Knowledge

Full entropy

Source đź“ť

595: 189:
The practical way to achieve the full entropy is to obtain from an entropy source bit strings longer than n bits, apply to them a high-quality randomness extractor that produces the n-bit result, and build the real set from these results. The ideal elements by nature have an entropy value of n. The
115:
The mathematical definition relies on a "distinguishing game": an adversary with an unlimited computing power is provided with two sets of random numbers, each containing W elements of length n. One set is
429: 27:. The output has full entropy if it cannot practically be distinguished from an output of a theoretical perfect random number source (has almost n bits of entropy for an n-bit output). 107:
Some sources use the term to define the ideal random bit string (one bit of entropy per bit of output). In this sense "getting to 100% full entropy is impossible" in the real world.
179: 102: 296: 259: 66: 212: 146: 398: 362: 326: 632: 573: 651: 424:, while providing an unbiased output, does not decorrelate groups of bits, so for serially correlated inputs (typical for many 656: 625: 194:
value H to satisfy the full-entropy definition. The number of additional bits of entropy H-n depends on W and
151: 24: 71: 533:"NIST Interagency Report NIST IR 8427 Discussion on the Full Entropy Assumption of the SP 800-90 Series" 421: 42:. With full entropy the per-bit entropy in the output of the random number generator is close to one: 618: 417: 265: 228: 125: 120:, it contains bit strings from the theoretically perfect random number generator, the other set is 45: 569: 563: 532: 197: 131: 543: 376: 340: 304: 433: 39: 35: 565:
Random Number Generators—Principles and Practices: A Guide for Engineers and Programmers
602: 425: 645: 531:
Buller, Darryl; Kaufer, Aaron; Roginsky, Allen; Turan, Meltem Sönmez (April 2023).
148:
is achieved if an adversary cannot guess the real set with probability higher than
191: 547: 594: 437: 124:
and includes bit strings from the practical random number source after a
459: 457: 441: 432:. NIST therefore defines the "vetted conditioning components" in its 128:. The full entropy for particular values of W and positive parameter 539: 31: 190:
inputs of the conditioning function will need to have a higher
214:; the following table contains few representative values: 499: 487: 463: 510: 508: 606: 379: 343: 307: 268: 231: 200: 154: 134: 74: 48: 420:will produce the desired results. For example, the 392: 356: 320: 290: 253: 206: 173: 140: 96: 60: 626: 8: 633: 619: 384: 378: 348: 342: 312: 306: 279: 267: 242: 230: 199: 155: 153: 133: 85: 73: 47: 514: 475: 218:Minimum value of additional entropy H-n 216: 601:This cryptography-related article is a 453: 16:Cryptographic property of random output 174:{\displaystyle {\frac {1}{2}}+\delta } 7: 591: 589: 97:{\displaystyle \epsilon <2^{-32}} 30:The term is extensively used in the 14: 412:Randomness extractor requirements 593: 23:is a property of an output of a 291:{\displaystyle \delta =2^{-10}} 254:{\displaystyle \delta =2^{-20}} 428:) the output bits will not be 1: 68:, where per NIST a practical 605:. You can help Knowledge by 61:{\displaystyle 1-\epsilon } 34:random generator standards 673: 588: 652:Random number generation 548:10.6028/NIST.IR.8427.ipd 207:{\displaystyle \delta } 141:{\displaystyle \delta } 25:random number generator 394: 393:{\displaystyle 2^{56}} 358: 357:{\displaystyle 2^{48}} 322: 321:{\displaystyle 2^{32}} 292: 255: 208: 175: 142: 98: 62: 562:Johnston, D. (2018). 422:Von Neumann extractor 395: 359: 323: 293: 256: 209: 176: 143: 99: 63: 436:standard, including 418:randomness extractor 377: 341: 305: 266: 229: 198: 152: 132: 126:randomness extractor 72: 46: 219: 657:Cryptography stubs 500:Buller et al. 2023 488:Buller et al. 2023 464:Buller et al. 2023 390: 354: 318: 288: 251: 217: 204: 185:Additional entropy 171: 138: 94: 58: 614: 613: 575:978-1-5015-0606-2 409: 408: 163: 664: 635: 628: 621: 597: 590: 585: 583: 582: 558: 556: 554: 537: 518: 512: 503: 497: 491: 485: 479: 473: 467: 461: 399: 397: 396: 391: 389: 388: 363: 361: 360: 355: 353: 352: 327: 325: 324: 319: 317: 316: 297: 295: 294: 289: 287: 286: 260: 258: 257: 252: 250: 249: 220: 213: 211: 210: 205: 180: 178: 177: 172: 164: 156: 147: 145: 144: 139: 103: 101: 100: 95: 93: 92: 67: 65: 64: 59: 19:In cryptography 672: 671: 667: 666: 665: 663: 662: 661: 642: 641: 640: 639: 580: 578: 576: 561: 552: 550: 535: 530: 527: 522: 521: 513: 506: 498: 494: 486: 482: 474: 470: 462: 455: 450: 434:NIST SP 800-90B 426:entropy sources 414: 380: 375: 374: 344: 339: 338: 308: 303: 302: 275: 264: 263: 238: 227: 226: 196: 195: 187: 150: 149: 130: 129: 113: 81: 70: 69: 44: 43: 40:NIST SP 800-90B 36:NIST SP 800-90A 17: 12: 11: 5: 670: 668: 660: 659: 654: 644: 643: 638: 637: 630: 623: 615: 612: 611: 598: 587: 586: 574: 568:. De Gruyter. 559: 526: 523: 520: 519: 504: 492: 480: 468: 452: 451: 449: 446: 413: 410: 407: 406: 403: 400: 387: 383: 371: 370: 367: 364: 351: 347: 335: 334: 331: 328: 315: 311: 299: 298: 285: 282: 278: 274: 271: 261: 248: 245: 241: 237: 234: 224: 203: 186: 183: 170: 167: 162: 159: 137: 112: 109: 91: 88: 84: 80: 77: 57: 54: 51: 15: 13: 10: 9: 6: 4: 3: 2: 669: 658: 655: 653: 650: 649: 647: 636: 631: 629: 624: 622: 617: 616: 610: 608: 604: 599: 596: 592: 577: 571: 567: 566: 560: 549: 545: 541: 534: 529: 528: 524: 517:, p. 16. 516: 515:Johnston 2018 511: 509: 505: 501: 496: 493: 489: 484: 481: 478:, p. 18. 477: 476:Johnston 2018 472: 469: 465: 460: 458: 454: 447: 445: 443: 439: 435: 431: 427: 423: 419: 411: 404: 401: 385: 381: 373: 372: 368: 365: 349: 345: 337: 336: 332: 329: 313: 309: 301: 300: 283: 280: 276: 272: 269: 262: 246: 243: 239: 235: 232: 225: 222: 221: 215: 201: 193: 184: 182: 168: 165: 160: 157: 135: 127: 123: 119: 110: 108: 105: 89: 86: 82: 78: 75: 55: 52: 49: 41: 37: 33: 28: 26: 22: 607:expanding it 600: 579:. Retrieved 564: 551:. Retrieved 502:, p. 2. 495: 490:, p. 1. 483: 471: 466:, p. i. 415: 188: 121: 117: 114: 106: 29: 21:full entropy 20: 18: 430:independent 192:min-entropy 646:Categories 581:2023-11-01 553:1 November 448:References 416:Not every 111:Definition 281:− 270:δ 244:− 233:δ 202:δ 169:δ 136:δ 87:− 76:ϵ 56:ϵ 53:− 525:Sources 442:CBC-MAC 572:  536:(PDF) 405:71.3 369:63.3 333:47.3 118:ideal 603:stub 570:ISBN 555:2023 540:NIST 402:91.3 366:83.3 330:67.3 122:real 79:< 38:and 32:NIST 544:doi 438:AES 648:: 542:. 538:. 507:^ 456:^ 444:. 386:56 350:48 314:32 284:10 247:20 181:. 104:. 90:32 634:e 627:t 620:v 609:. 584:. 557:. 546:: 440:- 382:2 346:2 310:2 277:2 273:= 240:2 236:= 223:W 166:+ 161:2 158:1 83:2 50:1

Index

random number generator
NIST
NIST SP 800-90A
NIST SP 800-90B
randomness extractor
min-entropy
randomness extractor
Von Neumann extractor
entropy sources
independent
NIST SP 800-90B
AES
CBC-MAC


Buller et al. 2023
Johnston 2018
Buller et al. 2023
Buller et al. 2023


Johnston 2018
"NIST Interagency Report NIST IR 8427 Discussion on the Full Entropy Assumption of the SP 800-90 Series"
NIST
doi
10.6028/NIST.IR.8427.ipd
Random Number Generators—Principles and Practices: A Guide for Engineers and Programmers
ISBN
978-1-5015-0606-2
Stub icon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑