Knowledge

Hardware random number generator

Source 📝

31: 228:
science and statistical applications: impossibility to re-run a series of numbers unless they are stored, reliance on an analog physical entity can obscure the failure of the source. The TRNGs therefore are primarily used in the applications where their unpredictability and the impossibility to re-run the sequence of numbers are crucial to the success of the implementation: in cryptography and gambling machines.
713: 331:). The RAND table was a significant breakthrough in delivering random numbers because such a large and carefully prepared table had never before been available. It has been a useful source for simulations, modeling, and for deriving the arbitrary constants in cryptographic algorithms to demonstrate that the constants had not been selected maliciously (" 149:(due to practical considerations the latter, as well as the atmospheric noise, is not viable). While "classical" (non-quantum) phenomena are not truly random, an unpredictable physical system is usually acceptable as a source of randomness, so the qualifiers "true" and "physical" are used interchangeably. 463:
elements can be integrated on-chip. Stipčević & Koç characterize this technique as "most objectionable", mostly due to the fact that chaotic behavior is usually controlled by a differential equation and no new randomness is introduced, thus there is a possibility of the chaos-based TRNG producing
320:
tube, when placed in a magnetic field). Twenty of the 32 possible counter values were mapped onto the 10 decimal digits and the other 12 counter values were discarded. The results of a long run from the RAND machine, filtered and tested, were converted into a table, which originally existed only as a
857:
of a sequence of symbols. None are so reliable that their estimates can be fully relied upon; there are always assumptions which may be very difficult to confirm. These are useful for determining if there is enough entropy in a seed pool, for example, but they cannot, in general, distinguish between
480:
forming the RO can be thought of as amplifiers with a very large gain, an FRO output exhibits very fast oscillations in phase in frequency domains. The FRO-based TRNGs are very popular due to their use of the standard digital logic despite issues with randomness proofs and chip-to-chip variability.
809:
It is very easy to misconstruct hardware or software devices which attempt to generate random numbers. Also, most 'break' silently, often producing decreasingly random numbers as they degrade. Failure modes in such devices are plentiful and are complicated, slow, and hard to detect. Methods that
662:
The failure of a TRNG can be quite complex and subtle, necessitating validation of not just the results (the output bit stream), but of the unpredictability of the entropy source. Hardware random number generators should be constantly monitored for proper operation to protect against the entropy
303:
Kendall and Babington-Smith (1938) used a fast-rotating 10-sector disk that was illuminated by periodic bursts of light. The sampling was done by a human who wrote the number under the light beam onto a pad. The device was utilized to produce a 100,000-digit random number table (at the time such
227:
Hardware random number generators can be used in any application that needs randomness. However, in many scientific applications additional cost and complexity of a TRNG (when compared with pseudo random number generators) provide no meaningful benefits. TRNGs have additional drawbacks for data
454:
The idea of chaos-based noise stems from the use of a complex system that is hard to characterize by observing its behavior over time. For example, lasers can be put into (undesirable in other applications) chaos mode with chaotically fluctuating power, with power detected using a
1781:
Turan, Meltem Sönmez; Barker, Elaine; Kelsey, John; McKay, Kerry A; Baish, Mary L; Boyle, Mike (2018). NIST SP800-90B: Recommendation for the entropy sources used for random bit generation (Report). Gaithersburg, MD: National Institute of Standards and Technology.
346:
A lot of different TRNG designs were proposed over time with a large variety of noise sources and digitization techniques ("harvesting"). However, practical considerations (size, power, cost, performance, robustness) dictate the following desirable traits:
653:
A plurality of quantum random number generators designs are inherently untestable and thus can be manipulated by adversaries. Mannalath et al. call these designs "trusted" in a sense that they can only operate in a fully controlled, trusted environment.
311:
began generating random digits with an "electronic roulette wheel", consisting of a random frequency pulse source of about 100,000 pulses per second gated once per second with a constant frequency pulse and fed into a five-bit binary counter.
813:
Because many entropy sources are often quite fragile, and fail silently, statistical tests on their output should be performed continuously. Many, but not all, such devices incorporate some such tests into the software that reads the device.
515:. The entropy harvesting was done using an event counter that was periodically sampled or a time counter that was sampled at the time of the event. Similar designs were utilized in the 1950s to generate random noise in 193:
Hardware random number generators generally produce only a limited number of random bits per second. In order to increase the available output data rate, they are often used to generate the "
688:
checks that the sequences of identical digits are not too long, for a (typical) case of a TRNG that digitizes one bit at a time, this means not having long strings of either 0s or 1s;
285:
in particular have been known for more than 5000 years (found on locations in modern Iraq and Iran), and flipping a coin (thus producing a random bit) dates at least to the times of
300:
using a common gambling dice. In addition to the top digit, Galton also looked at the face of a dice closest to him, thus creating 6*4 = 24 outcomes (about 4.6 bits of randomness).
266: 202: 1859: 327: 95: 189:. TRNGs are mostly used in cryptographical algorithms that get completely broken if the random numbers have low entropy, so the testing functionality is usually included. 730: 2313: 406:. If the voltage is above threshold, the comparator output is 1, otherwise 0. The random bit value is latched using a flip-flop. Sources of noise vary and include: 316:
built the equipment, implementing Cecil Hasting's suggestion (RAND P-113) for a noise source (most likely the well known behavior of the 6D4 miniature gas
439:
noise levels are typically low, thus the design requires power-hungry amplifiers. The sensitivity of amplifier inputs enables manipulation by an attacker;
338:
Since the early 1950s, research into TRNGs has been highly active, with thousands of research works published and about 2000 patents granted by 2017.
248:
needed to encrypt and sign data. In addition to randomness, there are at least two additional requirements imposed by the cryptographic applications:
206: 1332:
Kendall, M. G., and B. Babington-Smith. 1938. “Randomness and other random sampling numbers”. Journal of the Royal Statistical Society 101:147–166.
664: 777: 641: 2253: 2066: 1983: 1943: 1911: 1884: 1808: 1754: 1421: 1142: 749: 1391: 197:" for a faster PRNG. DRBG also helps with the noise source "anonymization" (whitening out the noise source identifying characteristics) and 1732:
Markettos, A. Theodore; Moore, Simon W. (2009). "The Frequency Injection Attack on Ring-Oscillator-Based True Random Number Generators".
835:
The physical processes in HRNG introduce new attack surfaces. For example, a free-running oscillator-based TRNG can be attacked using a
756: 677:
The minimal set of real-time tests mandated by the certification bodies is not large; for example, NIST in SP 800-90B requires just two
255:
guarantees that the knowledge of the past output and internal state of the device should not enable the attacker to predict future data;
2190: 1308: 2375: 1126: 796: 763: 533:, a quantum mechanical noise source found in electronic circuits, while technically a quantum effect, is hard to isolate from the 261:
protects the "opposite direction": knowledge of the output and internal state in the future should not divulge the preceding data.
893: 858:
a true random source and a pseudorandom generator. This problem is avoided by the conservative use of hardware entropy sources.
577:
is a generalization (simplifying the equipment) of the above methods that allows more than one photon in the system at a time;
829: 828:
Just as with other components of a cryptography system, a cryptographic random number generator should be designed to resist
823: 745: 734: 615: 537:, so, with few exceptions, noise sources utilizing it are only partially quantum and are usually classified as "classical"; 2380: 2239: 635: 524: 87: 332: 698:). For bit-oriented entropy sources that means that the count of 1s and 0s in the bit stream is approximately the same. 609: 650:
To reduce costs and increase robustness of quantum random number generators, online services have been implemented.
2132: 2078:"A Comprehensive Review of Quantum Random Number Generators: Concepts, Classification and the Origin of Randomness" 1349: 222: 156:"). A physical process usually does not have this property, and a practical TRNG typically includes a few blocks: 2357:, ProtegoST, "Hardware Random Number Generator "Based on quantum physics random number source from a zener diode". 2157: 1825: 410: 2004: 1995: 106: 1853: 297: 71: 770: 507:
historically was the earliest quantum method used since the 1960s owing its popularity to the availability of
1070: 908: 723: 91: 1993:
Herrero-Collantes, Miguel; Garcia-Escartin, Juan Carlos (2017-02-22). "Quantum random number generators".
1922: 558: 836: 2370: 872: 477: 376:
Stipčević & Koç in 2014 classified the physical phenomena used to implement TRNG into four groups:
1733: 258: 2296: 2221: 2018: 1648: 1282: 1089: 1018: 554: 198: 180: 134: 102: 854: 581: 422: 245: 79: 2262: 2089: 2008: 1300: 1079: 1009: 848: 587: 445:
a proof of randomness is near-impossible as multiple interacting physical processes are involved.
1385: 1118: 571:
use a weak photon source, with the entropy harvested similarly to the case of radioactive decay;
17: 2307: 2062: 2034: 1979: 1949: 1939: 1907: 1880: 1804: 1760: 1750: 1666: 1417: 1138: 1046: 695: 619: 500:
Herrero-Collantes & Garcia-Escartin list the following stochastic processes as "quantum":
292:
The first documented use of a physical random number generator for scientific purposes was by
241: 130: 1798: 890:(a hardware random number generator based on movement of the floating material in lava lamps) 2286: 2229: 2186: 2153: 2128: 2099: 2054: 2026: 1971: 1931: 1899: 1872: 1834: 1783: 1742: 1656: 1290: 1130: 1097: 1036: 1026: 626: 520: 512: 433:
noise levels are hard to control, they vary with environmental changes and device-to-device;
313: 308: 277:
Physical devices were used to generate random numbers for thousands of years, primarily for
75: 2180: 1412:
Schneier, Bruce (1995-11-01). "Other Stream Ciphers and Real Random-Sequence Generators".
1267: 898: 516: 473: 399: 252: 237: 210: 126: 436:
calibration processes needed to ensure a guaranteed amount of entropy are time-consuming;
2225: 2022: 1652: 1286: 1093: 1022: 30: 2205: 2050: 1041: 1004: 540: 508: 442:
circuitry located nearby generates a lot of non-random noise thus lowering the entropy;
355: 293: 152:
A hardware random number generator is expected to output near-perfect random numbers ("
2337: 644:
leading to binary phase state selection in a degenerate optical parametric oscillator;
2364: 1867:
Schindler, Werner (2009). "Random Number Generators for Cryptographic Applications".
694:
verifies that any random digit does not occur too frequently in the data stream (low
534: 504: 322: 165: 146: 138: 122: 110: 164:
that implements the physical process producing the entropy. Usually this process is
1304: 882: 591: 550: 286: 153: 832:. Defending against these attacks is difficult without a hardware entropy source. 489:
Quantum random number generation technology is well established with 8 commercial
2030: 1975: 1746: 1117:
Kollmitzer, Christian; Petscharnig, Stefan; Suda, Martin; Mehic, Miralem (2020).
472:
The TRNGs based on a free-running oscillator (FRO) typically utilize one or more
2322: 2299: 2280: 1903: 1876: 1498: 1496: 1168: 1166: 1134: 712: 605: 601: 416: 325:, but was later published in 1955 as a book, 50 rows of 50 digits on each page ( 194: 172:
is used to convert the output of the analog source into a binary representation;
2209: 2104: 2077: 1661: 1636: 1031: 631:
extract entropy from the interaction of photons with the solid-state materials;
365:
compact and low-power design. This discourages use of analog components (e.g.,
2058: 530: 456: 403: 114: 2038: 1953: 1935: 1764: 1670: 1838: 1824:
Saarinen, Markku-Juhani O.; Newell, G. Richard; Marshall, Ben (2020-11-09).
1788: 1003:
Jacak, Marcin M.; Jóźwiak, Piotr; Niemczuk, Jakub; Jacak, Janusz E. (2021).
460: 366: 317: 39: 1961:
Stipčević, Mario; Koç, Çetin Kaya (2014). "True Random Number Generators".
1050: 2255:
Randomness and Genuine Random Number Generator With Self-testing Functions
1102: 1065: 90:(PRNG, a.k.a. "deterministic random bit generator", DRBG) that utilizes a 887: 867: 667: 278: 1962: 476:(ROs), outputs of which are sampled using yet another oscillator. Since 2122: 1343: 737: in this section. Unsourced material may be challenged and removed. 265:
A typical way to fulfill these requirements is to use a TRNG to seed a
236:
The major use for hardware random number generators is in the field of
142: 2147: 1894:
Sunar, Berk (2009). "True Random Number Generators for Cryptography".
929: 927: 925: 923: 674:
Special Publication 800-90B define tests which can be used for this.
2291: 2234: 1930:. 2017 Winter Simulation Conference (WSC). Las Vegas, NV, USA: IEEE. 1295: 903: 118: 98:
that do not include hardware dedicated to generation of entropy.
1741:. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 317–331. 1635:
Huang, Leilei; Zhou, Hongyi; Feng, Kai; Xie, Chongjin (2021-07-07).
398:
Noise-based RNGs generally follow the same outline: the source of a
2094: 2013: 1084: 1064:
Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Qi, Bing; Zhang, Zhen (2016).
459:
and sampled by a comparator. The design can be quite small, as all
304:
tables were used for statistical experiments, like PRNG nowadays).
2346: 1483: 1481: 354:
exclusive use of digital design techniques. This allows an easier
29: 663:
source degradation due to natural causes and deliberate attacks.
557:
randomly takes one of the two paths and sensed by one of the two
1622: 1610: 1598: 1586: 1574: 1562: 1550: 1538: 1526: 1514: 1502: 1232: 1220: 1172: 990: 671: 372:
mathematical justification of the entropy collection mechanisms.
359: 282: 1827:
Building a Modern TRNG: An Entropy Source Interface for RISC-V
706: 2354: 2076:
Mannalath, Vaisakh; Mishra, Sandeep; Pathak, Anirban (2023).
1970:. Cham: Springer International Publishing. pp. 275–315. 959: 957: 1416:(Second ed.). John Wiley & Sons, Inc. p. 423. 429:
The drawbacks of using noise sources for an RNG design are:
82:(in other words, the device always has access to a physical 1249: 1247: 1245: 1243: 1241: 205:, CSPRNG), the combination can satisfy the requirements of 618:
generators use spontaneous light emission present in the
944: 942: 351:
use of a commonly available inexpensive silicon process;
2279:
D. Eastlake, 3rd; J. Schiller; S. Crocker (June 2005).
1964:
Open Problems in Mathematics and Computational Science
1719: 1707: 1196: 1184: 933: 267:
cryptographically secure pseudorandom number generator
203:
cryptographically secure pseudorandom number generator
2047:
Quantum Random Number Generation: Theory and Practice
1695: 1683: 1370:
Cobine, Curry (1947), "Electrical Noise Generators",
1157: 1123:
Quantum Random Number Generation: Theory and Practice
974: 972: 853:
There are mathematical techniques for estimating the
810:
combine multiple sources of entropy are more robust.
34:
A USB-pluggable hardware true random number generator
2182:
A Million Random Digits with 100,000 Normal Deviates
877: 328:
A Million Random Digits with 100,000 Normal Deviates
1647:(1). Springer Science and Business Media LLC: 107. 608:that is converted to amplitude using an unbalanced 96:
non-physical nondeterministic random bit generators
2149:Some Tests of the Randomness of a Million Digits 1858:: CS1 maint: bot: original URL status unknown ( 183:) that improves the quality of the random bits; 464:a limited subset of possible output strings. 8: 1623:Herrero-Collantes & Garcia-Escartin 2017 1611:Herrero-Collantes & Garcia-Escartin 2017 1599:Herrero-Collantes & Garcia-Escartin 2017 1587:Herrero-Collantes & Garcia-Escartin 2017 1575:Herrero-Collantes & Garcia-Escartin 2017 1563:Herrero-Collantes & Garcia-Escartin 2017 1551:Herrero-Collantes & Garcia-Escartin 2017 1539:Herrero-Collantes & Garcia-Escartin 2017 1527:Herrero-Collantes & Garcia-Escartin 2017 1515:Herrero-Collantes & Garcia-Escartin 2017 1503:Herrero-Collantes & Garcia-Escartin 2017 1487: 1472: 1460: 1448: 1253: 1233:Herrero-Collantes & Garcia-Escartin 2017 1221:Herrero-Collantes & Garcia-Escartin 2017 1173:Herrero-Collantes & Garcia-Escartin 2017 991:Herrero-Collantes & Garcia-Escartin 2017 963: 2312:: CS1 maint: numeric names: authors list ( 1924:History of uniform random number generation 1898:. Boston, MA: Springer US. pp. 55–73. 101:Many natural phenomena generate low-level, 1871:. Boston, MA: Springer US. pp. 5–23. 1841:. Archived from the original on 2021-03-16 612:. The noise is sampled by a photodetector; 2290: 2233: 2103: 2093: 2012: 1787: 1660: 1294: 1101: 1083: 1040: 1030: 948: 797:Learn how and when to remove this message 342:Physical phenomena with random properties 201:. With a proper DRBG algorithm selected ( 207:Federal Information Processing Standards 919: 2305: 1851: 1637:"Quantum random number cloud platform" 1005:"Quantum generators of random numbers" 642:spontaneous parametric down-conversion 60:non-deterministic random bit generator 1436: 1208: 978: 296:(1890). He devised a way to sample a 7: 2282:Randomness Requirements for Security 2261:, Japan: LE Tech RNG, archived from 1197:Saarinen, Newell & Marshall 2020 735:adding citations to reliable sources 1696:Mannalath, Mishra & Pathak 2023 1684:Mannalath, Mishra & Pathak 2023 1158:Mannalath, Mishra & Pathak 2023 358:integration and enables the use of 2210:"Dice for statistical experiments" 2049:. Quantum Science and Technology. 1800:Simulation for Data Science with R 1390:, Rand Corporation, January 2001, 1268:"Dice for statistical experiments" 1119:"Quantum Random Number Generation" 1066:"Quantum random number generation" 746:"Hardware random number generator" 468:Free-running oscillators-based RNG 25: 2339:The Intel Random Number Generator 1735:Lecture Notes in Computer Science 1342:Brown, George W. (January 1949), 1314:from the original on 4 March 2016 1127:Springer International Publishing 2124:History of Rand's Million Digits 894:List of random number generators 711: 497:) products offered before 2017. 68:physical random number generator 44:hardware random number generator 18:Hardware random-number generator 2242:from the original on 2004-04-04 2193:from the original on 2002-12-16 2160:from the original on 2007-06-05 2146:Brown, Bernice (October 1948), 2135:from the original on 2007-06-05 1394:from the original on 2018-04-15 1352:from the original on 2007-06-05 722:needs additional citations for 491:quantum random number generator 240:, for example to create random 2082:Quantum Information Processing 824:Random number generator attack 616:amplified spontaneous emission 1: 2121:Brown, George W (June 1949), 636:optical parametric oscillator 561:thus generating a random bit; 523:concerns, low bit rates, and 88:pseudorandom number generator 2031:10.1103/revmodphys.89.015004 1976:10.1007/978-3-319-10683-0_12 1747:10.1007/978-3-642-04138-9_23 1348:, Papers, Rand Corporation, 598:laser phase noise generators 590:to probe the changes in the 333:nothing up my sleeve numbers 133:. Researchers also used the 52:true random number generator 2173:Electron Tube Data handbook 1904:10.1007/978-0-387-71817-0_4 1877:10.1007/978-0-387-71817-0_2 1135:10.1007/978-3-319-72596-3_2 610:Mach-Zehnder interferometer 575:attenuated pulse generators 519:. The major drawbacks were 2397: 2105:10.1007/s11128-023-04175-y 1833:. New York, NY, USA: ACM. 1662:10.1038/s41534-021-00442-x 1032:10.1038/s41598-021-95388-7 846: 821: 394:Electrical noise-based RNG 223:Applications of randomness 220: 2059:10.1007/978-3-319-72596-3 2005:American Physical Society 1996:Reviews of Modern Physics 1921:L'Ecuyer, Pierre (2017). 1896:Cryptographic Engineering 1869:Cryptographic Engineering 1372:Proceedings of the I.R.E. 606:single spatial mode laser 569:photon counting generator 565:time of arrival generator 383:free-running oscillators; 2376:Random number generation 1936:10.1109/wsc.2017.8247790 1488:Stipčević & Koç 2014 1473:Stipčević & Koç 2014 1461:Stipčević & Koç 2014 1449:Stipčević & Koç 2014 1266:Galton, Francis (1890). 964:Stipčević & Koç 2014 692:adaptive proportion test 553:so that a photon from a 547:branching path generator 525:non-uniform distribution 298:probability distribution 145:phenomena, and even the 125:of electronic circuits, 72:generates random numbers 1839:10.1145/3411504.3421212 1789:10.6028/nist.sp.800-90b 1641:npj Quantum Information 1374:(September 1947): 875–9 1071:npj Quantum Information 909:Trusted Platform Module 679:continuous health tests 559:single-photon detectors 92:deterministic algorithm 307:On 29 April 1947, the 35: 2319:Best Common Practice. 1103:10.1038/npjqi.2016.21 873:Bell test experiments 686:repetition count test 622:as a source of noise; 411:Johnson–Nyquist noise 109:" signals, including 78:capable of producing 33: 2381:Computer peripherals 1803:. Packt Publishing. 1414:Applied Cryptography 731:improve this article 555:single-photon source 181:randomness extractor 135:photoelectric effect 103:statistically random 27:Cryptographic device 2321:Obsoletes RFC  2226:1890Natur..42...13G 2023:2017RvMP...89a5004H 1653:2021npjQI...7..107H 1490:, pp. 288–289. 1451:, pp. 279–280. 1287:1890Natur..42...13G 1094:2016npjQI...216021M 1023:2021NatSR..1116108J 837:frequency injection 604:on the output of a 582:vacuum fluctuations 423:avalanche breakdown 2114:General references 1797:Templ, M. (2016). 1129:. pp. 11–34. 1010:Scientific Reports 849:Entropy estimation 843:Estimating entropy 620:optical amplifiers 588:homodyne detection 413:("thermal noise"); 242:cryptographic keys 199:entropy extraction 36: 2171:"Tube type 6D4", 2068:978-3-319-72596-3 1985:978-3-319-10682-3 1945:978-1-5386-3428-8 1913:978-0-387-71816-3 1886:978-0-387-71816-3 1810:978-1-78588-587-7 1756:978-3-642-04137-2 1722:, pp. 25–27. 1720:Turan et al. 2018 1708:Turan et al. 2018 1625:, pp. 27–28. 1613:, pp. 24–25. 1601:, pp. 23–24. 1589:, pp. 21–22. 1577:, pp. 20–21. 1529:, pp. 13–14. 1517:, pp. 10–13. 1423:978-0-471-11709-4 1185:Turan et al. 2018 1144:978-3-319-72596-3 934:Turan et al. 2018 807: 806: 799: 781: 513:radiation sources 485:Quantum-based RNG 380:electrical noise; 131:atmospheric noise 70:is a device that 16:(Redirected from 2388: 2350: 2344: 2317: 2311: 2303: 2294: 2292:10.17487/RFC4086 2275: 2274: 2273: 2267: 2260: 2249: 2248: 2247: 2237: 2235:10.1038/042013a0 2200: 2199: 2198: 2189:, January 2001, 2187:RAND Corporation 2176: 2175:, Sylvania, 1957 2167: 2166: 2165: 2154:RAND Corporation 2142: 2141: 2140: 2129:RAND Corporation 2109: 2107: 2097: 2072: 2042: 2016: 1989: 1969: 1957: 1929: 1917: 1890: 1863: 1857: 1849: 1847: 1846: 1832: 1820: 1818: 1817: 1793: 1791: 1769: 1768: 1740: 1729: 1723: 1717: 1711: 1705: 1699: 1693: 1687: 1681: 1675: 1674: 1664: 1632: 1626: 1620: 1614: 1608: 1602: 1596: 1590: 1584: 1578: 1572: 1566: 1560: 1554: 1548: 1542: 1536: 1530: 1524: 1518: 1512: 1506: 1500: 1491: 1485: 1476: 1470: 1464: 1458: 1452: 1446: 1440: 1434: 1428: 1427: 1409: 1403: 1401: 1400: 1399: 1387:Monograph report 1382: 1376: 1375: 1367: 1361: 1359: 1358: 1357: 1339: 1333: 1330: 1324: 1323: 1321: 1319: 1313: 1298: 1296:10.1038/042013a0 1272: 1263: 1257: 1251: 1236: 1230: 1224: 1218: 1212: 1206: 1200: 1194: 1188: 1182: 1176: 1170: 1161: 1155: 1149: 1148: 1114: 1108: 1107: 1105: 1087: 1061: 1055: 1054: 1044: 1034: 1000: 994: 988: 982: 976: 967: 961: 952: 946: 937: 931: 802: 795: 791: 788: 782: 780: 739: 715: 707: 658:Performance test 627:Raman scattering 521:radiation safety 517:analog computers 474:ring oscillators 389:quantum effects. 314:Douglas Aircraft 309:RAND Corporation 259:backward secrecy 76:physical process 21: 2396: 2395: 2391: 2390: 2389: 2387: 2386: 2385: 2361: 2360: 2355:ProtegoST SG100 2349:, 22 April 1999 2342: 2336: 2333: 2328: 2304: 2295:. BCP 106. 2278: 2271: 2269: 2265: 2258: 2252: 2245: 2243: 2206:Galton, Francis 2204: 2196: 2194: 2179: 2170: 2163: 2161: 2145: 2138: 2136: 2120: 2116: 2075: 2069: 2045: 2007:(APS): 015004. 1992: 1986: 1967: 1960: 1946: 1927: 1920: 1914: 1893: 1887: 1866: 1854:cite conference 1850: 1844: 1842: 1830: 1823: 1815: 1813: 1811: 1796: 1780: 1777: 1772: 1757: 1738: 1731: 1730: 1726: 1718: 1714: 1706: 1702: 1694: 1690: 1682: 1678: 1634: 1633: 1629: 1621: 1617: 1609: 1605: 1597: 1593: 1585: 1581: 1573: 1569: 1561: 1557: 1549: 1545: 1537: 1533: 1525: 1521: 1513: 1509: 1501: 1494: 1486: 1479: 1471: 1467: 1459: 1455: 1447: 1443: 1435: 1431: 1424: 1411: 1410: 1406: 1397: 1395: 1384: 1383: 1379: 1369: 1368: 1364: 1355: 1353: 1341: 1340: 1336: 1331: 1327: 1317: 1315: 1311: 1281:(1070): 13–14. 1270: 1265: 1264: 1260: 1252: 1239: 1231: 1227: 1219: 1215: 1207: 1203: 1195: 1191: 1183: 1179: 1171: 1164: 1156: 1152: 1145: 1116: 1115: 1111: 1063: 1062: 1058: 1002: 1001: 997: 989: 985: 977: 970: 962: 955: 947: 940: 932: 921: 917: 899:Lottery machine 864: 851: 845: 830:certain attacks 826: 820: 803: 792: 786: 783: 740: 738: 728: 716: 705: 660: 511:and calibrated 509:Geiger counters 487: 470: 452: 450:Chaos-based RNG 400:noise generator 396: 344: 275: 253:forward secrecy 238:data encryption 234: 225: 219: 211:Common Criteria 127:Brownian motion 28: 23: 22: 15: 12: 11: 5: 2394: 2392: 2384: 2383: 2378: 2373: 2363: 2362: 2359: 2358: 2352: 2332: 2331:External links 2329: 2327: 2326: 2276: 2250: 2220:(1070): 13–4, 2202: 2177: 2168: 2143: 2117: 2115: 2112: 2111: 2110: 2073: 2067: 2043: 1990: 1984: 1958: 1944: 1918: 1912: 1891: 1885: 1864: 1821: 1809: 1794: 1776: 1773: 1771: 1770: 1755: 1724: 1712: 1700: 1688: 1676: 1627: 1615: 1603: 1591: 1579: 1567: 1555: 1543: 1531: 1519: 1507: 1492: 1477: 1475:, p. 286. 1465: 1463:, p. 280. 1453: 1441: 1429: 1422: 1404: 1377: 1362: 1334: 1325: 1258: 1237: 1225: 1213: 1201: 1189: 1177: 1162: 1150: 1143: 1109: 1056: 995: 983: 968: 966:, p. 279. 953: 949:Schindler 2009 938: 918: 916: 913: 912: 911: 906: 901: 896: 891: 885: 880: 875: 870: 863: 860: 844: 841: 822:Main article: 819: 816: 805: 804: 787:September 2023 719: 717: 710: 704: 701: 700: 699: 689: 659: 656: 648: 647: 646: 645: 632: 623: 613: 595: 578: 572: 562: 541:quantum optics 538: 528: 486: 483: 469: 466: 451: 448: 447: 446: 443: 440: 437: 434: 427: 426: 420: 414: 402:is fed into a 395: 392: 391: 390: 387: 384: 381: 374: 373: 370: 363: 356:system-on-chip 352: 343: 340: 294:Francis Galton 274: 271: 263: 262: 256: 233: 230: 218: 215: 191: 190: 184: 173: 137:, involving a 86:), unlike the 84:entropy source 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2393: 2382: 2379: 2377: 2374: 2372: 2369: 2368: 2366: 2356: 2353: 2348: 2341: 2340: 2335: 2334: 2330: 2324: 2320: 2315: 2309: 2301: 2298: 2293: 2288: 2284: 2283: 2277: 2268:on 2018-03-01 2264: 2257: 2256: 2251: 2241: 2236: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2192: 2188: 2184: 2183: 2178: 2174: 2169: 2159: 2155: 2151: 2150: 2144: 2134: 2130: 2126: 2125: 2119: 2118: 2113: 2106: 2101: 2096: 2091: 2087: 2083: 2079: 2074: 2070: 2064: 2060: 2056: 2052: 2051:Springer Cham 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2015: 2010: 2006: 2002: 1998: 1997: 1991: 1987: 1981: 1977: 1973: 1966: 1965: 1959: 1955: 1951: 1947: 1941: 1937: 1933: 1926: 1925: 1919: 1915: 1909: 1905: 1901: 1897: 1892: 1888: 1882: 1878: 1874: 1870: 1865: 1861: 1855: 1840: 1836: 1829: 1828: 1822: 1812: 1806: 1802: 1801: 1795: 1790: 1785: 1779: 1778: 1774: 1766: 1762: 1758: 1752: 1748: 1744: 1737: 1736: 1728: 1725: 1721: 1716: 1713: 1709: 1704: 1701: 1697: 1692: 1689: 1685: 1680: 1677: 1672: 1668: 1663: 1658: 1654: 1650: 1646: 1642: 1638: 1631: 1628: 1624: 1619: 1616: 1612: 1607: 1604: 1600: 1595: 1592: 1588: 1583: 1580: 1576: 1571: 1568: 1565:, p. 20. 1564: 1559: 1556: 1553:, p. 17. 1552: 1547: 1544: 1541:, p. 15. 1540: 1535: 1532: 1528: 1523: 1520: 1516: 1511: 1508: 1504: 1499: 1497: 1493: 1489: 1484: 1482: 1478: 1474: 1469: 1466: 1462: 1457: 1454: 1450: 1445: 1442: 1439:, p. 57. 1438: 1433: 1430: 1425: 1419: 1415: 1408: 1405: 1393: 1389: 1388: 1381: 1378: 1373: 1366: 1363: 1351: 1347: 1346: 1338: 1335: 1329: 1326: 1310: 1306: 1302: 1297: 1292: 1288: 1284: 1280: 1276: 1269: 1262: 1259: 1255: 1254:L'Ecuyer 2017 1250: 1248: 1246: 1244: 1242: 1238: 1234: 1229: 1226: 1222: 1217: 1214: 1211:, p. 90. 1210: 1205: 1202: 1198: 1193: 1190: 1186: 1181: 1178: 1174: 1169: 1167: 1163: 1159: 1154: 1151: 1146: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1110: 1104: 1099: 1095: 1091: 1086: 1081: 1077: 1073: 1072: 1067: 1060: 1057: 1052: 1048: 1043: 1038: 1033: 1028: 1024: 1020: 1016: 1012: 1011: 1006: 999: 996: 992: 987: 984: 981:, p. 56. 980: 975: 973: 969: 965: 960: 958: 954: 950: 945: 943: 939: 936:, p. 64. 935: 930: 928: 926: 924: 920: 914: 910: 907: 905: 902: 900: 897: 895: 892: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 865: 861: 859: 856: 850: 842: 840: 838: 833: 831: 825: 817: 815: 811: 801: 798: 790: 779: 776: 772: 769: 765: 762: 758: 755: 751: 748: –  747: 743: 742:Find sources: 736: 732: 726: 725: 720:This section 718: 714: 709: 708: 702: 697: 693: 690: 687: 684: 683: 682: 680: 675: 673: 669: 666: 657: 655: 651: 643: 639: 637: 633: 630: 628: 624: 621: 617: 614: 611: 607: 603: 599: 596: 593: 589: 585: 583: 579: 576: 573: 570: 566: 563: 560: 556: 552: 548: 545: 544: 542: 539: 536: 535:thermal noise 532: 529: 526: 522: 518: 514: 510: 506: 505:nuclear decay 503: 502: 501: 498: 496: 492: 484: 482: 479: 475: 467: 465: 462: 458: 449: 444: 441: 438: 435: 432: 431: 430: 424: 421: 418: 415: 412: 409: 408: 407: 405: 401: 393: 388: 385: 382: 379: 378: 377: 371: 368: 364: 361: 357: 353: 350: 349: 348: 341: 339: 336: 334: 330: 329: 324: 323:punched cards 319: 315: 310: 305: 301: 299: 295: 290: 288: 284: 280: 272: 270: 268: 260: 257: 254: 251: 250: 249: 247: 243: 239: 231: 229: 224: 216: 214: 212: 208: 204: 200: 196: 188: 185: 182: 178: 174: 171: 167: 163: 159: 158: 157: 155: 150: 148: 147:nuclear decay 144: 140: 139:beam splitter 136: 132: 128: 124: 123:metastability 120: 116: 112: 108: 104: 99: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 32: 19: 2371:Cryptography 2338: 2318: 2281: 2270:, retrieved 2263:the original 2254: 2244:, retrieved 2217: 2213: 2195:, retrieved 2181: 2172: 2162:, retrieved 2148: 2137:, retrieved 2123: 2085: 2081: 2046: 2000: 1994: 1963: 1923: 1895: 1868: 1843:. Retrieved 1826: 1814:. Retrieved 1799: 1734: 1727: 1715: 1703: 1698:, p. 9. 1691: 1686:, p. 4. 1679: 1644: 1640: 1630: 1618: 1606: 1594: 1582: 1570: 1558: 1546: 1534: 1522: 1510: 1505:, p. 2. 1468: 1456: 1444: 1432: 1413: 1407: 1396:, retrieved 1386: 1380: 1371: 1365: 1354:, retrieved 1344: 1337: 1328: 1316:. Retrieved 1278: 1274: 1261: 1235:, p. 7. 1228: 1223:, p. 6. 1216: 1204: 1192: 1187:, p. 6. 1180: 1175:, p. 4. 1153: 1122: 1112: 1078:(1): 16021. 1075: 1069: 1059: 1017:(1): 16108. 1014: 1008: 998: 993:, p. 8. 986: 951:, p. 7. 852: 834: 827: 812: 808: 793: 784: 774: 767: 760: 753: 741: 729:Please help 724:verification 721: 691: 685: 678: 676: 661: 652: 649: 634: 625: 597: 592:vacuum state 586:use a laser 580: 574: 568: 564: 551:beamsplitter 546: 499: 494: 490: 488: 471: 453: 428: 397: 375: 345: 337: 326: 306: 302: 291: 287:ancient Rome 276: 264: 235: 232:Cryptography 226: 192: 187:health tests 186: 176: 169: 162:noise source 161: 154:full entropy 151: 100: 83: 67: 63: 59: 55: 51: 47: 43: 37: 2088:(12): 439. 878:/dev/random 602:phase noise 417:Zener noise 213:standards. 177:conditioner 2365:Categories 2272:2015-04-20 2246:2004-03-28 2197:2002-12-22 2164:2009-05-10 2152:, Papers, 2139:2009-05-10 2127:, papers, 2095:2203.00261 2014:1604.03304 1845:2023-09-09 1816:2023-08-07 1437:Sunar 2009 1398:2009-01-29 1356:2009-05-10 1209:Templ 2016 1085:1510.08957 979:Sunar 2009 915:References 847:See also: 757:newspapers 629:generators 584:generators 531:shot noise 457:photodiode 404:comparator 367:amplifiers 221:See also: 2039:0034-6861 1954:1558-4305 1765:0302-9743 1671:2056-6387 668:Pub 140-2 640:uses the 638:generator 478:inverters 461:photonics 318:thyratron 170:digitizer 40:computing 2308:citation 2240:archived 2208:(1890), 2191:archived 2158:archived 2133:archived 2053:. 2020. 1392:archived 1350:archived 1309:Archived 1051:34373502 888:Lavarand 868:AN/CYZ-9 862:See also 703:Problems 600:use the 549:using a 321:deck of 279:gambling 141:, other 2222:Bibcode 2019:Bibcode 1775:Sources 1649:Bibcode 1305:4038609 1283:Bibcode 1090:Bibcode 1042:8352985 1019:Bibcode 855:entropy 818:Attacks 771:scholar 273:History 168:, so a 143:quantum 117:noise, 111:thermal 80:entropy 74:from a 2214:Nature 2065:  2037:  1982:  1952:  1942:  1910:  1883:  1807:  1763:  1753:  1669:  1420:  1318:14 May 1303:  1275:Nature 1141:  1049:  1039:  904:RDRAND 773:  766:  759:  752:  744:  386:chaos; 246:nonces 166:analog 119:jitter 66:), or 2347:Intel 2343:(PDF) 2266:(PDF) 2259:(PDF) 2090:arXiv 2009:arXiv 2003:(1). 1968:(PDF) 1928:(PDF) 1831:(PDF) 1739:(PDF) 1345:P-113 1312:(PDF) 1301:S2CID 1271:(PDF) 1080:arXiv 883:ERNIE 778:JSTOR 764:books 360:FPGAs 335:"). 107:noise 2323:1750 2314:link 2300:4086 2063:ISBN 2035:ISSN 1980:ISBN 1950:ISSN 1940:ISBN 1908:ISBN 1881:ISBN 1860:link 1805:ISBN 1761:ISSN 1751:ISBN 1667:ISSN 1418:ISBN 1320:2014 1139:ISBN 1047:PMID 750:news 696:bias 672:NIST 670:and 665:FIPS 567:and 495:QRNG 283:Dice 244:and 217:Uses 209:and 195:seed 121:and 115:shot 113:and 94:and 64:NRBG 56:TRNG 48:HRNG 42:, a 2297:RFC 2287:doi 2230:doi 2100:doi 2055:doi 2027:doi 1972:doi 1932:doi 1900:doi 1873:doi 1835:doi 1784:doi 1743:doi 1657:doi 1291:doi 1131:doi 1098:doi 1037:PMC 1027:doi 733:by 58:), 50:), 38:In 2367:: 2345:, 2310:}} 2306:{{ 2285:. 2238:, 2228:, 2218:42 2216:, 2212:, 2185:, 2156:, 2131:, 2098:. 2086:22 2084:. 2080:. 2061:. 2033:. 2025:. 2017:. 2001:89 1999:. 1978:. 1948:. 1938:. 1906:. 1879:. 1856:}} 1852:{{ 1759:. 1749:. 1665:. 1655:. 1643:. 1639:. 1495:^ 1480:^ 1307:. 1299:. 1289:. 1279:42 1277:. 1273:. 1240:^ 1165:^ 1137:. 1125:. 1121:. 1096:. 1088:. 1074:. 1068:. 1045:. 1035:. 1025:. 1015:11 1013:. 1007:. 971:^ 956:^ 941:^ 922:^ 839:. 681:: 543:: 369:); 289:. 281:. 269:. 175:a 160:a 129:, 2351:. 2325:. 2316:) 2302:. 2289:: 2232:: 2224:: 2201:. 2108:. 2102:: 2092:: 2071:. 2057:: 2041:. 2029:: 2021:: 2011:: 1988:. 1974:: 1956:. 1934:: 1916:. 1902:: 1889:. 1875:: 1862:) 1848:. 1837:: 1819:. 1792:. 1786:: 1767:. 1745:: 1710:. 1673:. 1659:: 1651:: 1645:7 1426:. 1402:. 1360:. 1322:. 1293:: 1285:: 1256:. 1199:. 1160:. 1147:. 1133:: 1106:. 1100:: 1092:: 1082:: 1076:2 1053:. 1029:: 1021:: 800:) 794:( 789:) 785:( 775:· 768:· 761:· 754:· 727:. 594:; 527:; 493:( 425:. 419:; 362:; 179:( 105:" 62:( 54:( 46:( 20:)

Index

Hardware random-number generator

computing
generates random numbers
physical process
entropy
pseudorandom number generator
deterministic algorithm
non-physical nondeterministic random bit generators
statistically random
noise
thermal
shot
jitter
metastability
Brownian motion
atmospheric noise
photoelectric effect
beam splitter
quantum
nuclear decay
full entropy
analog
randomness extractor
seed
entropy extraction
cryptographically secure pseudorandom number generator
Federal Information Processing Standards
Common Criteria
Applications of randomness

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.