is too strong, the catalyst is blocked and the catalytic ability is reduced (self-poisoning). The elements in the 1856:{\displaystyle K={\frac {y_{{\ce {NH3}}}^{2}}{y_{{\ce {H2}}}^{3}y_{{\ce {N2}}}}}{\frac {{\hat {\phi }}_{{\ce {NH3}}}^{2}}{{\hat {\phi }}_{{\ce {H2}}}^{3}{\hat {\phi }}_{{\ce {N2}}}}}\left({\frac {P^{\circ }}{P}}\right)^{2},} 2230:. The reactivation of such pre-reduced catalysts requires only 30 to 40 hours instead of several days. In addition to the short start-up time, they have other advantages such as higher water resistance and lower weight. 421:
from tropical islands. At the beginning of the 20th century these reserves were thought insufficient to satisfy future demands, and research into new potential sources of ammonia increased. Although atmospheric nitrogen
4824:
Song, Yang; Hensley, Dale; Bonnesen, Peter; Liang, Liango; Huang, Jingsong; Baddorf, Arthur; Tschaplinski, Timothy; Engle, Nancy; Wu, Zili; Cullen, David; Meyer, Harry III; Sumpter, Bobby; Rondinone, Adam (2 May 2018).
3641:
Uhde has developed and is using an ammonia converter with three radial flow catalyst beds and two internal heat exchangers instead of axial flow catalyst beds. This further reduces the pressure drop in the converter.
2414:, magnesium oxide has proven to be a good choice of carrier. Carriers with acidic properties extract electrons from ruthenium, make it less reactive, and have the undesirable effect of binding ammonia to the surface. 3699:
Transport and diffusion (the first and last two steps) are fast compared to adsorption, reaction, and desorption because of the shell structure of the catalyst. It is known from various investigations that the
412:
During the 19th century, the demand for nitrates and ammonia for use as fertilizers, that supply plants the nutrients they need to grow, and industrial feedstocks rapidly increased. The main source was mining
2928:(α-Fe) is produced in the reactor by the reduction of magnetite with hydrogen. The catalyst has its highest efficiency at temperatures of about 400 to 500 °C. Even though the catalyst greatly lowers the 2370:
forms highly active catalysts. Allowing milder operating pressures and temperatures, Ru-based materials are referred to as second-generation catalysts. Such catalysts are prepared by the decomposition of
470:) controlled by British companies. India had large supplies too, but it was also controlled by the British. Moreover, even if German commercial interests had nominal legal control of such resources, the 5219:
Zhang, Xiaoping; Su, Rui; Li, Jingling; Huang, Liping; Yang, Wenwen; Chingin, Konstantin; Balabin, Roman; Wang, Jingjing; Zhang, Xinglei; Zhu, Weifeng; Huang, Keke; Feng, Shouhua; Chen, Huanwen (2024).
5697:
Rosowski, F.; Hornung, A.; Hinrichsen, O.; Herein, D.; Muhler, M. (April 1997). "Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics".
3787:
and the emergence of a new band at 450 cm. This represents a metal-nitrogen oscillation, the β state. A comparison with vibration spectra of complex compounds allows the conclusion that the N
1306: 634:
works well as a catalyst and pursued more efficient formation. This method is implemented in a small plant for ammonia synthesis in Japan. In 2019, Hosono's group found another catalyst, a novel
2913:, the equilibrium of the reaction shifts at lower temperatures to the ammonia side. Furthermore, four volumetric units of the raw materials produce two volumetric units of ammonia. According to 6004: 5670:
You, Zhixiong; Inazu, Koji; Aika, Ken-ichi; Baba, Toshihide (October 2007). "Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis".
2917:, higher pressure favours ammonia. High pressure is necessary to ensure sufficient surface coverage of the catalyst with nitrogen. For this reason, a ratio of nitrogen to hydrogen of 1 to 3, a 1214: 1017: 920: 3791:
molecule is bound "side-on", with an N atom in contact with a C7 site. This structure is called "surface nitride". The surface nitride is very strongly bound to the surface. Hydrogen atoms (H
1110: 822: 3629:
Modern ammonia reactor with heat exchanger modules: The cold gas mixture is preheated to reaction temperature in heat exchangers by the reaction heat and cools in turn the produced ammonia.
1418: 1342:, which makes it relatively inert. Yield and efficiency are low, meaning that the ammonia must be extracted and the gases reprocessed for the reaction to proceed at an acceptable pace. 2202:
The reduction of fresh, fully oxidized catalyst or precursor to full production capacity takes four to ten days. The wüstite phase is reduced faster and at lower temperatures than the
6386:
Oenema, O.; Witzke, H. P.; Klimont, Z.; Lesschen, J. P.; Velthof, G. L. (2009). "Integrated assessment of promising measures to decrease nitrogen losses in agriculture in EU-27".
3955:
exothermic. Nevertheless, the dissociative adsorption of nitrogen remains the rate-determining step: not because of the activation energy, but mainly because of the unfavorable
3247: 3067: 1899: 1479:. At room temperature, the equilibrium is in favor of ammonia, but the reaction does not proceed at a detectable rate due to its high activation energy. Because the reaction is 539:, alternative processes were developed, most notably the Casale process, Claude process, and the Mont-Cenis process developed by Friedrich Uhde Ingenieurbüro. Luigi Casale and 1457:
Because of relatively low single pass conversion rates (typically less than 20%), a large recycle stream is required. This can lead to the accumulation of inerts in the gas.
3753:
to carbon monoxide, it adsorbs in an on-end configuration in which the molecule is bound perpendicular to the metal surface at one nitrogen atom. This has been confirmed by
3432: 2468:
are not strictly poisons, they accumulate through the recycling of the process gases and thus lower the partial pressure of the reactants, which in turn slows conversion.
2406:
Ruthenium-activated carbon-based catalysts have been used industrially in the KBR Advanced Ammonia Process (KAAP) since 1992. The carbon carrier is partially degraded to
5500: 4280: 3823: 2001: 352:
because four equivalents of reactant gases are converted into two equivalents of product gas. As a result, high pressures and moderately high temperatures are needed to
6648: 1950: 2359:
According to theoretical and practical studies, improvements over pure iron are limited. The activity of iron catalysts is increased by the inclusion of cobalt.
1974: 1923: 2753:{\displaystyle {\ce {N2 + 3H2 <=> 2NH3}}\qquad {\Delta H^{\circ }=-92.28\;{\ce {kJ}}}\ ({\Delta H_{298\mathrm {K} }^{\circ }=-46.14\;\mathrm {kJ/mol} })} 331:{\displaystyle {\ce {N2 + 3H2 <=> 2NH3}}\qquad {\Delta H^{\circ }=-92.28\;{\ce {kJ}}}\ ({\Delta H_{298\mathrm {K} }^{\circ }=-46.14\;\mathrm {kJ/mol} })} 2773: 3241:
secondary reformer is supplied with air as the oxygen source. Also, the required nitrogen for the subsequent ammonia synthesis is added to the gas mixture.
4993:"Ajinomoto Co., Inc., UMI, and Tokyo Institute of Technology Professors Establish New Company to Implement the World's First On Site Production of Ammonia" 2226:. They are delivered showing the fully developed pore structure, but have been oxidized again on the surface after manufacture and are therefore no longer 6520: 4738: 676:. Steam reforming of natural gas extracts hydrogen from methane in a high-temperature and pressure tube inside a reformer with a nickel catalyst. Other 5452: 3724:
The dissociative adsorption of nitrogen on the surface follows the following scheme, where S* symbolizes an iron atom on the surface of the catalyst:
57: 44: 4585: 2143:, which support the iron catalyst and help it maintain its surface area. These oxides of Ca, Al, K, and Si are unreactive to reduction by hydrogen. 4087:
Nearly 50% of the nitrogen found in human tissues originated from the Haber–Bosch process. Thus, the Haber process serves as the "detonator of the
379:
to produce ammonia with just three chemical inputs: water, natural gas, and atmospheric nitrogen. Both Haber and Bosch were eventually awarded the
6249: 4487: 2964:
Modern ammonia plants produce more than 3000 tons per day in one production line. The following diagram shows the set-up of a Haber–Bosch plant:
5922:
Leibnitz, E.; Koch, H.; Götze, A. (1961). "Über die drucklose Aufbereitung von Braunkohlenkokereigas auf Starkgas nach dem Girbotol-Verfahren".
5392: 4532: 6113: 6039: 5988: 5958: 5882: 5858: 5804: 5779: 5745: 5600: 5477: 5336: 4471: 4444: 4413: 4386: 4361: 4327: 4227: 4202: 2331:
Many efforts have been made to improve the Haber–Bosch process. Many metals were tested as catalysts. The requirement for suitability is the
4773: 380: 5021: 4812:
Ammonia manufacturing consumes 1 to 2% of total global energy and is responsible for approximately 3% of global carbon dioxide emissions.
2127:(FeO, ferrous oxide) particles of a specific size. The magnetite (or wüstite) particles are then partially reduced, removing some of the 6727: 3760: 5046:
Kitano, Masaaki; Kujirai, Jun; Ogasawara, Kiya; Matsuishi, Satoru; Tada, Tomofumi; Abe, Hitoshi; Niwa, Yasuhiro; Hosono, Hideo (2019).
710:(solar or another heat source) water splitting. However, these hydrogen sources are not economically competitive with steam reforming. 5517: 4799: 4569: 4297: 498:
discovered a much less expensive iron-based catalyst that is still used. A major contributor to the elucidation of this catalysis was
5834: 568: 4354:
The Alchemy of Air: A Jewish genius, a doomed tycoon, and the scientific discovery that fed the world but fueled the rise of Hitler
3998: 1431:. On each pass, only about 15% conversion occurs, but unreacted gases are recycled, and eventually conversion of 97% is achieved. 4014:. However, the cyanamide process consumed large amounts of electrical power and was more labor-intensive than the Haber process. 3819: 2170:
into an iron phase and a magnetite phase; at higher temperatures, the reduction of the wüstite and magnetite to iron dominates.
4880:
Ammonia synthesis consumes 3 to 5% of the world's natural gas, making it a significant contributor to greenhouse gas emissions.
3721:
explanation for this is that only these surfaces have so-called C7 sites – these are iron atoms with seven closest neighbours.
6712: 3920:. This is not unexpected, since that step breaks the nitrogen triple bond, the strongest of the bonds broken in the process. 2429:. Permanent poisons cause irreversible loss of catalytic activity, while temporary poisons lower the activity while present. 2187: 1604:. Lowering the temperature is unhelpful because the catalyst requires a temperature of at least 400 °C to be efficient. 605: 367:
developed the process in the first decade of the 20th century, and its improved efficiency over existing methods such as the
3950:
of the individual steps. The energy diagram can be used to compare homogeneous and heterogeneous reactions: Due to the high
3634:
cooling. A disadvantage of this reactor type is the incomplete conversion of the cold gas mixture in the last catalyst bed.
1484: 6707: 3053:
by steam reforming, methane reacts with water vapor using a nickel oxide-alumina catalyst in the primary reformer to form
2948:
of the reactants too much. To remove the inert gas components, part of the gas is removed and the argon is separated in a
4623:
Bozso, F.; Ertl, G.; Grunze, M.; Weiss, M. (1977). "Interaction of nitrogen with iron surfaces: I. Fe(100) and Fe(111)".
2064:
Profiles of the active components of heterogeneous catalysts; the top right figure shows the profile of a shell catalyst.
1220: 6345:
Kanter, David R.; Bartolini, Fabio; Kugelberg, Susanna; Leip, Adrian; Oenema, Oene; Uwizeye, Aimable (2 December 2019).
4892: 2937:
formed ammonia is continuously removed from the system. The volume fraction of ammonia in the gas mixture is about 20%.
567:
A historical (1921) high-pressure steel reactor for the production of ammonia via the Haber process is displayed at the
396: 5533:
Jozwiak, W. K.; Kaczmarek, E. (2007). "Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres".
4101:
technology converts electric energy, water and nitrogen into ammonia without a separate hydrogen electrolysis process.
3932: 426:) is abundant, comprising ~78% of the air, it is exceptionally stable and does not readily react with other chemicals. 6702: 6521:
https://www.science.org/content/article/ammonia-renewable-fuel-made-sun-air-and-water-could-power-globe-without-carbon
6320: 4992: 3650:, supplemented with fresh gas, and fed to the reactor. In a subsequent distillation, the product ammonia is purified. 2372: 1142: 945: 859: 5616:
Tavasoli, Ahmad; Trépanier, Mariane; Malek Abbaslou, Reza M.; Dalai, Ajay K.; Abatzoglou, Nicolas (1 December 2009).
4121: 2914: 368: 353: 6205: 2111:
The iron catalyst is obtained from finely ground iron powder, which is usually obtained by reduction of high-purity
1042: 764: 6732: 3943: 3936: 3754: 6472: 4084:
is typically less than 50%, farm runoff from heavy use of fixed industrial nitrogen disrupts biological habitats.
1351: 375:
processes was a major advancement in the industrial production of ammonia. The Haber process can be combined with
49: 6737: 3043: 2763:
The reaction is an exothermic equilibrium reaction in which the gas volume is reduced. The equilibrium constant K
1123: 580: 5829:, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, pp. 662–665, 2052: 6757: 6752: 6449: 4826: 3705: 3423: 1026: 584: 1600:
Above this temperature, the equilibrium quickly becomes unfavorable at atmospheric pressure, according to the
6677: 6413:
Howarth, R. W. (2008). "Coastal nitrogen pollution: a review of sources and trends globally and regionally".
6130: 3607:. The gas mixture then still contains methane and noble gases such as argon, which, however, behave inertly. 6742: 4081: 3408:{\displaystyle {\ce {{2CH4_{(g)}}+O2_{(g)}->{2CO_{(g)}}+4H2_{(g)}}}\qquad {\Delta H=-71\ {\ce {kJ/mol}}}} 3230:{\displaystyle {\ce {{CH4_{(g)}}+H2O_{(g)}->{CO_{(g)}}+3H2_{(g)}}}\qquad {\Delta H=+206\ {\ce {kJ/mol}}}} 2332: 1601: 1446:
O) compounds can be tolerated in the hydrogen/nitrogen mixture. Relatively pure nitrogen can be obtained by
384: 5444: 4011: 372: 4098: 3956: 2073: 2036: 1438:) catalyst used in the ammonia synthesis reaction, only low levels of oxygen-containing (especially CO, CO 1331: 6058:
Lee, S. B.; Weiss, M. (1982). "Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces".
4598: 3035: 5230: 3917: 3701: 3671:
transport of the reactants from the gas phase through the boundary layer to the surface of the catalyst.
2158:
The reduction of the precursor magnetite to α-iron is carried out directly in the production plant with
1868: 703: 597: 552: 471: 6671: 6257: 4498: 3584:{\displaystyle {\ce {{CO_{(g)}}+H2O(g)->{CO2_{(g)}}+H2_{(g)}}}\qquad {\Delta H=-41\ {\ce {kJ/mol}}}} 5617: 579:
and purified atmospheric nitrogen, ammonia production is energy-intensive, accounting for 1% to 2% of
6747: 6601: 6487: 6422: 6171: 6067: 5629: 5618:"Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts supported on carbon nanotubes" 5365: 5239: 5106: 4838: 4747: 4710: 4670: 4625: 4088: 3947: 2949: 2084: 1902: 1428: 752: 4544: 4104:
The use of synthetic nitrogen fertilisers reduces the incentive for farmers to use more sustainable
6622: 6105: 4922:
Kuganathan, Navaratnarajah; Hosono, Hideo; Shluger, Alexander L.; Sushko, Peter V. (January 2014).
4151: 2910: 2196: 1480: 576: 430: 383:: Haber in 1918 for ammonia synthesis specifically, and Bosch in 1931 for related contributions to 4653: 6722: 6658: 6503: 6298: 6187: 6131:"Scientific Background on the Nobel Prize in Chemistry 2007 Chemical Processes on Solid Surfaces" 5163: 5143: 5124: 5075: 4593: 3972: 3846: 3027: 2422: 2215: 2151: 1318:
The hydrogen is catalytically reacted with nitrogen (derived from process air) to form anhydrous
99: 6623:"Review of "Between Genius and Genocide: The Tragedy of Fritz Haber, Father of Chemical Warfare" 1979: 450:
Ammonia was first manufactured using the Haber process on an industrial scale in 1913 in BASF's
6533: 5795:
Brown, Theodore L.; LeMay, H. Eugene; Bursten, Bruce Edward (2003). Brunauer, Linda Sue (ed.).
6717: 6368: 6290: 6273: 6109: 6035: 5984: 5954: 5878: 5854: 5830: 5800: 5775: 5741: 5645: 5596: 5513: 5473: 5467: 5332: 5265: 5067: 4943: 4864: 4565: 4467: 4440: 4409: 4382: 4357: 4323: 4293: 4223: 4198: 4136: 4127: 4092: 4066: 3951: 2929: 2167: 1323: 401: 341: 4535:
Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production
4320:
Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production
3963:
is endothermic, this energy can easily be applied by the reaction temperature (about 700 K).
3638:
of better conversion of the raw material gases compared to reactors with cold gas injection.
6667: 6637: 6609: 6495: 6430: 6395: 6358: 6282: 6179: 6097: 6075: 5931: 5906: 5733: 5706: 5679: 5637: 5569: 5542: 5505: 5426: 5373: 5255: 5247: 5155: 5114: 5059: 5048:"Low-Temperature Synthesis of Perovskite Oxynitride-Hydrides as Ammonia Synthesis Catalysts" 4974: 4935: 4854: 4846: 4755: 4718: 4678: 4634: 4285: 4026: 3750: 3611: 3039: 3023: 2945: 2080: 748: 1928: 6156: 4701: 4661: 4436: 4430: 3827: 3664: 3604: 3054: 2446: 2388: 2384: 2140: 2100: 2092: 2088: 933: 929: 847: 613: 536: 522: 515: 503: 376: 6563: 6098: 2899:{\displaystyle K_{eq}={\frac {p^{2}{\ce {(NH3)}}}{p{\ce {(N2)}}\cdot p^{3}{\ce {(H2)}}}}} 2131:. The resulting catalyst particles consist of a core of magnetite, encased in a shell of 6653: 6605: 6586: 6491: 6426: 6175: 6071: 5633: 5369: 5260: 5243: 5221: 5110: 4842: 4751: 4714: 4674: 4461: 4218:
Appl, M. (1982). "The Haber–Bosch Process and the Development of Chemical Engineering".
4010:
When first invented, the Haber process competed against another industrial process, the
4859: 4163: 4157: 4074: 3647: 3615: 3419: 3022:
Depending on its origin, the synthesis gas must first be freed from impurities such as
2925: 2450: 2340: 2191: 1959: 1908: 1447: 1319: 1030: 707: 691: 681: 540: 495: 463: 6271:
Smith, Barry E. (September 2002). "Structure. Nitrogenase reveals its inner secrets".
5710: 4699:
Ertl, G.; Lee, S. B.; Weiss, M. (1982). "Kinetics of nitrogen adsorption on Fe(111)".
563: 6697: 6691: 6079: 5181: 5167: 5128: 5079: 4722: 4682: 4638: 4169: 4105: 4050: 3960: 3031: 2953: 2426: 2400: 2227: 2159: 2136: 2096: 2012: 1953: 1476: 1472:. The Haber process relies on catalysts that accelerate the scission of these bonds. 1469: 1327: 744: 544: 511: 6302: 6191: 4962: 591:
consumption. Hydrogen required for ammonia synthesis is most often produced through
6507: 5142:
Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (13 January 2020).
2223: 2179: 2147: 2146:
The production of the catalyst requires a particular melting process in which used
2060: 1119: 835: 695: 620: 592: 499: 494:
was almost as effective and easier to obtain than osmium. In 1909, BASF researcher
451: 17: 5509: 4289: 3625: 5641: 5546: 5377: 5119: 5094: 4403: 2952:. The extraction of pure argon from the circulating gas is carried out using the 490:
as the catalyst, but it was available in extremely small quantities. Haber noted
5799:(9th ed.). Upper Saddle River, New Jersey, Pakistan Punjab: Prentice Hall. 5737: 5393:"Green ammonia (and fertilizer) may finally be in sight -- and it would be huge" 5323: 5047: 4022: 2933: 2174: 2040: 1339: 1130: 714: 677: 588: 480: 455: 360: 83: 6663: 6399: 6230: 6183: 5683: 5251: 2921:
of 250 to 350 bar, a temperature of 450 to 550 °C and α iron are optimal.
6434: 6363: 6346: 5725: 3990: 3815: 3784: 3772: 3686: 3677: 2434: 2356:. Uranium reacts to its nitride during catalysis, while osmium oxide is rare. 2344: 2163: 2132: 2124: 2079:
The catalyst typically consists of finely divided iron bound to an iron oxide
831: 635: 609: 548: 462:
required large amounts of nitrate. The Allies had access to large deposits of
443: 405: 364: 6372: 5935: 5910: 5649: 5587:
Bowker, Michael (1993). "Chapter 7". In King, D. A.; Woodruff, D. P. (eds.).
5573: 5430: 4978: 4923: 4900: 4517: 4065:. The Haber–Bosch process is one of the largest contributors to a buildup of 3030:. High concentrations of hydrogen sulfide, which occur in synthesis gas from 600:: at one time, most of Europe's ammonia was produced from the Hydro plant at 6286: 4997: 4070: 3713: 3595: 2967: 2461: 2367: 2203: 2112: 1435: 631: 624: 467: 459: 434: 6682: 6294: 5354:"Exploring the limits: A low-pressure, low-temperature Haber–Bosch process" 5269: 5159: 5071: 4947: 4868: 4850: 4043:
Vaclav Smil, Nitrogen cycle and world food production, Volume 2, pages 9–13
3795:), which are very mobile on the catalyst surface, quickly combine with it. 3768: 3764: 2199:
nature of the ammonia formation ensures a gradual increase in temperature.
1483:, the equilibrium constant decreases with increasing temperature following 1475:
Two opposing considerations are relevant: the equilibrium position and the
35: 4961:
Hara, Michikazu; Kitano, Masaaki; Hosono, Hideo; Sushko, Peter V. (2017).
4379:
Fertilizer Industry: Processes, Pollution Control, and Energy Conservation
2460:
Although chemically inert components of the synthesis gas mixture such as
5182:"Progress in the Electrochemical Synthesis of Ammonia | Request PDF" 5063: 4130: – a calcium salt of the cyanamide which is used as plant fertilizer 3709: 3600: 3058: 3050: 2918: 2442: 2376: 2336: 2016: 1608: 1424: 1335: 740: 669: 475: 345: 119: 103: 4800:"Electrochemically-produced ammonia could revolutionize food production" 1330:) and high pressure requires high-strength pressure vessels that resist 1322:. It is difficult and expensive, as lower temperatures result in slower 842: 616:
of natural gas is the most economical means of mass-producing hydrogen.
79: 4018: 4017:
As of 2018, the Haber process produces 230 million tonnes of anhydrous
4003: 2465: 2438: 2407: 2392: 2353: 830:
Hydrogen sulfide is adsorbed and removed by passing it through beds of
719: 699: 685: 673: 619:
The choice of catalyst is important for synthesizing ammonia. In 2012,
543:
proposed to increase the pressure of the synthesis loop to 80–100 
491: 349: 111: 6666:, most important invention of the 20th century, according to V. Smil, 6450:"The Haber–Bosch Reaction: An Early Chemical Impact On Sustainability" 5144:"State of the Art of Hydrogen Production via Pyrolysis of Natural Gas" 4939: 4095:
to increase from 1.6 billion in 1900 to 7.7 billion by November 2018.
4759: 4174: 4109: 2454: 2430: 2396: 2380: 2349: 2128: 1451: 736: 601: 487: 5825:
Holleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.),
5353: 5321:
Brown, Theodore L.; LeMay, H. Eugene Jr.; Bursten, Bruce E. (2006).
4736:
Ertl, G. (1983). "Primary steps in catalytic synthesis of ammonia".
3692:
transport of the product through the pore system back to the surface
4435:(3rd ed.). Washington, DC: American Chemical Society. p.  2044:
hydrogen and nitrogen at temperatures of −20 °C (−4 °F).
6613: 6499: 5849:
Cornils, Boy; Herrmann, Wolfgang A.; Muhler, M.; Wong, C. (2007).
5095:"A Route to Renewable Energy Triggered by the Haber–Bosch Process" 4145: 3997: 3931: 3835: 3834: 3624: 2966: 2941: 2155:
this disadvantage, the method of rapid cooling is often employed.
2059: 2051: 1465: 841: 562: 418: 414: 400: 78: 4963:"Ru-Loaded C12A7:e– Electride as a Catalyst for Ammonia Synthesi" 4827:"A physical catalyst for the electrolysis of nitrogen to ammonia" 2944:, should not exceed a certain content in order not to reduce the 5022:"Tsubame BHB Launches Joint Evaluation with Mitsubishi Chemical" 4030: 3663:
The mechanism of ammonia synthesis contains the following seven
2445:
compounds are permanent poisons. Oxygenic compounds like water,
2411: 1487:. It becomes unity at around 150–200 °C (302–392 °F). 660:, that works at lower temperature and without costly ruthenium. 439: 127: 6256:. International Fertilizer Industry Association. Archived from 5560:
Ertl, Gerhard (1983). "Zum Mechanismus der Ammoniak-Synthese".
5419:
Berichte der Deutschen Chemischen Gesellschaft (A and B Series)
3767:
of the free electron pair of nitrogen to the metal, there is a
2162:. The reduction of the magnetite proceeds via the formation of 1423:
The gases (nitrogen and hydrogen) are passed over four beds of
3849:
is believed to involve the following steps (see also figure):
29: 739:
compounds from the feedstock, because sulfur deactivates the
502:. The most popular catalysts are based on iron promoted with 4057:
O), now the third most important greenhouse gas following CO
3916:. Experimental evidence points to reaction 2 as being slow, 3610:
The gas mixture is then compressed to operating pressure by
2425:
lower catalyst activity. They are usually impurities in the
743:
used in subsequent steps. Sulfur removal requires catalytic
5226:
fixation by water radical cations under ambient conditions"
4924:"Enhanced N2 Dissociation on Ru-Loaded Inorganic Electride" 4166: – Process to extract nitrate from caliche by leaching 3818:). The individual molecules were identified or assigned by 2068:
The Haber–Bosch process relies on catalysts to accelerate N
5352:
Abild-pedersen, Frank; Bligaard, Thomas (1 January 2014).
4466:(in German) (1st ed.). Paderborn: Salzwasser Verlag. 4049:
ammonia affecting natural ecosystems; higher emissions of
1427:, with cooling between each pass to maintain a reasonable 1118:
Carbon dioxide is removed either by absorption in aqueous
5979:
Forst, Detlef; Kolb, Maximillian; Roßwag, Helmut (1993).
5877:(in German). Berlin: Cornelsen-Verlag. 2010. p. 79. 3543: 3515: 3473: 3456: 3367: 3335: 3306: 3278: 3189: 3157: 3132: 3111: 3094: 2940:
The inert components, especially the noble gases such as
2885: 2849: 2821: 2649: 2592: 2572: 1809: 1773: 1736: 1700: 1673: 1645: 1406: 1386: 1370: 1291: 1271: 1255: 1235: 1199: 1183: 1167: 1129:
The final step in producing hydrogen is to use catalytic
1098: 1082: 1063: 1005: 976: 960: 905: 874: 807: 779: 747:
to convert sulfur compounds in the feedstocks to gaseous
454:
plant in Germany, reaching 20 tonnes/day in 1914. During
227: 170: 150: 3973:
Ammonia production § Sustainable ammonia production
3038:, while low concentrations are removed by adsorption on 2190:, especially in conjunction with high temperatures. The 2123:). The pulverized iron is oxidized to give magnetite or 474:
controlled the sea lanes and imposed a highly effective
4141:
Pages displaying short descriptions of redirect targets
4124: – Nitrogen fixation process using electrical arcs 2222:
Pre-reduced, stabilized catalysts occupy a significant
2003:
is standard pressure, typically 1 bar (0.10 MPa).
6534:"Green ammonia: The rocky pathway to a new clean fuel" 5724:
Højlund Nielsen, P. E. (1995), Nielsen, Anders (ed.),
4654:"The structure of atomic nitrogen adsorbed on Fe(100)" 4652:
Imbihl, R.; Behm, R. J.; Ertl, G.; Moritz, W. (1982).
4488:"Robert Le Rossignol, 1884–1976: Professional Chemist" 4160: – Gaseous materials produced for use in industry 3798:
Infrared spectroscopically detected surface imides (NH
3418:
In the third step, the carbon monoxide is oxidized to
3034:
coke, are removed in a wet cleaning stage such as the
2616: 194: 6157:"Structure and reactivity of ruthenium nanoparticles" 4694: 4692: 4313: 4311: 4309: 3708:
of nitrogen. In contrast, exchange reactions between
3435: 3250: 3070: 2776: 2560: 1982: 1962: 1931: 1911: 1871: 1620: 1354: 1223: 1145: 1133:
to remove residual carbon monoxide or carbon dioxide:
1045: 948: 862: 767: 138: 6091: 6089: 6053: 6051: 5417:
Mittasch, Alwin (1926). "Bemerkungen zur Katalyse".
4132:
Pages displaying wikidata descriptions as a fallback
1301:{\displaystyle {\ce {CO2 + 4 H2 -> CH4 + 2 H2O}}} 5953:(in German). Wiesbaden: Teubner. pp. 319–321. 4356:(1st ed.). New York, New York: Harmony Books. 4154: – Industrial production of molecular hydrogen 3991:
How Earth's Population Exploded Bloomberg Quicktake
3979: 1489: 1434:Due to the nature of the (typically multi-promoted 6206:"Ammonia annual production capacity globally 2030" 5732:, Berlin, Heidelberg: Springer, pp. 191–198, 5331:(10th ed.). Upper Saddle River, NJ: Pearson. 5322: 4197:. India: Arihant publications. 2018. p. 264. 3779:Further heating of the Fe(111) area covered by α-N 3614:. The resulting compression heat is dissipated by 3583: 3407: 3229: 3046:together with carbon dioxide after CO conversion. 2898: 2752: 1995: 1968: 1944: 1917: 1893: 1855: 1412: 1345:This step is known as the ammonia synthesis loop: 1300: 1208: 1104: 1011: 914: 816: 483:, a precursor to the nitrates used in explosives. 330: 3845:On the basis of these experimental findings, the 3824:high-resolution electron energy loss spectroscopy 2624: 2623: 2606: 2605: 1209:{\displaystyle {\ce {CO + 3 H2 -> CH4 + H2O}}} 1012:{\displaystyle {\ce {CH4 + H2O -> CO + 3 H2}}} 932:of the sulfur-free feedstock forms hydrogen plus 915:{\displaystyle {\ce {H2S + ZnO -> ZnS + H2O}}} 202: 201: 184: 183: 5983:(in German). Springer Verlag. pp. 234–238. 5951:Grundlagen der metallorganischen Komplexkatalyse 5562:Nachrichten aus Chemie, Technik und Laboratorium 3908:Reaction 5 occurs in three steps, forming NH, NH 3057:and hydrogen. The energy required for this, the 486:The original Haber–Bosch reaction chambers used 5903:Ullmann's Encyclopedia of Industrial Chemistry. 4897:Industrial Efficiency Technology & Measures 4035: 2767:of the reaction (see table) and obtained from: 1126:(PSA) using proprietary solid adsorption media. 1105:{\displaystyle {\ce {CO + H2O -> CO2 + H2}}} 817:{\displaystyle {\ce {H2 + RSH -> RH + H2S}}} 5665: 5663: 5661: 5659: 5501:Ullmann's Encyclopedia of Industrial Chemistry 5093:Wang, Ying; Meyer, Thomas J. (14 March 2019). 4837:(4). Oak Ridge National Laboratory: e1700336. 4408:. Jones & Bartlett Learning. p. 149. 4281:Ullmann's Encyclopedia of Industrial Chemistry 3594:Carbon monoxide and carbon dioxide would form 6654:Britannica guide to Nobel Prizes: Fritz Haber 5851:Catalysis from A to Z: A Concise Encyclopedia 4073:, causing an anthropogenic disruption to the 3026:or organic sulphur compounds, which act as a 1413:{\displaystyle {\ce {3 H2 + N2 -> 2 NH3}}} 850:of natural gas, a process to produce hydrogen 8: 6314: 6312: 6030:Moore, Walter J.; Hummel, Dieter O. (1983). 2214:). After detailed kinetic, microscopic, and 2076:solids that interact with gaseous reagents. 6347:"Nitrogen pollution policy beyond the farm" 5820: 5818: 5816: 5774:. Georg Thieme Verlag. pp. 1644–1646. 4381:. Park Ridge, New Jersey: Noyes Data Corp. 4112:for their natural nitrogen-fixing ability. 4021:. The ammonia is used mainly as a nitrogen 3695:transport of the product into the gas phase 98:, is the main industrial procedure for the 6321:"Nitrogen cycle and world food production" 6034:. Berlin: Walter de Gruyter. p. 604. 5726:"Poisoning of Ammonia Synthesis Catalysts" 4739:Journal of Vacuum Science and Technology A 4222:. New York: Plenum Press. pp. 29–54. 3042:. Organosulfur compounds are separated by 2723: 2677: 2480: 2232: 433:, developed the high-pressure devices and 301: 255: 6678:Nobel e-Museum – Biography of Fritz Haber 6362: 6237:. U.S. Energy Information Administration. 5765: 5763: 5472:. University Science Books. p. 317. 5259: 5118: 4858: 4002:Severnside fertilizer plant northwest of 3571: 3567: 3548: 3542: 3530: 3526: 3514: 3502: 3498: 3493: 3479: 3472: 3467: 3455: 3443: 3442: 3437: 3436: 3434: 3395: 3391: 3372: 3366: 3354: 3350: 3345: 3334: 3322: 3321: 3316: 3312: 3305: 3293: 3289: 3277: 3265: 3261: 3256: 3252: 3251: 3249: 3217: 3213: 3194: 3188: 3176: 3172: 3167: 3156: 3144: 3143: 3138: 3131: 3119: 3118: 3110: 3105: 3093: 3081: 3077: 3072: 3071: 3069: 2884: 2879: 2871: 2870: 2864: 2848: 2843: 2835: 2834: 2820: 2815: 2807: 2806: 2800: 2793: 2781: 2775: 2731: 2724: 2708: 2702: 2698: 2690: 2678: 2662: 2654: 2648: 2643: 2638: 2625: 2618: 2617: 2615: 2607: 2600: 2598: 2597: 2595: 2591: 2586: 2581: 2571: 2566: 2561: 2559: 1987: 1981: 1961: 1936: 1930: 1910: 1885: 1874: 1873: 1870: 1844: 1829: 1823: 1808: 1803: 1798: 1797: 1786: 1785: 1778: 1772: 1767: 1762: 1761: 1750: 1749: 1741: 1735: 1730: 1725: 1724: 1713: 1712: 1709: 1699: 1694: 1689: 1688: 1678: 1672: 1667: 1662: 1661: 1650: 1644: 1639: 1634: 1633: 1627: 1619: 1405: 1400: 1395: 1385: 1380: 1369: 1364: 1359: 1355: 1353: 1290: 1285: 1280: 1270: 1265: 1254: 1249: 1244: 1234: 1229: 1224: 1222: 1198: 1193: 1182: 1177: 1166: 1161: 1156: 1146: 1144: 1097: 1092: 1081: 1076: 1062: 1057: 1046: 1044: 1004: 999: 994: 975: 970: 959: 954: 949: 947: 904: 899: 873: 868: 863: 861: 806: 801: 778: 773: 768: 766: 309: 302: 286: 280: 276: 268: 256: 240: 232: 226: 221: 216: 203: 196: 195: 193: 185: 178: 176: 175: 173: 169: 164: 159: 149: 144: 139: 137: 27:Industrial process for ammonia production 6155:Gavnholt, Jeppe; Schiøtz, Jakob (2008). 6005:"Ammoniakkonverter – Düngemittelanlagen" 5974: 5972: 5970: 5052:Journal of the American Chemical Society 5020:Crolius, Stephen H. (17 December 2020). 4928:Journal of the American Chemical Society 2056:First reactor at the Oppau plant in 1913 654: 648: 641: 60:of all important aspects of the article. 6587:"Detonator of the population explosion" 6473:"Detonator of the population explosion" 6388:Agriculture, Ecosystems and Environment 5875:Fokus Chemie Oberstufe Einführungsphase 4463:Thermodynamik technischer Gasreaktionen 4347: 4345: 4343: 4341: 4339: 4273: 4271: 4269: 4267: 4265: 4263: 4261: 4259: 4186: 3889:N (adsorbed) + 3 H (adsorbed) → NH 3810:) are formed, the latter decay under NH 2599: 2099:, potassium hydroxide, molybdenum, and 2035:The steam reforming, shift conversion, 731:) feedstock, the steps are as follows; 177: 6600:(6743). Macmillan Magazines Ltd: 415. 5589:The Chemical Physics of Solid Surfaces 5493: 5491: 5489: 4432:Nobel Laureates in Chemistry 1901–1992 4257: 4255: 4253: 4251: 4249: 4247: 4245: 4243: 4241: 4239: 4139: – Mineral form of sodium nitrate 3976: 2025:adsorbent-enhanced Haber–Bosch process 56:Please consider expanding the lead to 5308: 5206: 5194: 4148: – Excrement of seabirds or bats 3674:pore diffusion to the reaction center 2282:Surface composition before reduction 627:-loaded calcium-aluminum oxide C12A7: 7: 6448:Ritter, Steven K. (18 August 2008). 4322:(1st ed.). Cambridge, MA: MIT. 3763:have shown that, in addition to the 3740:–S (α-species) → 2 S*–N (β-species, 3646:compressed back to the process by a 2482:Change of the equilibrium constant K 2305:Surface composition after reduction 6659:Haber Process for Ammonia Synthesis 6231:"International Energy Outlook 2007" 5593:Coadsorption, promoters and poisons 3618:; it is used to preheat raw gases. 3422:, which is called CO conversion or 846:Illustrating inputs and outputs of 575:Combined with the energy needed to 5730:Ammonia: Catalysis and Manufacture 4025:as ammonia itself, in the form of 3967:Economic and environmental aspects 3549: 3373: 3195: 2742: 2739: 2736: 2728: 2725: 2703: 2691: 2655: 1894:{\displaystyle {\hat {\phi }}_{i}} 320: 317: 314: 306: 303: 281: 269: 233: 25: 6649:BASF – Fertilizer out of thin air 6129:Wennerström, Håkan; Lidin, Sven. 6104:. John Wiley & Sons. p.  5455:from the original on 6 July 2020. 5170:– via Wiley Online Library. 4597:. 3 February 1920. Archived from 4564:(1 ed.). The History Press. 4497:, p. 8, 2009, archived from 4220:A Century of Chemical Engineering 2182:, the promoters are not reduced. 2072:hydrogenation. The catalysts are 2007:single-pass yield of around 15%. 698:or carbon dioxide emissions from 569:Karlsruhe Institute of Technology 6670:, 29 July 1999, p. 415 (by 5853:. Verlag Wiley-VCH. p. 31. 5391:Koop, Fermin (13 January 2023). 4774:"100 years of Thyssenkrupp Uhde" 4531:Philip, Phylis Morrison (2001). 3985: 3886:(adsorbed) → 2 H (adsorbed) 3868:(adsorbed) → 2 N (adsorbed) 3820:X-ray photoelectron spectroscopy 3704:of the ammonia synthesis is the 2021:absorbent-enhanced Haber process 1338:nitrogen is bound together by a 1029:converts the carbon monoxide to 348:, but is disfavored in terms of 34: 6532:Blain, Loz (3 September 2021). 6454:Chemical & Engineering News 5466:Rock, Peter A. (19 June 2013). 4899:. 30 April 2013. Archived from 4561:Explosives: History with a Bang 4533:"Fertile Minds (Book Review of 3959:of the rate constant. Although 3547: 3371: 3193: 3014: 3008: 3002: 2996: 2990: 2984: 2978: 2972: 2653: 834:where it is converted to solid 231: 48:may be too short to adequately 6683:Uses and Production of Ammonia 5595:. Elsevier. pp. 225–268. 5329:Chemistry: The Central Science 3806:) and surface ammoniacates (NH 3537: 3531: 3509: 3503: 3490: 3486: 3480: 3450: 3444: 3361: 3355: 3329: 3323: 3309: 3300: 3294: 3272: 3266: 3183: 3177: 3151: 3145: 3135: 3126: 3120: 3088: 3082: 2888: 2872: 2852: 2836: 2824: 2808: 2747: 2687: 2626: 2601: 2019:. Such a process is called an 1879: 1791: 1755: 1718: 1389: 1258: 1170: 1122:solutions or by adsorption in 1069: 982: 886: 788: 606:biological hydrogen production 604:. Other possibilities include 325: 265: 204: 179: 58:provide an accessible overview 1: 5924:Journal für Praktische Chemie 5797:Chemistry the Central Science 5711:10.1016/S0926-860X(96)00304-3 5510:10.1002/14356007.a02_143.pub2 5449:resources.schoolscience.co.uk 4405:The Ecology of Agroecosystems 4290:10.1002/14356007.a02_143.pub2 4278:Appl, Max (2006). "Ammonia". 2486:as a function of temperature 2236:Typical catalyst composition 1976:is the reactor pressure, and 6080:10.1016/0039-6028(82)90703-8 5699:Applied Catalysis A: General 5642:10.1016/j.fuproc.2009.07.007 5547:10.1016/j.apcata.2007.03.021 5535:Applied Catalysis A: General 5498:Max Appl (2006). "Ammonia". 5378:10.1016/j.cplett.2014.03.003 5120:10.1016/j.chempr.2019.02.021 4723:10.1016/0039-6028(82)90702-6 4683:10.1016/0039-6028(82)90135-2 4639:10.1016/0021-9517(77)90237-8 4515:Bosch, Carl (2 March 1908). 3946:can be created based on the 2541: 2533: 2525: 2517: 2509: 2501: 1590: 1582: 1574: 1566: 1558: 1550: 1464:) is unreactive because the 397:History of the Haber process 6100:Reactions at Solid Surfaces 5738:10.1007/978-3-642-79197-0_5 2373:triruthenium dodecacarbonyl 6774: 6728:History of mining in Chile 6562:Clark, Jim (April 2013) . 6400:10.1016/j.agee.2009.04.025 6184:10.1103/PhysRevB.77.035404 5905:Wiley-VCH, Weinheim 2006. 5772:Römpp-Lexikon Chemie (H–L) 5684:10.1016/j.jcat.2007.08.006 5622:Fuel Processing Technology 5252:10.1038/s41467-024-45832-9 5222:"Efficient catalyst-free N 5026:Ammonia Energy Association 3970: 3755:photoelectron spectroscopy 3648:circulating gas compressor 2960:Large-scale implementation 2304: 2281: 2255: 1996:{\displaystyle P^{\circ }} 429:Haber, with his assistant 394: 354:drive the reaction forward 340:This reaction is slightly 102:. It converts atmospheric 6435:10.1016/j.hal.2008.08.015 6364:10.1038/s43016-019-0001-5 5380:– via academia.edu. 4429:James, Laylin K. (1993). 4402:Vandermeer, John (2011). 4377:Sittig, Marshall (1979). 3984: 3761:Ab-initio-MO calculations 3044:pressure swing adsorption 2988: secondary reformer 2327:Catalysts other than iron 2173:The α-iron forms primary 1454:removal may be required. 581:global energy consumption 126:) using a finely divided 5949:Steinborn, Dirk (2007). 5936:10.1002/prac.19610130315 5911:10.1002/14356007.a17_485 5574:10.1002/nadc.19830310307 5431:10.1002/cber.19260590103 5358:Chemical Physics Letters 4979:10.1021/acscatal.6b03357 4195:Habers process chemistry 3424:water-gas shift reaction 2932:for the cleavage of the 2915:Le Chatelier's principle 1485:Le Châtelier's principle 1124:pressure swing adsorbers 381:Nobel Prize in Chemistry 6287:10.1126/science.1076659 6250:"Raw material reserves" 6247:Fertilizer statistics. 5504:. Weinheim: Wiley-VCH. 5469:Chemical Thermodynamics 5445:"3.1 Ammonia synthesis" 5284:"Chemistry of Nitrogen" 4284:. Weinheim: Wiley-VCH. 4082:nitrogen use efficiency 3018: ammonia condenser 2976: primary reformer 2457:are temporary poisons. 2333:dissociative adsorption 385:high-pressure chemistry 6096:Ertl, Gerhard (2010). 5770:Falbe, Jürgen (1997). 5160:10.1002/cben.202000014 4851:10.1126/sciadv.1700336 4586:"Nobel Award to Haber" 4352:Hager, Thomas (2008). 4122:Birkeland–Eyde process 4046: 4007: 3957:pre-exponential factor 3939: 3840: 3717:of ammonia synthesis. 3630: 3585: 3409: 3231: 3019: 3006: ammonia reactor 2909:Since the reaction is 2900: 2754: 2065: 2057: 2037:carbon dioxide removal 1997: 1970: 1946: 1919: 1895: 1857: 1414: 1332:hydrogen embrittlement 1302: 1210: 1106: 1013: 916: 851: 818: 680:sources include coal, 572: 409: 332: 87: 6713:Equilibrium chemistry 6585:Smil, Vaclav (1999). 6471:Smil, Vaclav (1999). 6319:Smil, Vaclav (2011). 5981:Chemie für Ingenieure 5897:P. Häussinger u. a.: 5231:Nature Communications 4460:Haber, Fritz (1905). 4318:Smil, Vaclav (2004). 4001: 3971:Further information: 3935: 3918:rate-determining step 3839:Drawn reaction scheme 3838: 3802:), surface amides (NH 3702:rate-determining step 3628: 3586: 3410: 3232: 3012: heat exchanger 2970: 2901: 2755: 2472:Industrial production 2063: 2055: 1998: 1971: 1956:of the same species, 1947: 1945:{\displaystyle y_{i}} 1920: 1896: 1858: 1468:are held together by 1415: 1303: 1211: 1107: 1014: 917: 845: 819: 566: 551:; 12,000–15,000  404: 333: 118:) by a reaction with 100:production of ammonia 82: 6708:Industrial processes 6032:Physikalische Chemie 6009:Industrial Solutions 5672:Journal of Catalysis 5064:10.1021/jacs.9b10726 4778:Industrial Solutions 4626:Journal of Catalysis 4089:population explosion 3948:Enthalpy of Reaction 3433: 3248: 3068: 3000: washing tower 2994: CO conversion 2950:gas separation plant 2774: 2558: 2477:Synthesis parameters 2107:Iron-based catalysts 2031:Pressure/temperature 1980: 1960: 1929: 1909: 1903:fugacity coefficient 1869: 1618: 1602:Van 't Hoff equation 1429:equilibrium constant 1352: 1221: 1143: 1043: 946: 860: 765: 753:hydrodesulfurization 694:is produced without 668:The major source of 623:'s group found that 458:, the production of 359:The German chemists 136: 6664:Haber–Bosch process 6638:"The Haber Process" 6606:1999Natur.400..415S 6564:"The Haber Process" 6492:1999Natur.400..415S 6427:2008HAlga...8...14H 6281:(5587): 1654–1655. 6176:2008PhRvB..77c5404G 6072:1982SurSc.114..527E 5827:Inorganic Chemistry 5634:2009FuPrT..90.1486T 5370:2014CPL...598..108V 5288:Chem.LibreTexts.org 5244:2024NatCo..15.1535Z 5111:2019Chem....5..496W 5058:(51): 20344–20353. 4843:2018SciA....4..336S 4752:1983JVSTA...1.1247E 4715:1982SurSc.114..515E 4675:1982SurSc.123..129I 4604:on 24 February 2021 4518:U.S. patent 990,191 4152:Hydrogen production 3545: 3517: 3475: 3458: 3369: 3337: 3308: 3280: 3191: 3159: 3134: 3113: 3096: 3061:ΔH, is 206 kJ/mol. 3036:sulfosolvan process 2887: 2851: 2823: 2713: 2651: 2612: 2594: 2574: 2487: 2343:to the left of the 2256:Volume composition 2216:X-ray spectroscopic 2087:possibly including 1811: 1783: 1775: 1746: 1738: 1702: 1683: 1675: 1655: 1647: 1534: 1408: 1388: 1372: 1293: 1273: 1257: 1237: 1201: 1185: 1169: 1100: 1084: 1065: 1007: 978: 962: 907: 876: 809: 781: 664:Hydrogen production 638:oxynitride-hydride 431:Robert Le Rossignol 291: 229: 190: 172: 152: 96:Haber–Bosch process 18:Haber–Bosch process 6703:Chemical processes 6672:Jürgen Schmidhuber 6254:www.fertilizer.org 6136:. Nobel Foundation 5148:ChemBioEng Reviews 4594:The New York Times 4558:Brown, GI (2011). 4541:American Scientist 4504:on 13 January 2011 4495:ChemUCL Newsletter 4008: 3940: 3847:reaction mechanism 3841: 3736:(γ-species) → S*–N 3631: 3581: 3522: 3494: 3463: 3438: 3405: 3346: 3317: 3285: 3257: 3227: 3168: 3139: 3114: 3101: 3073: 3020: 2896: 2875: 2839: 2811: 2750: 2694: 2639: 2631: 2582: 2562: 2481: 2066: 2058: 1993: 1966: 1942: 1915: 1891: 1853: 1799: 1763: 1748: 1726: 1711: 1690: 1663: 1657: 1635: 1629: 1490: 1410: 1396: 1376: 1360: 1314:Ammonia production 1298: 1281: 1261: 1245: 1225: 1206: 1189: 1173: 1157: 1102: 1088: 1072: 1053: 1033:and more hydrogen: 1009: 995: 966: 950: 912: 895: 864: 852: 814: 797: 769: 704:water electrolysis 612:, but at present, 596:electricity using 587:, and 3% to 5% of 573: 410: 328: 272: 217: 209: 160: 140: 94:, also called the 88: 6733:German inventions 6328:World Agriculture 6260:on 24 April 2008. 6164:Physical Review B 6115:978-0-470-26101-9 6041:978-3-11-008554-9 5990:978-3-662-00655-9 5960:978-3-8351-0088-6 5884:978-3-06-013953-8 5860:978-3-527-31438-6 5806:978-0-13-038168-2 5781:978-3-13-107830-8 5747:978-3-642-79197-0 5628:(12): 1486–1494. 5602:978-0-444-81468-5 5479:978-1-891389-32-0 5338:978-0-13-109686-8 4940:10.1021/ja410925g 4903:on 2 October 2019 4473:978-3-86444-842-3 4446:978-0-8412-2690-6 4415:978-0-7637-7153-9 4388:978-0-8155-0734-5 4363:978-0-307-35178-4 4329:978-0-262-69313-4 4229:978-0-306-40895-3 4204:978-93-131-6303-9 4137:Chilean saltpeter 4128:Calcium cyanamide 4099:Reverse fuel cell 4093:global population 4067:reactive nitrogen 4012:cyanamide process 3996: 3995: 3952:activation energy 3612:turbo compressors 3578: 3570: 3566: 3536: 3525: 3508: 3497: 3485: 3478: 3466: 3449: 3441: 3402: 3394: 3390: 3360: 3349: 3328: 3320: 3299: 3288: 3271: 3260: 3224: 3216: 3212: 3182: 3171: 3150: 3142: 3125: 3117: 3104: 3087: 3076: 2930:activation energy 2894: 2878: 2842: 2814: 2686: 2681: 2642: 2633: 2585: 2565: 2551:The reaction is: 2549: 2548: 2491:temperature (°C) 2324: 2323: 2188:recrystallization 2168:disproportionates 1969:{\displaystyle P} 1918:{\displaystyle i} 1882: 1838: 1816: 1802: 1794: 1766: 1758: 1729: 1721: 1707: 1693: 1666: 1638: 1598: 1597: 1538:Temperature (°C) 1450:, but additional 1399: 1379: 1363: 1324:reaction kinetics 1296: 1284: 1264: 1248: 1228: 1204: 1192: 1176: 1160: 1149: 1091: 1075: 1068: 1056: 1049: 998: 987: 981: 969: 953: 910: 898: 891: 885: 879: 867: 812: 800: 793: 787: 772: 755:, hydrotreating): 442:, which assigned 264: 259: 220: 211: 163: 143: 75: 74: 16:(Redirected from 6765: 6738:Industrial gases 6645: 6633: 6627: 6617: 6591: 6574: 6572: 6570: 6549: 6548: 6546: 6544: 6529: 6523: 6518: 6512: 6511: 6477: 6468: 6462: 6461: 6445: 6439: 6438: 6410: 6404: 6403: 6394:(3–4): 280–288. 6383: 6377: 6376: 6366: 6342: 6336: 6335: 6325: 6316: 6307: 6306: 6268: 6262: 6261: 6245: 6239: 6238: 6227: 6221: 6220: 6218: 6216: 6202: 6196: 6195: 6161: 6152: 6146: 6145: 6143: 6141: 6135: 6126: 6120: 6119: 6103: 6093: 6084: 6083: 6066:(2–3): 527–545. 6055: 6046: 6045: 6027: 6021: 6020: 6018: 6016: 6001: 5995: 5994: 5976: 5965: 5964: 5946: 5940: 5939: 5930:(3–4): 215–236. 5919: 5913: 5895: 5889: 5888: 5871: 5865: 5864: 5846: 5840: 5839: 5822: 5811: 5810: 5792: 5786: 5785: 5767: 5758: 5757: 5756: 5754: 5721: 5715: 5714: 5694: 5688: 5687: 5667: 5654: 5653: 5613: 5607: 5606: 5584: 5578: 5577: 5557: 5551: 5550: 5530: 5524: 5523: 5495: 5484: 5483: 5463: 5457: 5456: 5441: 5435: 5434: 5414: 5408: 5407: 5405: 5403: 5388: 5382: 5381: 5349: 5343: 5342: 5326: 5318: 5312: 5306: 5300: 5299: 5297: 5295: 5280: 5274: 5273: 5263: 5238:(1) 1535: 1535. 5216: 5210: 5204: 5198: 5192: 5186: 5185: 5178: 5172: 5171: 5139: 5133: 5132: 5122: 5090: 5084: 5083: 5043: 5037: 5036: 5034: 5032: 5017: 5011: 5010: 5008: 5006: 4989: 4983: 4982: 4973:(4): 2313–2324. 4958: 4952: 4951: 4934:(6): 2216–2219. 4919: 4913: 4912: 4910: 4908: 4889: 4883: 4882: 4877: 4875: 4862: 4831:Science Advances 4821: 4815: 4814: 4809: 4807: 4796: 4790: 4789: 4787: 4785: 4770: 4764: 4763: 4760:10.1116/1.572299 4746:(2): 1247–1253. 4733: 4727: 4726: 4709:(2–3): 515–526. 4696: 4687: 4686: 4658: 4649: 4643: 4642: 4620: 4614: 4613: 4611: 4609: 4603: 4590: 4582: 4576: 4575: 4555: 4549: 4548: 4543:. Archived from 4528: 4522: 4520: 4513: 4507: 4505: 4503: 4492: 4484: 4478: 4477: 4457: 4451: 4450: 4426: 4420: 4419: 4399: 4393: 4392: 4374: 4368: 4367: 4349: 4334: 4333: 4315: 4304: 4303: 4275: 4234: 4233: 4215: 4209: 4208: 4191: 4142: 4133: 4091:", enabling the 4044: 4027:ammonium nitrate 4019:ammonia per year 3989: 3988: 3977: 3665:elementary steps 3659:Elementary steps 3590: 3588: 3587: 3582: 3580: 3579: 3576: 3575: 3568: 3564: 3546: 3544: 3541: 3540: 3534: 3523: 3518: 3516: 3513: 3512: 3506: 3495: 3489: 3483: 3476: 3474: 3471: 3464: 3459: 3457: 3454: 3453: 3447: 3439: 3414: 3412: 3411: 3406: 3404: 3403: 3400: 3399: 3392: 3388: 3370: 3368: 3365: 3364: 3358: 3347: 3338: 3336: 3333: 3332: 3326: 3318: 3307: 3304: 3303: 3297: 3286: 3281: 3279: 3276: 3275: 3269: 3258: 3236: 3234: 3233: 3228: 3226: 3225: 3222: 3221: 3214: 3210: 3192: 3190: 3187: 3186: 3180: 3169: 3160: 3158: 3155: 3154: 3148: 3140: 3133: 3130: 3129: 3123: 3115: 3112: 3109: 3102: 3097: 3095: 3092: 3091: 3085: 3074: 3040:activated carbon 3024:hydrogen sulfide 3017: 3016: 3011: 3010: 3005: 3004: 2999: 2998: 2993: 2992: 2987: 2986: 2981: 2980: 2975: 2974: 2946:partial pressure 2905: 2903: 2902: 2897: 2895: 2893: 2892: 2891: 2886: 2883: 2876: 2869: 2868: 2856: 2855: 2850: 2847: 2840: 2829: 2828: 2827: 2822: 2819: 2812: 2805: 2804: 2794: 2789: 2788: 2759: 2757: 2756: 2751: 2746: 2745: 2735: 2712: 2707: 2706: 2684: 2683: 2682: 2679: 2667: 2666: 2652: 2650: 2647: 2640: 2634: 2632: 2630: 2629: 2622: 2614: 2613: 2611: 2604: 2596: 2593: 2590: 2583: 2573: 2570: 2563: 2488: 2423:Catalyst poisons 2418:Catalyst poisons 2287: 2270: 2264: 2233: 2152:catalyst poisons 2150:must be free of 2141:aluminium oxides 2002: 2000: 1999: 1994: 1992: 1991: 1975: 1973: 1972: 1967: 1951: 1949: 1948: 1943: 1941: 1940: 1924: 1922: 1921: 1916: 1900: 1898: 1897: 1892: 1890: 1889: 1884: 1883: 1875: 1862: 1860: 1859: 1854: 1849: 1848: 1843: 1839: 1834: 1833: 1824: 1817: 1815: 1814: 1813: 1812: 1810: 1807: 1800: 1796: 1795: 1787: 1782: 1777: 1776: 1774: 1771: 1764: 1760: 1759: 1751: 1745: 1740: 1739: 1737: 1734: 1727: 1723: 1722: 1714: 1710: 1708: 1706: 1705: 1704: 1703: 1701: 1698: 1691: 1682: 1677: 1676: 1674: 1671: 1664: 1654: 1649: 1648: 1646: 1643: 1636: 1628: 1535: 1533: 1532: 1531: 1521: 1520: 1519: 1509: 1508: 1507: 1419: 1417: 1416: 1411: 1409: 1407: 1404: 1397: 1387: 1384: 1377: 1371: 1368: 1361: 1326:(hence a slower 1307: 1305: 1304: 1299: 1297: 1294: 1292: 1289: 1282: 1272: 1269: 1262: 1256: 1253: 1246: 1236: 1233: 1226: 1215: 1213: 1212: 1207: 1205: 1202: 1200: 1197: 1190: 1184: 1181: 1174: 1168: 1165: 1158: 1147: 1111: 1109: 1108: 1103: 1101: 1099: 1096: 1089: 1083: 1080: 1073: 1066: 1064: 1061: 1054: 1047: 1027:shift conversion 1018: 1016: 1015: 1010: 1008: 1006: 1003: 996: 985: 979: 977: 974: 967: 961: 958: 951: 921: 919: 918: 913: 911: 908: 906: 903: 896: 889: 883: 877: 875: 872: 865: 823: 821: 820: 815: 813: 810: 808: 805: 798: 791: 785: 780: 777: 770: 749:hydrogen sulfide 730: 728: 727: 713:Starting with a 659: 630: 585:carbon emissions 577:produce hydrogen 547:(800–1,000  466:in Chile (Chile 337: 335: 334: 329: 324: 323: 313: 290: 285: 284: 262: 261: 260: 257: 245: 244: 230: 228: 225: 218: 212: 210: 208: 207: 200: 192: 191: 189: 182: 174: 171: 168: 161: 151: 148: 141: 130:metal catalyst: 70: 67: 61: 38: 30: 21: 6773: 6772: 6768: 6767: 6766: 6764: 6763: 6762: 6758:1909 in Germany 6753:1909 in science 6688: 6687: 6642:Chemguide.co.uk 6636: 6625: 6621: 6618:, 29 July 1999. 6589: 6584: 6581: 6568: 6566: 6561: 6558: 6553: 6552: 6542: 6540: 6531: 6530: 6526: 6519: 6515: 6475: 6470: 6469: 6465: 6447: 6446: 6442: 6412: 6411: 6407: 6385: 6384: 6380: 6344: 6343: 6339: 6323: 6318: 6317: 6310: 6270: 6269: 6265: 6248: 6246: 6242: 6229: 6228: 6224: 6214: 6212: 6204: 6203: 6199: 6159: 6154: 6153: 6149: 6139: 6137: 6133: 6128: 6127: 6123: 6116: 6095: 6094: 6087: 6060:Surface Science 6057: 6056: 6049: 6042: 6029: 6028: 6024: 6014: 6012: 6003: 6002: 5998: 5991: 5978: 5977: 5968: 5961: 5948: 5947: 5943: 5921: 5920: 5916: 5896: 5892: 5885: 5873: 5872: 5868: 5861: 5848: 5847: 5843: 5837: 5824: 5823: 5814: 5807: 5794: 5793: 5789: 5782: 5769: 5768: 5761: 5752: 5750: 5748: 5723: 5722: 5718: 5696: 5695: 5691: 5669: 5668: 5657: 5615: 5614: 5610: 5603: 5591:. Vol. 6: 5586: 5585: 5581: 5559: 5558: 5554: 5532: 5531: 5527: 5520: 5497: 5496: 5487: 5480: 5465: 5464: 5460: 5443: 5442: 5438: 5416: 5415: 5411: 5401: 5399: 5390: 5389: 5385: 5351: 5350: 5346: 5339: 5320: 5319: 5315: 5307: 5303: 5293: 5291: 5282: 5281: 5277: 5225: 5218: 5217: 5213: 5205: 5201: 5193: 5189: 5180: 5179: 5175: 5141: 5140: 5136: 5092: 5091: 5087: 5045: 5044: 5040: 5030: 5028: 5019: 5018: 5014: 5004: 5002: 5001:. 27 April 2017 4991: 4990: 4986: 4960: 4959: 4955: 4921: 4920: 4916: 4906: 4904: 4891: 4890: 4886: 4873: 4871: 4823: 4822: 4818: 4805: 4803: 4798: 4797: 4793: 4783: 4781: 4772: 4771: 4767: 4735: 4734: 4730: 4702:Surface Science 4698: 4697: 4690: 4662:Surface Science 4656: 4651: 4650: 4646: 4622: 4621: 4617: 4607: 4605: 4601: 4588: 4584: 4583: 4579: 4572: 4557: 4556: 4552: 4547:on 2 July 2012. 4530: 4529: 4525: 4516: 4514: 4510: 4501: 4490: 4486: 4485: 4481: 4474: 4459: 4458: 4454: 4447: 4428: 4427: 4423: 4416: 4401: 4400: 4396: 4389: 4376: 4375: 4371: 4364: 4351: 4350: 4337: 4330: 4317: 4316: 4307: 4300: 4277: 4276: 4237: 4230: 4217: 4216: 4212: 4205: 4193: 4192: 4188: 4183: 4140: 4131: 4118: 4064: 4060: 4056: 4045: 4042: 3986: 3980:External videos 3975: 3969: 3930: 3915: 3911: 3903: 3900:(adsorbed) → NH 3899: 3892: 3885: 3878: 3874: 3867: 3860: 3856: 3828:Ir Spectroscopy 3813: 3809: 3805: 3801: 3794: 3790: 3782: 3742:surface nitride 3739: 3735: 3731: 3661: 3656: 3616:heat exchangers 3605:triethanolamine 3431: 3430: 3246: 3245: 3066: 3065: 3055:carbon monoxide 3028:catalyst poison 3013: 3007: 3001: 2995: 2989: 2983: 2982: air feed 2977: 2971: 2962: 2860: 2830: 2796: 2795: 2777: 2772: 2771: 2766: 2658: 2556: 2555: 2497: 2485: 2479: 2474: 2447:carbon monoxide 2441:compounds, and 2420: 2389:aluminium oxide 2385:magnesium oxide 2365: 2329: 2285: 2268: 2262: 2213: 2209: 2122: 2118: 2109: 2101:magnesium oxide 2093:potassium oxide 2089:aluminium oxide 2071: 2050: 2033: 1983: 1978: 1977: 1958: 1957: 1932: 1927: 1926: 1907: 1906: 1872: 1867: 1866: 1825: 1819: 1818: 1784: 1747: 1684: 1656: 1616: 1615: 1546: 1530: 1527: 1526: 1525: 1523: 1518: 1515: 1514: 1513: 1511: 1506: 1503: 1502: 1501: 1499: 1463: 1460:Nitrogen gas (N 1445: 1441: 1350: 1349: 1316: 1219: 1218: 1141: 1140: 1041: 1040: 944: 943: 934:carbon monoxide 930:steam reforming 858: 857: 848:steam reforming 763: 762: 726: 723: 722: 721: 718: 666: 658: 652: 646: 639: 628: 614:steam reforming 583:, 3% of global 561: 530: 526: 519: 507: 425: 399: 393: 377:steam reforming 236: 134: 133: 125: 117: 109: 71: 65: 62: 55: 43:This article's 39: 28: 23: 22: 15: 12: 11: 5: 6771: 6769: 6761: 6760: 6755: 6750: 6745: 6743:Name reactions 6740: 6735: 6730: 6725: 6720: 6715: 6710: 6705: 6700: 6690: 6689: 6686: 6685: 6680: 6675: 6661: 6656: 6651: 6646: 6634: 6630:Daniel Charles 6619: 6580: 6579:External links 6577: 6576: 6575: 6557: 6554: 6551: 6550: 6524: 6513: 6463: 6440: 6405: 6378: 6337: 6308: 6263: 6240: 6222: 6197: 6147: 6121: 6114: 6085: 6047: 6040: 6022: 5996: 5989: 5966: 5959: 5941: 5914: 5890: 5883: 5866: 5859: 5841: 5835: 5812: 5805: 5787: 5780: 5759: 5746: 5716: 5705:(2): 443–460. 5689: 5678:(2): 321–331. 5655: 5608: 5601: 5579: 5568:(3): 178–182. 5552: 5525: 5519:978-3527306732 5518: 5485: 5478: 5458: 5436: 5409: 5383: 5344: 5337: 5313: 5301: 5275: 5223: 5211: 5199: 5187: 5173: 5154:(5): 150–158. 5134: 5105:(3): 496–497. 5085: 5038: 5012: 4984: 4953: 4914: 4884: 4816: 4791: 4765: 4728: 4688: 4669:(1): 129–140. 4644: 4615: 4577: 4571:978-0752456966 4570: 4550: 4523: 4508: 4479: 4472: 4452: 4445: 4421: 4414: 4394: 4387: 4369: 4362: 4335: 4328: 4305: 4299:978-3527306732 4298: 4235: 4228: 4210: 4203: 4185: 4184: 4182: 4179: 4178: 4177: 4172: 4167: 4164:Paradas method 4161: 4158:Industrial gas 4155: 4149: 4143: 4134: 4125: 4117: 4114: 4108:which include 4106:crop rotations 4075:nitrogen cycle 4062: 4058: 4054: 4040: 3994: 3993: 3982: 3981: 3968: 3965: 3944:energy diagram 3937:Energy diagram 3929: 3928:Energy diagram 3926: 3913: 3909: 3906: 3905: 3901: 3897: 3894: 3890: 3887: 3883: 3880: 3876: 3872: 3869: 3865: 3862: 3858: 3854: 3843: 3842: 3811: 3807: 3803: 3799: 3792: 3788: 3783:leads to both 3780: 3776:1490 cm. 3746: 3745: 3737: 3733: 3729: 3697: 3696: 3693: 3690: 3684: 3681: 3675: 3672: 3660: 3657: 3655: 3652: 3592: 3591: 3574: 3563: 3560: 3557: 3554: 3551: 3539: 3533: 3529: 3521: 3511: 3505: 3501: 3492: 3488: 3482: 3470: 3462: 3452: 3446: 3420:carbon dioxide 3416: 3415: 3398: 3387: 3384: 3381: 3378: 3375: 3363: 3357: 3353: 3344: 3341: 3331: 3325: 3315: 3311: 3302: 3296: 3292: 3284: 3274: 3268: 3264: 3255: 3238: 3237: 3220: 3209: 3206: 3203: 3200: 3197: 3185: 3179: 3175: 3166: 3163: 3153: 3147: 3137: 3128: 3122: 3108: 3100: 3090: 3084: 3080: 2961: 2958: 2907: 2906: 2890: 2882: 2874: 2867: 2863: 2859: 2854: 2846: 2838: 2833: 2826: 2818: 2810: 2803: 2799: 2792: 2787: 2784: 2780: 2764: 2761: 2760: 2749: 2744: 2741: 2738: 2734: 2730: 2727: 2722: 2719: 2716: 2711: 2705: 2701: 2697: 2693: 2689: 2676: 2673: 2670: 2665: 2661: 2657: 2646: 2637: 2628: 2621: 2610: 2603: 2589: 2580: 2577: 2569: 2547: 2546: 2543: 2539: 2538: 2535: 2531: 2530: 2527: 2523: 2522: 2519: 2515: 2514: 2511: 2507: 2506: 2503: 2499: 2498: 2495: 2492: 2483: 2478: 2475: 2473: 2470: 2451:carbon dioxide 2419: 2416: 2364: 2361: 2341:periodic table 2328: 2325: 2322: 2321: 2318: 2315: 2312: 2309: 2306: 2302: 2301: 2298: 2295: 2292: 2289: 2283: 2279: 2278: 2275: 2272: 2266: 2260: 2257: 2253: 2252: 2249: 2246: 2245:Aluminium (%) 2243: 2242:Potassium (%) 2240: 2237: 2211: 2207: 2192:vapor pressure 2120: 2116: 2108: 2105: 2069: 2049: 2046: 2032: 2029: 1990: 1986: 1965: 1939: 1935: 1914: 1888: 1881: 1878: 1852: 1847: 1842: 1837: 1832: 1828: 1822: 1806: 1793: 1790: 1781: 1770: 1757: 1754: 1744: 1733: 1720: 1717: 1697: 1687: 1681: 1670: 1660: 1653: 1642: 1632: 1626: 1623: 1612:relationship: 1596: 1595: 1592: 1588: 1587: 1584: 1580: 1579: 1576: 1572: 1571: 1568: 1564: 1563: 1560: 1556: 1555: 1552: 1548: 1547: 1544: 1539: 1528: 1516: 1504: 1461: 1448:air separation 1443: 1439: 1421: 1420: 1403: 1394: 1391: 1383: 1375: 1367: 1358: 1320:liquid ammonia 1315: 1312: 1311: 1310: 1309: 1308: 1288: 1279: 1276: 1268: 1260: 1252: 1243: 1240: 1232: 1216: 1196: 1188: 1180: 1172: 1164: 1155: 1152: 1135: 1134: 1127: 1115: 1114: 1113: 1112: 1095: 1087: 1079: 1071: 1060: 1052: 1035: 1034: 1031:carbon dioxide 1022: 1021: 1020: 1019: 1002: 993: 990: 984: 973: 965: 957: 938: 937: 925: 924: 923: 922: 902: 894: 888: 882: 871: 840: 839: 827: 826: 825: 824: 804: 796: 790: 784: 776: 757: 756: 724: 708:thermochemical 692:Green hydrogen 682:heavy fuel oil 665: 662: 560: 557: 541:Georges Claude 537:interwar years 528: 524: 517: 505: 496:Alwin Mittasch 479:production of 464:sodium nitrate 423: 395:Main article: 392: 389: 369:Birkeland-Eyde 327: 322: 319: 316: 312: 308: 305: 300: 297: 294: 289: 283: 279: 275: 271: 267: 254: 251: 248: 243: 239: 235: 224: 215: 206: 199: 188: 181: 167: 158: 155: 147: 123: 115: 107: 73: 72: 52:the key points 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6770: 6759: 6756: 6754: 6751: 6749: 6746: 6744: 6741: 6739: 6736: 6734: 6731: 6729: 6726: 6724: 6721: 6719: 6716: 6714: 6711: 6709: 6706: 6704: 6701: 6699: 6696: 6695: 6693: 6684: 6681: 6679: 6676: 6673: 6669: 6665: 6662: 6660: 6657: 6655: 6652: 6650: 6647: 6643: 6639: 6635: 6631: 6624: 6620: 6615: 6614:10.1038/22672 6611: 6607: 6603: 6599: 6595: 6588: 6583: 6582: 6578: 6565: 6560: 6559: 6555: 6539: 6535: 6528: 6525: 6522: 6517: 6514: 6509: 6505: 6501: 6500:10.1038/22672 6497: 6493: 6489: 6486:(6743): 415. 6485: 6481: 6474: 6467: 6464: 6459: 6455: 6451: 6444: 6441: 6436: 6432: 6428: 6424: 6420: 6416: 6415:Harmful Algae 6409: 6406: 6401: 6397: 6393: 6389: 6382: 6379: 6374: 6370: 6365: 6360: 6356: 6352: 6348: 6341: 6338: 6333: 6329: 6322: 6315: 6313: 6309: 6304: 6300: 6296: 6292: 6288: 6284: 6280: 6276: 6275: 6267: 6264: 6259: 6255: 6251: 6244: 6241: 6236: 6232: 6226: 6223: 6211: 6207: 6201: 6198: 6193: 6189: 6185: 6181: 6177: 6173: 6170:(3): 035404. 6169: 6165: 6158: 6151: 6148: 6132: 6125: 6122: 6117: 6111: 6107: 6102: 6101: 6092: 6090: 6086: 6081: 6077: 6073: 6069: 6065: 6061: 6054: 6052: 6048: 6043: 6037: 6033: 6026: 6023: 6010: 6006: 6000: 5997: 5992: 5986: 5982: 5975: 5973: 5971: 5967: 5962: 5956: 5952: 5945: 5942: 5937: 5933: 5929: 5926:(in German). 5925: 5918: 5915: 5912: 5908: 5904: 5900: 5894: 5891: 5886: 5880: 5876: 5870: 5867: 5862: 5856: 5852: 5845: 5842: 5838: 5836:0-12-352651-5 5832: 5828: 5821: 5819: 5817: 5813: 5808: 5802: 5798: 5791: 5788: 5783: 5777: 5773: 5766: 5764: 5760: 5749: 5743: 5739: 5735: 5731: 5727: 5720: 5717: 5712: 5708: 5704: 5700: 5693: 5690: 5685: 5681: 5677: 5673: 5666: 5664: 5662: 5660: 5656: 5651: 5647: 5643: 5639: 5635: 5631: 5627: 5623: 5619: 5612: 5609: 5604: 5598: 5594: 5590: 5583: 5580: 5575: 5571: 5567: 5564:(in German). 5563: 5556: 5553: 5548: 5544: 5540: 5536: 5529: 5526: 5521: 5515: 5511: 5507: 5503: 5502: 5494: 5492: 5490: 5486: 5481: 5475: 5471: 5470: 5462: 5459: 5454: 5450: 5446: 5440: 5437: 5432: 5428: 5424: 5420: 5413: 5410: 5398: 5394: 5387: 5384: 5379: 5375: 5371: 5367: 5363: 5359: 5355: 5348: 5345: 5340: 5334: 5330: 5325: 5317: 5314: 5310: 5305: 5302: 5290:. 5 June 2019 5289: 5286:. Compounds. 5285: 5279: 5276: 5271: 5267: 5262: 5257: 5253: 5249: 5245: 5241: 5237: 5233: 5232: 5227: 5215: 5212: 5208: 5203: 5200: 5196: 5191: 5188: 5183: 5177: 5174: 5169: 5165: 5161: 5157: 5153: 5149: 5145: 5138: 5135: 5130: 5126: 5121: 5116: 5112: 5108: 5104: 5100: 5096: 5089: 5086: 5081: 5077: 5073: 5069: 5065: 5061: 5057: 5053: 5049: 5042: 5039: 5027: 5023: 5016: 5013: 5000: 4999: 4994: 4988: 4985: 4980: 4976: 4972: 4968: 4967:ACS Catalysis 4964: 4957: 4954: 4949: 4945: 4941: 4937: 4933: 4929: 4925: 4918: 4915: 4902: 4898: 4894: 4888: 4885: 4881: 4870: 4866: 4861: 4856: 4852: 4848: 4844: 4840: 4836: 4832: 4828: 4820: 4817: 4813: 4802:. 9 July 2018 4801: 4795: 4792: 4779: 4775: 4769: 4766: 4761: 4757: 4753: 4749: 4745: 4741: 4740: 4732: 4729: 4724: 4720: 4716: 4712: 4708: 4704: 4703: 4695: 4693: 4689: 4684: 4680: 4676: 4672: 4668: 4664: 4663: 4655: 4648: 4645: 4640: 4636: 4632: 4628: 4627: 4619: 4616: 4600: 4596: 4595: 4587: 4581: 4578: 4573: 4567: 4563: 4562: 4554: 4551: 4546: 4542: 4538: 4536: 4527: 4524: 4519: 4512: 4509: 4500: 4496: 4489: 4483: 4480: 4475: 4469: 4465: 4464: 4456: 4453: 4448: 4442: 4438: 4434: 4433: 4425: 4422: 4417: 4411: 4407: 4406: 4398: 4395: 4390: 4384: 4380: 4373: 4370: 4365: 4359: 4355: 4348: 4346: 4344: 4342: 4340: 4336: 4331: 4325: 4321: 4314: 4312: 4310: 4306: 4301: 4295: 4291: 4287: 4283: 4282: 4274: 4272: 4270: 4268: 4266: 4264: 4262: 4260: 4258: 4256: 4254: 4252: 4250: 4248: 4246: 4244: 4242: 4240: 4236: 4231: 4225: 4221: 4214: 4211: 4206: 4200: 4196: 4190: 4187: 4180: 4176: 4173: 4171: 4170:Crop rotation 4168: 4165: 4162: 4159: 4156: 4153: 4150: 4147: 4144: 4138: 4135: 4129: 4126: 4123: 4120: 4119: 4115: 4113: 4111: 4107: 4102: 4100: 4096: 4094: 4090: 4085: 4083: 4078: 4076: 4072: 4068: 4052: 4051:nitrous oxide 4039: 4034: 4032: 4028: 4024: 4020: 4015: 4013: 4005: 4000: 3992: 3983: 3978: 3974: 3966: 3964: 3962: 3961:hydrogenation 3958: 3953: 3949: 3945: 3938: 3934: 3927: 3925: 3921: 3919: 3912:, and then NH 3895: 3888: 3881: 3870: 3863: 3852: 3851: 3850: 3848: 3837: 3833: 3832: 3831: 3829: 3826:(HREELS) and 3825: 3821: 3817: 3796: 3786: 3777: 3774: 3770: 3766: 3762: 3758: 3756: 3752: 3751:isoelectronic 3743: 3727: 3726: 3725: 3722: 3718: 3715: 3711: 3707: 3703: 3694: 3691: 3688: 3685: 3682: 3679: 3676: 3673: 3670: 3669: 3668: 3666: 3658: 3653: 3651: 3649: 3643: 3639: 3635: 3627: 3623: 3619: 3617: 3613: 3608: 3606: 3602: 3601:gas scrubbing 3597: 3572: 3561: 3558: 3555: 3552: 3527: 3519: 3499: 3468: 3460: 3429: 3428: 3427: 3425: 3421: 3396: 3385: 3382: 3379: 3376: 3351: 3342: 3339: 3313: 3290: 3282: 3262: 3253: 3244: 3243: 3242: 3218: 3207: 3204: 3201: 3198: 3173: 3164: 3161: 3106: 3098: 3078: 3064: 3063: 3062: 3060: 3056: 3052: 3047: 3045: 3041: 3037: 3033: 3032:carbonization 3029: 3025: 2969: 2965: 2959: 2957: 2955: 2954:Linde process 2951: 2947: 2943: 2938: 2935: 2931: 2927: 2924:The catalyst 2922: 2920: 2916: 2912: 2880: 2865: 2861: 2857: 2844: 2831: 2816: 2801: 2797: 2790: 2785: 2782: 2778: 2770: 2769: 2768: 2732: 2720: 2717: 2714: 2709: 2699: 2695: 2674: 2671: 2668: 2663: 2659: 2644: 2635: 2619: 2608: 2587: 2578: 2575: 2567: 2554: 2553: 2552: 2544: 2540: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2500: 2493: 2490: 2489: 2476: 2471: 2469: 2467: 2463: 2458: 2456: 2452: 2448: 2444: 2440: 2436: 2432: 2428: 2427:synthesis gas 2424: 2417: 2415: 2413: 2409: 2404: 2402: 2401:boron nitride 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2369: 2362: 2360: 2357: 2355: 2351: 2346: 2342: 2338: 2334: 2326: 2319: 2316: 2313: 2310: 2307: 2303: 2299: 2296: 2293: 2290: 2284: 2280: 2276: 2273: 2267: 2261: 2258: 2254: 2250: 2247: 2244: 2241: 2238: 2235: 2234: 2231: 2229: 2225: 2220: 2217: 2205: 2200: 2198: 2193: 2189: 2183: 2181: 2176: 2171: 2169: 2165: 2161: 2160:synthesis gas 2156: 2153: 2149: 2148:raw materials 2144: 2142: 2138: 2134: 2130: 2126: 2114: 2106: 2104: 2102: 2098: 2097:calcium oxide 2094: 2090: 2086: 2082: 2077: 2075: 2074:heterogeneous 2062: 2054: 2047: 2045: 2042: 2038: 2030: 2028: 2026: 2022: 2018: 2014: 2013:metal halides 2008: 2004: 1988: 1984: 1963: 1955: 1954:mole fraction 1937: 1933: 1912: 1904: 1886: 1876: 1863: 1850: 1845: 1840: 1835: 1830: 1826: 1820: 1804: 1788: 1779: 1768: 1752: 1742: 1731: 1715: 1695: 1685: 1679: 1668: 1658: 1651: 1640: 1630: 1624: 1621: 1613: 1610: 1605: 1603: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1543: 1540: 1537: 1536: 1497: 1493: 1488: 1486: 1482: 1478: 1477:reaction rate 1473: 1471: 1467: 1458: 1455: 1453: 1449: 1437: 1432: 1430: 1426: 1401: 1392: 1381: 1373: 1365: 1356: 1348: 1347: 1346: 1343: 1341: 1337: 1333: 1329: 1328:reaction rate 1325: 1321: 1313: 1286: 1277: 1274: 1266: 1250: 1241: 1238: 1230: 1217: 1194: 1186: 1178: 1162: 1153: 1150: 1139: 1138: 1137: 1136: 1132: 1128: 1125: 1121: 1117: 1116: 1093: 1085: 1077: 1058: 1050: 1039: 1038: 1037: 1036: 1032: 1028: 1024: 1023: 1000: 991: 988: 971: 963: 955: 942: 941: 940: 939: 935: 931: 927: 926: 900: 892: 880: 869: 856: 855: 854: 853: 849: 844: 837: 833: 829: 828: 802: 794: 782: 774: 761: 760: 759: 758: 754: 750: 746: 745:hydrogenation 742: 738: 734: 733: 732: 729: 716: 711: 709: 705: 701: 697: 693: 689: 687: 683: 679: 675: 671: 663: 661: 657: 651: 645: 637: 633: 626: 622: 617: 615: 611: 607: 603: 599: 594: 590: 586: 582: 578: 570: 565: 558: 556: 554: 550: 546: 542: 538: 533: 531: 520: 513: 509: 501: 497: 493: 489: 484: 482: 477: 473: 472:Allied powers 469: 465: 461: 457: 453: 448: 445: 441: 436: 432: 427: 420: 417:deposits and 416: 407: 403: 398: 390: 388: 386: 382: 378: 374: 370: 366: 362: 357: 355: 351: 347: 343: 338: 310: 298: 295: 292: 287: 277: 273: 252: 249: 246: 241: 237: 222: 213: 197: 186: 165: 156: 153: 145: 131: 129: 121: 113: 105: 101: 97: 93: 92:Haber process 85: 81: 77: 69: 66:November 2023 59: 53: 51: 46: 41: 37: 32: 31: 19: 6641: 6629: 6597: 6593: 6567:. Retrieved 6541:. Retrieved 6537: 6527: 6516: 6483: 6479: 6466: 6457: 6453: 6443: 6421:(1): 14–20. 6418: 6414: 6408: 6391: 6387: 6381: 6354: 6350: 6340: 6331: 6327: 6278: 6272: 6266: 6258:the original 6253: 6243: 6234: 6225: 6213:. Retrieved 6209: 6200: 6167: 6163: 6150: 6140:17 September 6138:. Retrieved 6124: 6099: 6063: 6059: 6031: 6025: 6013:. Retrieved 6008: 5999: 5980: 5950: 5944: 5927: 5923: 5917: 5902: 5899:Noble Gases. 5898: 5893: 5874: 5869: 5850: 5844: 5826: 5796: 5790: 5771: 5751:, retrieved 5729: 5719: 5702: 5698: 5692: 5675: 5671: 5625: 5621: 5611: 5592: 5588: 5582: 5565: 5561: 5555: 5538: 5534: 5528: 5499: 5468: 5461: 5448: 5439: 5422: 5418: 5412: 5400:. Retrieved 5396: 5386: 5361: 5357: 5347: 5328: 5324:"Table 15.2" 5316: 5304: 5292:. Retrieved 5287: 5278: 5235: 5229: 5214: 5202: 5190: 5176: 5151: 5147: 5137: 5102: 5098: 5088: 5055: 5051: 5041: 5029:. Retrieved 5025: 5015: 5003:. Retrieved 4996: 4987: 4970: 4966: 4956: 4931: 4927: 4917: 4905:. Retrieved 4901:the original 4896: 4887: 4879: 4872:. Retrieved 4834: 4830: 4819: 4811: 4804:. Retrieved 4794: 4782:. Retrieved 4777: 4768: 4743: 4737: 4731: 4706: 4700: 4666: 4660: 4647: 4633:(1): 18–41. 4630: 4624: 4618: 4606:. Retrieved 4599:the original 4592: 4580: 4560: 4553: 4545:the original 4540: 4534: 4526: 4511: 4499:the original 4494: 4482: 4462: 4455: 4431: 4424: 4404: 4397: 4378: 4372: 4353: 4319: 4279: 4219: 4213: 4194: 4189: 4103: 4097: 4086: 4079: 4047: 4036: 4016: 4009: 3941: 3922: 3907: 3844: 3797: 3778: 3759: 3747: 3741: 3723: 3719: 3706:dissociation 3698: 3680:of reactants 3662: 3644: 3640: 3636: 3632: 3620: 3609: 3593: 3417: 3239: 3048: 3021: 2963: 2939: 2923: 2908: 2762: 2550: 2459: 2421: 2405: 2366: 2358: 2330: 2248:Calcium (%) 2224:market share 2221: 2201: 2184: 2180:cobalt oxide 2175:crystallites 2172: 2157: 2145: 2110: 2078: 2067: 2034: 2024: 2020: 2009: 2005: 1864: 1614: 1606: 1599: 1541: 1495: 1491: 1474: 1470:triple bonds 1459: 1456: 1433: 1422: 1344: 1317: 1120:ethanolamine 836:zinc sulfide 712: 696:fossil fuels 690: 667: 655: 649: 643: 621:Hideo Hosono 618: 598:electrolysis 593:gasification 574: 534: 500:Gerhard Ertl 485: 449: 428: 411: 358: 344:in terms of 339: 132: 95: 91: 89: 76: 63: 47: 45:lead section 6748:Fritz Haber 6569:15 December 6351:Nature Food 6011:(in German) 5397:ZME Science 4874:15 December 4806:15 December 4780:(in German) 3049:To produce 2934:triple bond 2462:noble gases 2437:compounds, 2433:compounds, 2251:Oxygen (%) 2083:containing 2041:methanation 1905:of species 1340:triple bond 1131:methanation 715:natural gas 678:fossil fuel 589:natural gas 535:During the 481:nitric acid 456:World War I 361:Fritz Haber 84:Fritz Haber 6692:Categories 6015:8 December 5309:Clark 2013 5207:Clark 2013 5195:Clark 2013 5031:9 November 5005:9 November 4784:8 December 4608:11 October 4181:References 4023:fertilizer 3893:(adsorbed) 3879:(adsorbed) 3861:(adsorbed) 3816:desorption 3785:desorption 3773:d orbitals 3689:of product 3687:desorption 3678:adsorption 3596:carbamates 2911:exothermic 2545:2.25 × 10 2537:5.38 × 10 2529:1.45 × 10 2521:4.51 × 10 2513:1.64 × 10 2505:4.34 × 10 2435:phosphorus 2345:iron group 2228:pyrophoric 2197:exothermic 1607:Increased 1594:2.25 × 10 1586:5.38 × 10 1578:1.45 × 10 1570:4.51 × 10 1562:1.64 × 10 1554:4.34 × 10 1481:exothermic 1025:Catalytic 928:Catalytic 832:zinc oxide 636:perovskite 610:photolysis 444:Carl Bosch 406:Carl Bosch 373:Frank-Caro 365:Carl Bosch 6723:Catalysis 6538:New Atlas 6373:2662-1355 6357:: 27–32. 5650:0378-3820 5541:: 17–27. 5425:: 13–36. 5168:221708661 5129:134713643 5080:208227325 4998:Ajinomoto 4893:"Ammonia" 4071:biosphere 4029:, and as 3814:release ( 3771:from the 3769:π binding 3765:σ binding 3714:deuterium 3654:Mechanism 3559:− 3550:Δ 3491:⟶ 3383:− 3374:Δ 3310:⟶ 3196:Δ 3136:⟶ 2858:⋅ 2718:− 2710:∘ 2692:Δ 2672:− 2664:∘ 2656:Δ 2627:⇀ 2620:− 2609:− 2602:↽ 2368:Ruthenium 2363:Ruthenium 2239:Iron (%) 2206:phase (Fe 2204:magnetite 2113:magnetite 2085:promoters 2048:Catalysts 1989:∘ 1880:^ 1877:ϕ 1831:∘ 1792:^ 1789:ϕ 1756:^ 1753:ϕ 1719:^ 1716:ϕ 1436:magnetite 1390:⟶ 1259:⟶ 1171:⟶ 1070:⟶ 983:⟶ 887:⟶ 789:⟶ 741:catalysts 632:electride 571:, Germany 468:saltpetre 460:munitions 435:catalysts 342:favorable 296:− 288:∘ 270:Δ 250:− 242:∘ 234:Δ 205:⇀ 198:− 187:− 180:↽ 50:summarize 6718:Peak oil 6543:23 March 6303:82195088 6295:12215632 6210:Statista 6192:49236953 5453:Archived 5402:21 March 5270:38378822 5261:10879522 5072:31755269 4948:24483141 4869:29719860 4116:See also 4041:—  3710:hydrogen 3683:reaction 3059:enthalpy 3051:hydrogen 3015: 3009: 3003: 2997: 2991: 2985: 2979: 2973: 2919:pressure 2443:chlorine 2393:zeolites 2377:graphite 2337:nitrogen 2017:zeolites 1609:pressure 1425:catalyst 1336:Diatomic 670:hydrogen 476:blockade 346:enthalpy 120:hydrogen 104:nitrogen 6602:Bibcode 6556:Sources 6508:4301828 6488:Bibcode 6423:Bibcode 6334:: 9–13. 6274:Science 6235:eia.gov 6172:Bibcode 6068:Bibcode 5753:30 July 5630:Bibcode 5366:Bibcode 5364:: 108. 5240:Bibcode 5107:Bibcode 4907:6 April 4860:5922794 4839:Bibcode 4748:Bibcode 4711:Bibcode 4671:Bibcode 4110:legumes 4069:in the 4004:Bristol 3875:(g) → H 3857:(g) → N 3822:(XPS), 2926:ferrite 2466:methane 2439:arsenic 2412:acidity 2408:methane 2397:spinels 2354:uranium 2164:wüstite 2137:calcium 2133:wüstite 2125:wüstite 2081:carrier 1952:is the 1901:is the 735:Remove 700:biomass 686:naphtha 674:methane 559:Process 492:uranium 391:History 350:entropy 112:ammonia 6668:Nature 6594:Nature 6506:  6480:Nature 6371:  6301:  6293:  6190:  6112:  6038:  5987:  5957:  5881:  5857:  5833:  5803:  5778:  5744:  5648:  5599:  5516:  5476:  5335:  5294:7 July 5268:  5258:  5166:  5127:  5078:  5070:  4946:  4867:  4857:  4568:  4470:  4443:  4412:  4385:  4360:  4326:  4296:  4226:  4201:  4175:Legume 4080:Since 4061:and CH 4038:today. 3565:  3389:  3211:  2685:  2455:oxygen 2453:, and 2431:Sulfur 2399:, and 2381:carbon 2350:osmium 2129:oxygen 2039:, and 1865:where 1498:) for 1452:oxygen 737:sulfur 602:Vemork 521:, and 488:osmium 408:, 1927 263:  86:, 1918 6626:(PDF) 6590:(PDF) 6504:S2CID 6476:(PDF) 6460:(33). 6324:(PDF) 6299:S2CID 6215:7 May 6188:S2CID 6160:(PDF) 6134:(PDF) 5164:S2CID 5125:S2CID 5076:S2CID 4657:(PDF) 4602:(PDF) 4589:(PDF) 4502:(PDF) 4491:(PDF) 4146:Guano 3732:→ S–N 3603:with 2942:argon 2721:46.14 2675:92.28 2320:41.0 2314:17.0 2311:27.0 2308:11.0 2300:40.0 2294:10.7 2291:36.1 2277:53.2 2265:0.35 2259:40.5 1466:atoms 1442:and H 640:BaCeO 452:Oppau 419:guano 415:niter 299:46.14 253:92.28 110:) to 6698:BASF 6571:2018 6545:2023 6369:ISSN 6291:PMID 6217:2020 6142:2015 6110:ISBN 6036:ISBN 6017:2021 5985:ISBN 5955:ISBN 5901:In: 5879:ISBN 5855:ISBN 5831:ISBN 5801:ISBN 5776:ISBN 5755:2022 5742:ISBN 5646:ISSN 5597:ISBN 5514:ISBN 5474:ISBN 5404:2023 5333:ISBN 5296:2019 5266:PMID 5099:Chem 5068:PMID 5033:2021 5007:2021 4944:PMID 4909:2018 4876:2018 4865:PMID 4808:2018 4786:2021 4610:2010 4566:ISBN 4468:ISBN 4441:ISBN 4410:ISBN 4383:ISBN 4358:ISBN 4324:ISBN 4294:ISBN 4224:ISBN 4199:ISBN 4031:urea 4006:, UK 3808:3,ad 3804:2,ad 3712:and 2542:600 2534:550 2526:500 2518:450 2510:400 2502:300 2352:and 2317:4.0 2297:4.7 2288:8.6 2274:1.7 2271:2.0 2139:and 1591:600 1583:550 1575:500 1567:450 1559:400 1551:300 1522:⇌ 2 1510:+ 3 706:and 684:and 440:BASF 371:and 363:and 128:iron 90:The 6610:doi 6598:400 6496:doi 6484:400 6431:doi 6396:doi 6392:133 6359:doi 6283:doi 6279:297 6180:doi 6106:123 6076:doi 6064:114 5932:doi 5907:doi 5734:doi 5707:doi 5703:151 5680:doi 5676:251 5638:doi 5570:doi 5543:doi 5539:326 5506:doi 5427:doi 5374:doi 5362:598 5256:PMC 5248:doi 5156:doi 5115:doi 5060:doi 5056:141 4975:doi 4936:doi 4932:136 4855:PMC 4847:doi 4756:doi 4719:doi 4707:114 4679:doi 4667:123 4635:doi 4437:118 4286:doi 3942:An 3904:(g) 3793:ads 3577:mol 3401:mol 3223:mol 3208:206 2700:298 2464:or 2375:on 2335:of 2115:(Fe 2023:or 2015:or 890:ZnS 884:ZnO 786:RSH 672:is 608:or 553:psi 549:bar 545:MPa 516:SiO 512:CaO 356:. 278:298 114:(NH 6694:: 6640:. 6628:. 6608:. 6596:. 6592:. 6536:. 6502:. 6494:. 6482:. 6478:. 6458:86 6456:. 6452:. 6429:. 6417:. 6390:. 6367:. 6353:. 6349:. 6330:. 6326:. 6311:^ 6297:. 6289:. 6277:. 6252:. 6233:. 6208:. 6186:. 6178:. 6168:77 6166:. 6162:. 6108:. 6088:^ 6074:. 6062:. 6050:^ 6007:. 5969:^ 5928:13 5815:^ 5762:^ 5740:, 5728:, 5701:. 5674:. 5658:^ 5644:. 5636:. 5626:90 5624:. 5620:. 5566:31 5537:. 5512:. 5488:^ 5451:. 5447:. 5423:59 5421:. 5395:. 5372:. 5360:. 5356:. 5327:. 5264:. 5254:. 5246:. 5236:15 5234:. 5228:. 5162:. 5150:. 5146:. 5123:. 5113:. 5101:. 5097:. 5074:. 5066:. 5054:. 5050:. 5024:. 4995:. 4969:. 4965:. 4942:. 4930:. 4926:. 4895:. 4878:. 4863:. 4853:. 4845:. 4833:. 4829:. 4810:. 4776:. 4754:. 4742:. 4717:. 4705:. 4691:^ 4677:. 4665:. 4659:. 4631:49 4629:. 4591:. 4539:. 4537:)" 4493:, 4439:. 4338:^ 4308:^ 4292:. 4238:^ 4077:. 4053:(N 3896:NH 3830:. 3800:ad 3757:. 3667:: 3569:kJ 3562:41 3496:CO 3440:CO 3426:. 3393:kJ 3386:71 3319:CO 3259:CH 3215:kJ 3141:CO 3075:CH 2956:. 2813:NH 2765:eq 2680:kJ 2641:NH 2496:eq 2484:eq 2449:, 2403:. 2395:, 2391:, 2387:, 2383:, 2103:. 2095:, 2091:, 2027:. 1925:, 1728:NH 1637:NH 1524:NH 1398:NH 1334:. 1263:CH 1227:CO 1175:CH 1148:CO 1074:CO 1048:CO 986:CO 952:CH 792:RH 720:CH 702:, 688:. 642:3− 625:Ru 532:. 523:Al 514:, 510:, 422:(N 387:. 258:kJ 219:NH 122:(H 106:(N 6674:) 6644:. 6632:. 6616:. 6612:: 6604:: 6573:. 6547:. 6510:. 6498:: 6490:: 6437:. 6433:: 6425:: 6419:8 6402:. 6398:: 6375:. 6361:: 6355:1 6332:2 6305:. 6285:: 6219:. 6194:. 6182:: 6174:: 6144:. 6118:. 6082:. 6078:: 6070:: 6044:. 6019:. 5993:. 5963:. 5938:. 5934:: 5909:: 5887:. 5863:. 5809:. 5784:. 5736:: 5713:. 5709:: 5686:. 5682:: 5652:. 5640:: 5632:: 5605:. 5576:. 5572:: 5549:. 5545:: 5522:. 5508:: 5482:. 5433:. 5429:: 5406:. 5376:: 5368:: 5341:. 5298:. 5272:. 5250:: 5242:: 5224:2 5184:. 5158:: 5152:7 5131:. 5117:: 5109:: 5103:5 5082:. 5062:: 5035:. 5009:. 4981:. 4977:: 4971:7 4950:. 4938:: 4911:. 4849:: 4841:: 4835:4 4788:. 4762:. 4758:: 4750:: 4744:1 4725:. 4721:: 4713:: 4685:. 4681:: 4673:: 4641:. 4637:: 4612:. 4574:. 4521:. 4506:. 4476:. 4449:. 4418:. 4391:. 4366:. 4332:. 4302:. 4288:: 4232:. 4207:. 4063:4 4059:2 4055:2 3914:3 3910:2 3902:3 3898:3 3891:3 3884:2 3882:H 3877:2 3873:2 3871:H 3866:2 3864:N 3859:2 3855:2 3853:N 3812:3 3789:2 3781:2 3744:) 3738:2 3734:2 3730:2 3728:N 3573:/ 3556:= 3553:H 3538:) 3535:g 3532:( 3528:2 3524:H 3520:+ 3510:) 3507:g 3504:( 3500:2 3487:) 3484:g 3481:( 3477:O 3469:2 3465:H 3461:+ 3451:) 3448:g 3445:( 3397:/ 3380:= 3377:H 3362:) 3359:g 3356:( 3352:2 3348:H 3343:4 3340:+ 3330:) 3327:g 3324:( 3314:2 3301:) 3298:g 3295:( 3291:2 3287:O 3283:+ 3273:) 3270:g 3267:( 3263:4 3254:2 3219:/ 3205:+ 3202:= 3199:H 3184:) 3181:g 3178:( 3174:2 3170:H 3165:3 3162:+ 3152:) 3149:g 3146:( 3127:) 3124:g 3121:( 3116:O 3107:2 3103:H 3099:+ 3089:) 3086:g 3083:( 3079:4 2889:) 2881:2 2877:H 2873:( 2866:3 2862:p 2853:) 2845:2 2841:N 2837:( 2832:p 2825:) 2817:3 2809:( 2802:2 2798:p 2791:= 2786:q 2783:e 2779:K 2748:) 2743:l 2740:o 2737:m 2733:/ 2729:J 2726:k 2715:= 2704:K 2696:H 2688:( 2669:= 2660:H 2645:3 2636:2 2588:2 2584:H 2579:3 2576:+ 2568:2 2564:N 2494:K 2286:0 2269:0 2263:0 2212:4 2210:O 2208:3 2121:4 2119:O 2117:3 2070:2 1985:P 1964:P 1938:i 1934:y 1913:i 1887:i 1851:, 1846:2 1841:) 1836:P 1827:P 1821:( 1805:2 1801:N 1780:3 1769:2 1765:H 1743:2 1732:3 1696:2 1692:N 1686:y 1680:3 1669:2 1665:H 1659:y 1652:2 1641:3 1631:y 1625:= 1622:K 1545:p 1542:K 1529:3 1517:2 1512:H 1505:2 1500:N 1496:T 1494:( 1492:K 1462:2 1444:2 1440:2 1402:3 1393:2 1382:2 1378:N 1374:+ 1366:2 1362:H 1357:3 1295:O 1287:2 1283:H 1278:2 1275:+ 1267:4 1251:2 1247:H 1242:4 1239:+ 1231:2 1203:O 1195:2 1191:H 1187:+ 1179:4 1163:2 1159:H 1154:3 1151:+ 1094:2 1090:H 1086:+ 1078:2 1067:O 1059:2 1055:H 1051:+ 1001:2 997:H 992:3 989:+ 980:O 972:2 968:H 964:+ 956:4 936:: 909:O 901:2 897:H 893:+ 881:+ 878:S 870:2 866:H 838:: 811:S 803:2 799:H 795:+ 783:+ 775:2 771:H 751:( 725:4 717:( 656:z 653:H 650:y 647:N 644:x 629:e 529:3 527:O 525:2 518:2 508:O 506:2 504:K 424:2 326:) 321:l 318:o 315:m 311:/ 307:J 304:k 293:= 282:K 274:H 266:( 247:= 238:H 223:3 214:2 166:2 162:H 157:3 154:+ 146:2 142:N 124:2 116:3 108:2 68:) 64:( 54:. 20:)

Index

Haber–Bosch process

lead section
summarize
provide an accessible overview

Fritz Haber
production of ammonia
nitrogen
ammonia
hydrogen
iron
favorable
enthalpy
entropy
drive the reaction forward
Fritz Haber
Carl Bosch
Birkeland-Eyde
Frank-Caro
steam reforming
Nobel Prize in Chemistry
high-pressure chemistry
History of the Haber process

Carl Bosch
niter
guano
Robert Le Rossignol
catalysts

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.