Knowledge

Harish-Chandra isomorphism

Source đź“ť

4057: 4475: 3618:
is Weyl-invariant. The contours of the degree 3 Weyl-invariant polynomial (for a particular choice of standard representation where one of the reflections is across the x-axis) are shown below. These two polynomials generate the polynomial algebra, and are the fundamental invariants for
1625: 1756: 2725:
for a more general statement). Therefore, the center of the universal enveloping algebra of a simple Lie algebra is isomorphic to a polynomial algebra. The degrees of the generators of the algebra are the degrees of the fundamental invariants given in the following table.
1900: 5239: 4225: 2327: 5371: 1510: 1634: 4666: 4153: 1791: 3845: 3371: 2124: 2001: 1478: 2409: 1338: 2434:
Further, it is a necessary condition for the existence of a non-zero homomorphism of some highest weight modules (a homomorphism of such modules preserves central character). A simple consequence is that for
1952: 3731: 5132: 4945: 5488: 2061: 5415: 795: 3616: 1393: 1015: 393: 3891: 3417: 1230: 960: 97: 3275: 2547: 5279: 3653:. In the isomorphism, these correspond to a degree 2 polynomial on the CSA. Since the Weyl group acts by reflections on the CSA, they are isometries, so the degree 2 invariant polynomial is 914: 846: 1055: 3091: 5299: 5127: 4892: 4729: 3146: 2695: 2234: 1270: 200: 5596: 3198: 1786: 5539: 4854: 4470:{\displaystyle (h_{1}\mapsto -h_{1},h_{2}\mapsto h_{2}),(h_{1}\mapsto h_{1},h_{2}\mapsto -h_{2}),(h_{1}\mapsto h_{2},h_{2}\mapsto h_{1}),(h_{1}\mapsto -h_{2},h_{2}\mapsto h_{1})} 3027: 1146: 428: 2181: 1426: 706: 236: 133: 743: 3524: 2354: 1081: 5096: 5060: 3775: 3231: 2651: 2627: 2579: 2148: 616: 456: 346: 318: 263: 160: 4045: 5005: 3301: 2467: 1107: 643: 513: 4220: 3967: 3457: 5802: 2262: 5616: 5032: 1505: 486: 4758: 2487: 873: 670: 564: 540: 2254: 1166: 4529: 4502: 4180: 3938: 3644: 3484: 2507: 584: 5958: 4784: 2427:, so that only the quadratic Casimir operator is required; there is a corresponding streamlined treatment proof of the character formula in the second edition of 4965: 3996: 3911: 3751: 2719: 2599: 286: 5292:
The isomorphism in this case is an isomorphism between the Feigin–Frenkel center and the W-algebra constructed associated to the Langlands dual Lie algebra by
1628: 2722: 4534: 4077: 3526:
which acts on the CSA in the standard representation. Since the Weyl group acts by reflections, they are isometries and so the degree 2 polynomial
1620:{\displaystyle n^{+}=\bigoplus _{\alpha \in \Phi _{+}}{\mathfrak {g}}_{\alpha },n^{-}=\bigoplus _{\alpha \in \Phi _{-}}{\mathfrak {g}}_{\alpha }} 2006: 5939: 5906: 5884: 712:
acts on the modules by scalar multiplication (this follows from the fact that the modules are generated by a highest weight vector). So, for
3783: 3309: 2071: 1957: 1434: 396: 2359: 1751:{\displaystyle U({\mathfrak {g}})=U({\mathfrak {h}})\oplus (U({\mathfrak {g}}){\mathfrak {n}}^{+}+{\mathfrak {n}}^{-}U({\mathfrak {g}})).} 1287: 1905: 3656: 3303:, by negation, so the invariant of the Weyl group is the square of the generator of the Cartan subalgebra, which is also of degree 2. 5853: 800: 1895:{\displaystyle z\in U({\mathfrak {h}})\oplus (U({\mathfrak {g}}){\mathfrak {n}}^{+}\cap {\mathfrak {n}}^{-}U({\mathfrak {g}})).} 4897: 5420: 5376: 748: 3529: 1343: 977: 355: 5963: 5787: 3850: 3376: 1189: 1184: 919: 673: 100: 56: 3236: 2512: 1180: 20: 5244: 2420: 878: 5740:
Feigin, Boris; Frenkel, Edward; Reshetikhin, Nikolai (3 Apr 1994). "Gaudin Model, Bethe Ansatz and Critical Level".
5234:{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}}):=\{S\in V_{\text{cri}}({\mathfrak {g}})|{\mathfrak {g}}S=0\}} 5898: 1020: 5695:
Molev, Alexander (19 January 2021). "On Segal–Sugawara vectors and Casimir elements for classical Lie algebras".
5800:
Harish-Chandra (1951), "On some applications of the universal enveloping algebra of a semisimple Lie algebra",
3097:
of the Lie group and vice versa. In another direction, fundamental invariants are related to cohomology of the
3032: 2440: 1627:
as the corresponding positive nilpotent subalgebra and negative nilpotent subalgebra respectively, due to the
5632: 5101: 4866: 4671: 3104: 2660: 2186: 1235: 165: 5544: 3151: 4800: 4668:
Despite this being a two-dimensional vector space, this contributes only one new fundamental invariant as
1761: 321: 5493: 4826: 2986: 1120: 402: 4796: 2153: 1398: 678: 543: 208: 136: 105: 4731:
lies in the space. In this case, there is no unique choice of quartic invariant as any polynomial with
715: 3489: 2332: 1060: 5068: 5041: 3756: 3212: 2632: 2608: 2560: 2129: 1110: 597: 437: 327: 299: 244: 141: 51: 4001: 5627: 2743: 2322:{\displaystyle {\tilde {\gamma }}=\tau \circ \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})} 5676:
Borel, Armand (Apr 1954). "Sur la cohomologie des espaces homogenes des groupes de Lie compacts".
4974: 3649:
For all the Lie algebras in the classification, there is a fundamental invariant of degree 2, the
3284: 2445: 1086: 621: 491: 5872: 5821: 5767: 5749: 5722: 5704: 5366:{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}})\cong {\mathcal {W}}(^{L}{\mathfrak {g}}).} 4968: 4804: 4185: 3943: 3422: 5601: 5010: 1483: 1272:(the elements of the symmetric algebra of the Cartan subalgebra fixed by the Weyl group) is an 464: 5935: 5927: 5902: 5880: 5849: 5281:
is the affine vertex algebra at the critical level. Elements of this center are also known as
4734: 3278: 3098: 2472: 851: 648: 549: 518: 431: 349: 239: 203: 2423:
for finite-dimensional irreducible representations. The proof has been further simplified by
2239: 1284:
More explicitly, the isomorphism can be constructed as the composition of two maps, one from
1151: 5923: 5811: 5759: 5714: 2654: 709: 5916: 5863: 5833: 4507: 4480: 4158: 3916: 3622: 3462: 5912: 5859: 5845: 5829: 5035: 4531:, and invariance under exchange of coordinates means any invariant quartic can be written 2980: 2698: 2492: 569: 5417:
as a polynomial algebra in a finite number of countably infinite families of generators,
4763: 4950: 4820: 4812: 3972: 3896: 3736: 2735: 2704: 2584: 271: 35: 3281:
of degree 2, and the Weyl group acts on the Cartan subalgebra, which is isomorphic to
5952: 5726: 3419:
is isomorphic to a polynomial algebra of Weyl-invariant polynomials in two variables
1169: 459: 5771: 4222:, and is generated (non-minimally) by four reflections, which act on coordinates as 3847:, the Cartan subalgebra is one-dimensional, and the Harish-Chandra isomorphism says 3093:. Due to this, the degrees of the fundamental invariants can be calculated from the 5063: 4808: 4056: 3094: 2436: 2003:, and is a homomorphism of algebras. This is related to the central characters by 3893:
is isomorphic to the algebra of Weyl-invariant polynomials in a single variable
2356:
is not actually Weyl-invariant, but it can be proven that the twisted character
1273: 47: 43: 27: 5718: 4815:
showing that an algebra known as the Feigin–Frenkel center is isomorphic to a
3969:. The subalgebra of Weyl-invariant polynomials in the full polynomial algebra 2424: 1114: 266: 4661:{\displaystyle f_{4}(h_{1},h_{2})=ah_{1}^{4}+bh_{1}^{2}h_{2}^{2}+ah_{2}^{4}.} 4148:{\displaystyle {\mathfrak {g}}=B_{2}={\mathfrak {so}}(5)={\mathfrak {sp}}(4)} 5293: 4816: 2976: 5618:
is the (negative of) the natural derivative operator on the loop algebra.
3277:, then the center of the universal enveloping algebra is generated by the 2983:
of a Lie group. In particular, if the fundamental invariants have degrees
16:
Isomorphism of commutative rings constructed in the theory of Lie algebras
5844:. Graduate Texts in Mathematics. Vol. 9 (Second revised ed.). 3940:
acting as reflection, with non-trivial element acting on polynomials by
5825: 5763: 5754: 5934:, Progress in Mathematics, vol. 140, Springer, pp. 246–258, 5928:"V. Finite Dimensional Representations §5. Harish-Chandra Isomorphism" 3840:{\displaystyle {\mathfrak {g}}=A_{1}={\mathfrak {sl}}(2,\mathbb {C} )} 3366:{\displaystyle {\mathfrak {g}}=A_{2}={\mathfrak {sl}}(3,\mathbb {C} )} 2119:{\displaystyle \tau :S({\mathfrak {h}})\rightarrow S({\mathfrak {h}})} 2979:
is equal to its rank. Fundamental invariants are also related to the
1996:{\displaystyle \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})} 1473:{\displaystyle \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})} 5816: 2419:
The theorem has been used to obtain a simple Lie algebraic proof of
2404:{\displaystyle {\tilde {\chi }}_{\lambda }=\chi _{\lambda -\delta }} 5709: 1333:{\displaystyle {\mathfrak {Z}}={\mathcal {Z}}(U({\mathfrak {g}}))} 3148:
is isomorphic to a polynomial algebra on generators with degrees
5877:
Representations of semisimple Lie algebras in the BGG category O
2329:
is the isomorphism. The reason this twist is introduced is that
1947:{\displaystyle U({\mathfrak {g}})\rightarrow U({\mathfrak {h}})} 3726:{\displaystyle f_{2}(\mathbf {h} )=h_{1}^{2}+\cdots +h_{r}^{2}} 4894:
is not exactly the center of the universal enveloping algebra
5335: 4903: 3856: 3382: 1303: 1195: 925: 760: 62: 3029:, then the generators of the cohomology ring have degrees 5868:(Contains an improved proof of Weyl's character formula.) 4940:{\displaystyle {\mathcal {Z}}(U({\hat {\mathfrak {g}}}))} 5483:{\displaystyle \partial ^{n}S_{i},i=1,\cdots ,l,n\geq 0} 2056:{\displaystyle \chi _{\lambda }(x)=\gamma (x)(\lambda )} 5410:{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}})} 790:{\displaystyle x\in {\mathcal {Z}}(U({\mathfrak {g}}))} 5842:
Introduction to Lie algebras and representation theory
3611:{\displaystyle f_{2}(h_{1},h_{2})=h_{1}^{2}+h_{2}^{2}} 3459:(since the Cartan subalgebra is two-dimensional). For 1388:{\displaystyle U({\mathfrak {h}})=S({\mathfrak {h}}),} 5604: 5547: 5496: 5423: 5379: 5302: 5247: 5135: 5104: 5071: 5044: 5013: 4977: 4953: 4900: 4869: 4829: 4766: 4737: 4674: 4537: 4510: 4483: 4228: 4188: 4161: 4080: 4066:, corresponding to the degree 3 fundamental invariant 4004: 3998:
is therefore only the even polynomials, generated by
3975: 3946: 3919: 3899: 3853: 3786: 3759: 3739: 3659: 3625: 3532: 3492: 3465: 3425: 3379: 3312: 3287: 3239: 3215: 3154: 3107: 3035: 2989: 2707: 2663: 2635: 2611: 2587: 2563: 2515: 2495: 2475: 2448: 2362: 2335: 2265: 2242: 2189: 2156: 2132: 2074: 2009: 1960: 1908: 1794: 1764: 1637: 1513: 1486: 1437: 1401: 1346: 1290: 1238: 1192: 1154: 1123: 1089: 1063: 1023: 980: 922: 881: 854: 803: 751: 718: 681: 651: 624: 600: 572: 552: 521: 494: 467: 440: 405: 358: 330: 302: 274: 247: 211: 168: 144: 108: 59: 1010:{\displaystyle \lambda ,\mu \in {\mathfrak {h}}^{*}} 388:{\displaystyle \lambda ,\mu \in {\mathfrak {h}}^{*}} 5895:
Cohomological induction and unitary representations
5610: 5590: 5533: 5482: 5409: 5365: 5273: 5233: 5121: 5090: 5054: 5026: 4999: 4959: 4939: 4886: 4848: 4778: 4752: 4723: 4660: 4523: 4496: 4469: 4214: 4174: 4147: 4039: 3990: 3961: 3932: 3905: 3886:{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))} 3885: 3839: 3769: 3745: 3725: 3638: 3610: 3518: 3478: 3451: 3412:{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))} 3411: 3365: 3295: 3269: 3225: 3192: 3140: 3085: 3021: 2713: 2689: 2645: 2621: 2605:, that is, the dimension of any Cartan subalgebra 2593: 2573: 2541: 2501: 2481: 2461: 2403: 2348: 2321: 2248: 2228: 2175: 2142: 2118: 2055: 1995: 1946: 1894: 1780: 1750: 1619: 1499: 1472: 1420: 1387: 1332: 1264: 1225:{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))} 1224: 1160: 1140: 1101: 1075: 1049: 1009: 955:{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))} 954: 908: 867: 840: 789: 737: 700: 664: 637: 610: 578: 558: 534: 507: 480: 450: 422: 387: 340: 312: 280: 257: 230: 194: 154: 127: 92:{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))} 91: 46:of commutative rings constructed in the theory of 5803:Transactions of the American Mathematical Society 3270:{\displaystyle {\mathfrak {sl}}(2,\mathbb {R} )} 2542:{\displaystyle V_{\lambda }\rightarrow V_{\mu }} 1179:Another closely related formulation is that the 5897:, Princeton Mathematical Series, vol. 45, 5274:{\displaystyle V_{\text{cri}}({\mathfrak {g}})} 909:{\displaystyle \chi _{\lambda },\,\chi _{\mu }} 2975:The number of the fundamental invariants of a 841:{\displaystyle x\cdot v:=\chi _{\lambda }(x)v} 39: 4477:. Any invariant quartic must be even in both 1050:{\displaystyle \chi _{\lambda }=\chi _{\mu }} 8: 5228: 5166: 3777:, also known as the rank of the Lie algebra. 5893:Knapp, Anthony W.; Vogan, David A. (1995), 5815: 5753: 5708: 5663: 5651: 5603: 5552: 5546: 5501: 5495: 5438: 5428: 5422: 5393: 5391: 5390: 5381: 5380: 5378: 5351: 5350: 5344: 5334: 5333: 5316: 5314: 5313: 5304: 5303: 5301: 5262: 5261: 5252: 5246: 5204: 5203: 5198: 5189: 5188: 5179: 5149: 5147: 5146: 5137: 5136: 5134: 5108: 5106: 5105: 5103: 5073: 5072: 5070: 5046: 5045: 5043: 5018: 5012: 4991: 4976: 4952: 4920: 4918: 4917: 4902: 4901: 4899: 4873: 4871: 4870: 4868: 4840: 4839: 4833: 4828: 4765: 4736: 4715: 4705: 4692: 4679: 4673: 4649: 4644: 4628: 4623: 4613: 4608: 4592: 4587: 4568: 4555: 4542: 4536: 4515: 4509: 4488: 4482: 4458: 4445: 4432: 4416: 4397: 4384: 4371: 4358: 4339: 4323: 4310: 4297: 4278: 4265: 4252: 4236: 4227: 4206: 4193: 4187: 4166: 4160: 4127: 4126: 4105: 4104: 4095: 4082: 4081: 4079: 4031: 4009: 4003: 3974: 3945: 3924: 3918: 3898: 3871: 3870: 3855: 3854: 3852: 3830: 3829: 3811: 3810: 3801: 3788: 3787: 3785: 3761: 3760: 3758: 3738: 3717: 3712: 3693: 3688: 3673: 3664: 3658: 3630: 3624: 3602: 3597: 3584: 3579: 3563: 3550: 3537: 3531: 3510: 3497: 3491: 3470: 3464: 3443: 3430: 3424: 3397: 3396: 3381: 3380: 3378: 3356: 3355: 3337: 3336: 3327: 3314: 3313: 3311: 3289: 3288: 3286: 3260: 3259: 3241: 3240: 3238: 3217: 3216: 3214: 3184: 3162: 3153: 3131: 3130: 3112: 3106: 3086:{\displaystyle 2d_{1}-1,\cdots ,2d_{r}-1} 3071: 3043: 3034: 3013: 2994: 2988: 2706: 2681: 2671: 2670: 2662: 2637: 2636: 2634: 2613: 2612: 2610: 2586: 2565: 2564: 2562: 2533: 2520: 2514: 2494: 2489:, there exist only finitely many weights 2474: 2453: 2447: 2428: 2389: 2376: 2365: 2364: 2361: 2340: 2334: 2310: 2309: 2294: 2293: 2267: 2266: 2264: 2241: 2188: 2164: 2163: 2155: 2134: 2133: 2131: 2107: 2106: 2088: 2087: 2073: 2014: 2008: 1984: 1983: 1968: 1967: 1959: 1935: 1934: 1916: 1915: 1907: 1877: 1876: 1864: 1858: 1857: 1847: 1841: 1840: 1830: 1829: 1808: 1807: 1793: 1772: 1771: 1763: 1733: 1732: 1720: 1714: 1713: 1703: 1697: 1696: 1686: 1685: 1664: 1663: 1645: 1644: 1636: 1611: 1605: 1604: 1595: 1584: 1571: 1558: 1552: 1551: 1542: 1531: 1518: 1512: 1491: 1485: 1461: 1460: 1445: 1444: 1436: 1409: 1408: 1400: 1373: 1372: 1354: 1353: 1345: 1318: 1317: 1302: 1301: 1292: 1291: 1289: 1256: 1246: 1245: 1237: 1210: 1209: 1194: 1193: 1191: 1153: 1132: 1126: 1125: 1122: 1088: 1062: 1041: 1028: 1022: 1001: 995: 994: 979: 940: 939: 924: 923: 921: 900: 895: 886: 880: 859: 853: 820: 802: 775: 774: 759: 758: 750: 729: 717: 689: 688: 680: 656: 650: 629: 623: 602: 601: 599: 571: 551: 526: 520: 499: 493: 472: 466: 442: 441: 439: 414: 408: 407: 404: 379: 373: 372: 357: 332: 331: 329: 304: 303: 301: 273: 249: 248: 246: 219: 218: 210: 186: 176: 175: 167: 146: 145: 143: 116: 115: 107: 77: 76: 61: 60: 58: 2728: 5788:Notes on the Harish-Chandra isomorphism 5644: 5122:{\displaystyle {\hat {\mathfrak {g}}}} 5062:which are annihilated by the positive 4887:{\displaystyle {\hat {\mathfrak {g}}}} 4724:{\displaystyle f_{2}(h_{1},h_{2})^{2}} 3373:, the Harish-Chandra isomorphism says 3141:{\displaystyle H^{*}(BG,\mathbb {R} )} 2690:{\displaystyle S({\mathfrak {h}})^{W}} 2229:{\displaystyle \tau (h)=h-\delta (h)1} 1265:{\displaystyle S({\mathfrak {h}})^{W}} 195:{\displaystyle S({\mathfrak {h}})^{W}} 5959:Representation theory of Lie algebras 5591:{\displaystyle d_{i}+1,i=1,\cdots ,l} 4791:Generalization to affine Lie algebras 3193:{\displaystyle 2d_{1},\cdots ,2d_{r}} 7: 1781:{\displaystyle z\in {\mathfrak {Z}}} 5534:{\displaystyle S_{i},i=1,\cdots ,l} 5394: 5382: 5352: 5317: 5305: 5263: 5205: 5190: 5150: 5138: 5109: 5074: 5047: 4921: 4874: 4849:{\displaystyle ^{L}{\mathfrak {g}}} 4841: 4131: 4128: 4109: 4106: 4083: 3872: 3815: 3812: 3789: 3762: 3398: 3341: 3338: 3315: 3245: 3242: 3218: 3022:{\displaystyle d_{1},\cdots ,d_{r}} 2672: 2638: 2614: 2566: 2509:for which a non-zero homomorphism 2311: 2295: 2165: 2135: 2108: 2089: 1985: 1969: 1936: 1917: 1878: 1859: 1842: 1831: 1809: 1773: 1734: 1715: 1698: 1687: 1665: 1646: 1606: 1553: 1462: 1446: 1410: 1374: 1355: 1319: 1293: 1247: 1211: 1141:{\displaystyle {\mathfrak {h}}^{*}} 1127: 996: 970:Statement of Harish-Chandra theorem 941: 776: 690: 603: 443: 423:{\displaystyle {\mathfrak {h}}^{*}} 409: 374: 333: 305: 250: 220: 177: 147: 117: 78: 5605: 5425: 2748:Degrees of fundamental invariants 2176:{\displaystyle U({\mathfrak {h}})} 1902:The restriction of the projection 1592: 1539: 1488: 1421:{\displaystyle S({\mathfrak {h}})} 701:{\displaystyle U({\mathfrak {g}})} 469: 231:{\displaystyle S({\mathfrak {h}})} 128:{\displaystyle U({\mathfrak {g}})} 14: 5932:Lie Groups Beyond an Introduction 1480:. For a choice of positive roots 738:{\displaystyle v\in V_{\lambda }} 4055: 3674: 3519:{\displaystyle S_{3}\cong D_{6}} 2349:{\displaystyle \chi _{\lambda }} 1076:{\displaystyle \lambda +\delta } 5697:Letters in Mathematical Physics 5678:American Journal of Mathematics 5373:There is also a description of 5091:{\displaystyle {\mathfrak {g}}} 5055:{\displaystyle {\mathfrak {g}}} 4803:. There is a generalization to 3770:{\displaystyle {\mathfrak {h}}} 3226:{\displaystyle {\mathfrak {g}}} 2723:Chevalley–Shephard–Todd theorem 2646:{\displaystyle {\mathfrak {g}}} 2622:{\displaystyle {\mathfrak {h}}} 2574:{\displaystyle {\mathfrak {g}}} 2143:{\displaystyle {\mathfrak {h}}} 611:{\displaystyle {\mathfrak {g}}} 451:{\displaystyle {\mathfrak {h}}} 341:{\displaystyle {\mathfrak {h}}} 313:{\displaystyle {\mathfrak {g}}} 258:{\displaystyle {\mathfrak {h}}} 155:{\displaystyle {\mathfrak {g}}} 5404: 5398: 5387: 5357: 5341: 5327: 5321: 5310: 5268: 5258: 5216: 5210: 5199: 5195: 5185: 5160: 5154: 5143: 5113: 5085: 5079: 4934: 4931: 4925: 4914: 4908: 4878: 4712: 4685: 4574: 4548: 4464: 4451: 4422: 4409: 4403: 4390: 4364: 4351: 4345: 4329: 4303: 4290: 4284: 4271: 4242: 4229: 4142: 4136: 4120: 4114: 4040:{\displaystyle f_{2}(h)=h^{2}} 4021: 4015: 3985: 3979: 3950: 3880: 3877: 3867: 3861: 3834: 3820: 3678: 3670: 3569: 3543: 3406: 3403: 3393: 3387: 3360: 3346: 3264: 3250: 3135: 3118: 2678: 2667: 2526: 2370: 2316: 2306: 2300: 2272: 2220: 2214: 2199: 2193: 2170: 2160: 2113: 2103: 2097: 2094: 2084: 2050: 2044: 2041: 2035: 2026: 2020: 1990: 1980: 1974: 1941: 1931: 1925: 1922: 1912: 1886: 1883: 1873: 1836: 1826: 1820: 1814: 1804: 1742: 1739: 1729: 1692: 1682: 1676: 1670: 1660: 1651: 1641: 1629:Poincaré–Birkhoff–Witt theorem 1467: 1457: 1451: 1415: 1405: 1379: 1369: 1360: 1350: 1327: 1324: 1314: 1308: 1253: 1242: 1219: 1216: 1206: 1200: 949: 946: 936: 930: 832: 826: 784: 781: 771: 765: 695: 685: 225: 215: 183: 172: 122: 112: 86: 83: 73: 67: 1: 2935:2, 8, 12, 14, 18, 20, 24, 30 265:that are invariant under the 5840:Humphreys, James E. (1978). 5000:{\displaystyle k=-h^{\vee }} 4182:, acting on two coordinates 3753:is the dimension of the CSA 3296:{\displaystyle \mathbb {R} } 2462:{\displaystyle V_{\lambda }} 1185:universal enveloping algebra 1102:{\displaystyle \mu +\delta } 674:universal enveloping algebra 638:{\displaystyle V_{\lambda }} 508:{\displaystyle V_{\lambda }} 101:universal enveloping algebra 4795:The above result holds for 4215:{\displaystyle h_{1},h_{2}} 3962:{\displaystyle h\mapsto -h} 3452:{\displaystyle h_{1},h_{2}} 1181:Harish-Chandra homomorphism 672:are representations of the 458:) and assume that a set of 50:. The isomorphism maps the 21:Harish-Chandra homomorphism 5980: 5899:Princeton University Press 5719:10.1007/s11005-020-01344-3 5294:Drinfeld–Sokolov reduction 4062:Weyl-invariant cubic for A 2581:a simple Lie algebra, let 1788:is central, then in fact 1431:The first is a projection 32:Harish-Chandra isomorphism 18: 5611:{\displaystyle \partial } 5027:{\displaystyle h^{\vee }} 4863:of an affine Lie algebra 2441:generalized Verma modules 1631:there is a decomposition 1500:{\displaystyle \Phi _{+}} 1172:, sometimes known as the 481:{\displaystyle \Phi _{+}} 4786:not both zero) suffices. 4753:{\displaystyle b\neq 2a} 2918:2, 6, 8, 10, 12, 14, 18 2482:{\displaystyle \lambda } 2421:Weyl's character formula 2150:viewed as a subspace of 868:{\displaystyle V_{\mu }} 665:{\displaystyle V_{\mu }} 559:{\displaystyle \lambda } 535:{\displaystyle V_{\mu }} 292:Introduction and setting 19:Not to be confused with 5633:Infinitesimal character 4801:semisimple Lie algebras 2249:{\displaystyle \delta } 1183:from the center of the 1168:is the half-sum of the 1161:{\displaystyle \delta } 916:are homomorphisms from 395:be two elements of the 5612: 5592: 5535: 5484: 5411: 5367: 5287:Segal–Sugawara vectors 5275: 5235: 5123: 5092: 5056: 5028: 5001: 4961: 4941: 4888: 4850: 4780: 4754: 4725: 4662: 4525: 4498: 4471: 4216: 4176: 4149: 4041: 3992: 3963: 3934: 3907: 3887: 3841: 3771: 3747: 3727: 3640: 3612: 3520: 3480: 3453: 3413: 3367: 3297: 3271: 3227: 3194: 3142: 3101:. The cohomology ring 3087: 3023: 2715: 2691: 2647: 2623: 2595: 2575: 2553:Fundamental invariants 2543: 2503: 2483: 2463: 2405: 2350: 2323: 2250: 2230: 2177: 2144: 2120: 2065:The second map is the 2057: 1997: 1948: 1896: 1782: 1752: 1621: 1501: 1474: 1422: 1389: 1334: 1266: 1226: 1162: 1142: 1103: 1077: 1051: 1011: 956: 910: 875:, where the functions 869: 842: 791: 739: 702: 666: 639: 612: 580: 560: 544:highest weight modules 536: 509: 482: 452: 424: 389: 342: 322:semisimple Lie algebra 314: 282: 259: 232: 196: 156: 129: 93: 5613: 5593: 5536: 5485: 5412: 5368: 5276: 5236: 5124: 5093: 5057: 5029: 5002: 4969:affine vertex algebra 4962: 4942: 4889: 4861:Feigin–Frenkel center 4851: 4781: 4755: 4726: 4663: 4526: 4524:{\displaystyle h_{2}} 4499: 4497:{\displaystyle h_{1}} 4472: 4217: 4177: 4175:{\displaystyle D_{8}} 4150: 4042: 3993: 3964: 3935: 3933:{\displaystyle S_{2}} 3908: 3888: 3842: 3772: 3748: 3728: 3641: 3639:{\displaystyle A_{2}} 3613: 3521: 3481: 3479:{\displaystyle A_{2}} 3454: 3414: 3368: 3298: 3272: 3228: 3195: 3143: 3088: 3024: 2884: − 2 2716: 2692: 2648: 2624: 2596: 2576: 2544: 2504: 2484: 2464: 2431:, pp. 143–144). 2406: 2351: 2324: 2251: 2231: 2178: 2145: 2121: 2058: 1998: 1949: 1897: 1783: 1753: 1622: 1502: 1475: 1423: 1390: 1335: 1267: 1227: 1163: 1143: 1104: 1078: 1052: 1012: 957: 911: 870: 843: 792: 740: 703: 667: 640: 613: 581: 561: 546:with highest weights 537: 510: 488:have been fixed. Let 483: 453: 425: 390: 343: 315: 283: 260: 233: 197: 157: 137:reductive Lie algebra 130: 94: 5602: 5545: 5494: 5421: 5377: 5300: 5245: 5133: 5102: 5069: 5042: 5011: 4975: 4951: 4947:. They are elements 4898: 4867: 4827: 4799:, and in particular 4764: 4735: 4672: 4535: 4508: 4481: 4226: 4186: 4159: 4155:, the Weyl group is 4078: 4002: 3973: 3944: 3917: 3913:. The Weyl group is 3897: 3851: 3784: 3757: 3737: 3657: 3623: 3530: 3490: 3486:, the Weyl group is 3463: 3423: 3377: 3310: 3285: 3237: 3213: 3152: 3105: 3033: 2987: 2874: − 2 2867: − 2 2816: − 1 2705: 2661: 2633: 2609: 2585: 2561: 2513: 2502:{\displaystyle \mu } 2493: 2473: 2469:with highest weight 2446: 2360: 2333: 2263: 2240: 2187: 2154: 2130: 2072: 2007: 1958: 1906: 1792: 1762: 1635: 1511: 1484: 1435: 1399: 1344: 1288: 1280:Explicit isomorphism 1236: 1190: 1152: 1121: 1087: 1061: 1021: 978: 920: 879: 852: 801: 749: 716: 679: 649: 622: 598: 579:{\displaystyle \mu } 570: 550: 519: 492: 465: 438: 403: 356: 328: 300: 272: 245: 209: 166: 142: 106: 57: 5964:Theorems in algebra 5879:, AMS, p. 26, 5873:Humphreys, James E. 5666:, pp. 135–141. 5628:Translation functor 5036:dual Coxeter number 4805:affine Lie algebras 4779:{\displaystyle a,b} 4654: 4633: 4618: 4597: 3722: 3698: 3607: 3589: 3233:is the Lie algebra 2744:Dual Coxeter number 2697:is isomorphic to a 5783:External resources 5764:10.1007/BF02099300 5742:Commun. Math. Phys 5608: 5588: 5531: 5480: 5407: 5363: 5271: 5231: 5119: 5088: 5052: 5024: 4997: 4971:at critical level 4957: 4937: 4884: 4846: 4819:associated to the 4776: 4750: 4721: 4658: 4640: 4619: 4604: 4583: 4521: 4494: 4467: 4212: 4172: 4145: 4037: 3988: 3959: 3930: 3903: 3883: 3837: 3767: 3743: 3723: 3708: 3684: 3636: 3608: 3593: 3575: 3516: 3476: 3449: 3409: 3363: 3293: 3267: 3223: 3190: 3138: 3083: 3019: 2901:2, 5, 6, 8, 9, 12 2711: 2699:polynomial algebra 2687: 2643: 2619: 2591: 2571: 2539: 2499: 2479: 2459: 2401: 2346: 2319: 2246: 2226: 2173: 2140: 2116: 2053: 1993: 1944: 1892: 1778: 1748: 1617: 1602: 1549: 1497: 1470: 1418: 1385: 1330: 1262: 1222: 1158: 1138: 1099: 1073: 1047: 1007: 964:central characters 962:to scalars called 952: 906: 865: 848:and similarly for 838: 787: 735: 698: 662: 635: 608: 590:Central characters 576: 556: 532: 505: 478: 448: 420: 385: 338: 310: 278: 255: 228: 192: 152: 125: 89: 5941:978-1-4757-2453-0 5924:Knapp, Anthony W. 5908:978-0-691-03756-1 5886:978-0-8218-4678-0 5401: 5324: 5255: 5182: 5157: 5116: 4960:{\displaystyle S} 4928: 4881: 3991:{\displaystyle K} 3906:{\displaystyle h} 3746:{\displaystyle r} 3651:quadratic Casimir 3279:Casimir invariant 3099:classifying space 2973: 2972: 2880:; 2, 4, 6, ..., 2 2714:{\displaystyle r} 2594:{\displaystyle r} 2373: 2275: 2256:the Weyl vector. 1954:to the centre is 1580: 1527: 1395:and another from 1017:, the characters 350:Cartan subalgebra 281:{\displaystyle W} 240:Cartan subalgebra 204:symmetric algebra 5971: 5944: 5919: 5889: 5867: 5836: 5819: 5776: 5775: 5757: 5737: 5731: 5730: 5712: 5692: 5686: 5685: 5673: 5667: 5661: 5655: 5649: 5617: 5615: 5614: 5609: 5597: 5595: 5594: 5589: 5557: 5556: 5540: 5538: 5537: 5532: 5506: 5505: 5489: 5487: 5486: 5481: 5443: 5442: 5433: 5432: 5416: 5414: 5413: 5408: 5403: 5402: 5397: 5392: 5386: 5385: 5372: 5370: 5369: 5364: 5356: 5355: 5349: 5348: 5339: 5338: 5326: 5325: 5320: 5315: 5309: 5308: 5283:singular vectors 5280: 5278: 5277: 5272: 5267: 5266: 5257: 5256: 5253: 5240: 5238: 5237: 5232: 5209: 5208: 5202: 5194: 5193: 5184: 5183: 5180: 5159: 5158: 5153: 5148: 5142: 5141: 5128: 5126: 5125: 5120: 5118: 5117: 5112: 5107: 5097: 5095: 5094: 5089: 5078: 5077: 5061: 5059: 5058: 5053: 5051: 5050: 5033: 5031: 5030: 5025: 5023: 5022: 5006: 5004: 5003: 4998: 4996: 4995: 4966: 4964: 4963: 4958: 4946: 4944: 4943: 4938: 4930: 4929: 4924: 4919: 4907: 4906: 4893: 4891: 4890: 4885: 4883: 4882: 4877: 4872: 4855: 4853: 4852: 4847: 4845: 4844: 4838: 4837: 4785: 4783: 4782: 4777: 4759: 4757: 4756: 4751: 4730: 4728: 4727: 4722: 4720: 4719: 4710: 4709: 4697: 4696: 4684: 4683: 4667: 4665: 4664: 4659: 4653: 4648: 4632: 4627: 4617: 4612: 4596: 4591: 4573: 4572: 4560: 4559: 4547: 4546: 4530: 4528: 4527: 4522: 4520: 4519: 4503: 4501: 4500: 4495: 4493: 4492: 4476: 4474: 4473: 4468: 4463: 4462: 4450: 4449: 4437: 4436: 4421: 4420: 4402: 4401: 4389: 4388: 4376: 4375: 4363: 4362: 4344: 4343: 4328: 4327: 4315: 4314: 4302: 4301: 4283: 4282: 4270: 4269: 4257: 4256: 4241: 4240: 4221: 4219: 4218: 4213: 4211: 4210: 4198: 4197: 4181: 4179: 4178: 4173: 4171: 4170: 4154: 4152: 4151: 4146: 4135: 4134: 4113: 4112: 4100: 4099: 4087: 4086: 4059: 4046: 4044: 4043: 4038: 4036: 4035: 4014: 4013: 3997: 3995: 3994: 3989: 3968: 3966: 3965: 3960: 3939: 3937: 3936: 3931: 3929: 3928: 3912: 3910: 3909: 3904: 3892: 3890: 3889: 3884: 3876: 3875: 3860: 3859: 3846: 3844: 3843: 3838: 3833: 3819: 3818: 3806: 3805: 3793: 3792: 3776: 3774: 3773: 3768: 3766: 3765: 3752: 3750: 3749: 3744: 3732: 3730: 3729: 3724: 3721: 3716: 3697: 3692: 3677: 3669: 3668: 3645: 3643: 3642: 3637: 3635: 3634: 3617: 3615: 3614: 3609: 3606: 3601: 3588: 3583: 3568: 3567: 3555: 3554: 3542: 3541: 3525: 3523: 3522: 3517: 3515: 3514: 3502: 3501: 3485: 3483: 3482: 3477: 3475: 3474: 3458: 3456: 3455: 3450: 3448: 3447: 3435: 3434: 3418: 3416: 3415: 3410: 3402: 3401: 3386: 3385: 3372: 3370: 3369: 3364: 3359: 3345: 3344: 3332: 3331: 3319: 3318: 3302: 3300: 3299: 3294: 3292: 3276: 3274: 3273: 3268: 3263: 3249: 3248: 3232: 3230: 3229: 3224: 3222: 3221: 3199: 3197: 3196: 3191: 3189: 3188: 3167: 3166: 3147: 3145: 3144: 3139: 3134: 3117: 3116: 3092: 3090: 3089: 3084: 3076: 3075: 3048: 3047: 3028: 3026: 3025: 3020: 3018: 3017: 2999: 2998: 2729: 2720: 2718: 2717: 2712: 2696: 2694: 2693: 2688: 2686: 2685: 2676: 2675: 2655:H. S. M. Coxeter 2652: 2650: 2649: 2644: 2642: 2641: 2628: 2626: 2625: 2620: 2618: 2617: 2600: 2598: 2597: 2592: 2580: 2578: 2577: 2572: 2570: 2569: 2548: 2546: 2545: 2540: 2538: 2537: 2525: 2524: 2508: 2506: 2505: 2500: 2488: 2486: 2485: 2480: 2468: 2466: 2465: 2460: 2458: 2457: 2410: 2408: 2407: 2402: 2400: 2399: 2381: 2380: 2375: 2374: 2366: 2355: 2353: 2352: 2347: 2345: 2344: 2328: 2326: 2325: 2320: 2315: 2314: 2299: 2298: 2277: 2276: 2268: 2255: 2253: 2252: 2247: 2235: 2233: 2232: 2227: 2182: 2180: 2179: 2174: 2169: 2168: 2149: 2147: 2146: 2141: 2139: 2138: 2125: 2123: 2122: 2117: 2112: 2111: 2093: 2092: 2062: 2060: 2059: 2054: 2019: 2018: 2002: 2000: 1999: 1994: 1989: 1988: 1973: 1972: 1953: 1951: 1950: 1945: 1940: 1939: 1921: 1920: 1901: 1899: 1898: 1893: 1882: 1881: 1869: 1868: 1863: 1862: 1852: 1851: 1846: 1845: 1835: 1834: 1813: 1812: 1787: 1785: 1784: 1779: 1777: 1776: 1757: 1755: 1754: 1749: 1738: 1737: 1725: 1724: 1719: 1718: 1708: 1707: 1702: 1701: 1691: 1690: 1669: 1668: 1650: 1649: 1626: 1624: 1623: 1618: 1616: 1615: 1610: 1609: 1601: 1600: 1599: 1576: 1575: 1563: 1562: 1557: 1556: 1548: 1547: 1546: 1523: 1522: 1506: 1504: 1503: 1498: 1496: 1495: 1479: 1477: 1476: 1471: 1466: 1465: 1450: 1449: 1427: 1425: 1424: 1419: 1414: 1413: 1394: 1392: 1391: 1386: 1378: 1377: 1359: 1358: 1339: 1337: 1336: 1331: 1323: 1322: 1307: 1306: 1297: 1296: 1271: 1269: 1268: 1263: 1261: 1260: 1251: 1250: 1231: 1229: 1228: 1223: 1215: 1214: 1199: 1198: 1167: 1165: 1164: 1159: 1147: 1145: 1144: 1139: 1137: 1136: 1131: 1130: 1109:are on the same 1108: 1106: 1105: 1100: 1082: 1080: 1079: 1074: 1056: 1054: 1053: 1048: 1046: 1045: 1033: 1032: 1016: 1014: 1013: 1008: 1006: 1005: 1000: 999: 961: 959: 958: 953: 945: 944: 929: 928: 915: 913: 912: 907: 905: 904: 891: 890: 874: 872: 871: 866: 864: 863: 847: 845: 844: 839: 825: 824: 796: 794: 793: 788: 780: 779: 764: 763: 744: 742: 741: 736: 734: 733: 707: 705: 704: 699: 694: 693: 671: 669: 668: 663: 661: 660: 644: 642: 641: 636: 634: 633: 617: 615: 614: 609: 607: 606: 585: 583: 582: 577: 565: 563: 562: 557: 541: 539: 538: 533: 531: 530: 514: 512: 511: 506: 504: 503: 487: 485: 484: 479: 477: 476: 457: 455: 454: 449: 447: 446: 429: 427: 426: 421: 419: 418: 413: 412: 394: 392: 391: 386: 384: 383: 378: 377: 347: 345: 344: 339: 337: 336: 319: 317: 316: 311: 309: 308: 287: 285: 284: 279: 264: 262: 261: 256: 254: 253: 237: 235: 234: 229: 224: 223: 201: 199: 198: 193: 191: 190: 181: 180: 162:to the elements 161: 159: 158: 153: 151: 150: 134: 132: 131: 126: 121: 120: 98: 96: 95: 90: 82: 81: 66: 65: 34:, introduced by 5979: 5978: 5974: 5973: 5972: 5970: 5969: 5968: 5949: 5948: 5947: 5942: 5922: 5909: 5892: 5887: 5871: 5856: 5846:Springer-Verlag 5839: 5817:10.2307/1990524 5799: 5795: 5785: 5780: 5779: 5739: 5738: 5734: 5694: 5693: 5689: 5675: 5674: 5670: 5662: 5658: 5650: 5646: 5641: 5624: 5600: 5599: 5548: 5543: 5542: 5497: 5492: 5491: 5434: 5424: 5419: 5418: 5375: 5374: 5340: 5298: 5297: 5248: 5243: 5242: 5175: 5131: 5130: 5100: 5099: 5067: 5066: 5040: 5039: 5014: 5009: 5008: 4987: 4973: 4972: 4949: 4948: 4896: 4895: 4865: 4864: 4830: 4825: 4824: 4793: 4762: 4761: 4733: 4732: 4711: 4701: 4688: 4675: 4670: 4669: 4564: 4551: 4538: 4533: 4532: 4511: 4506: 4505: 4484: 4479: 4478: 4454: 4441: 4428: 4412: 4393: 4380: 4367: 4354: 4335: 4319: 4306: 4293: 4274: 4261: 4248: 4232: 4224: 4223: 4202: 4189: 4184: 4183: 4162: 4157: 4156: 4091: 4076: 4075: 4071: 4070: 4069: 4068: 4067: 4065: 4060: 4027: 4005: 4000: 3999: 3971: 3970: 3942: 3941: 3920: 3915: 3914: 3895: 3894: 3849: 3848: 3797: 3782: 3781: 3755: 3754: 3735: 3734: 3660: 3655: 3654: 3626: 3621: 3620: 3559: 3546: 3533: 3528: 3527: 3506: 3493: 3488: 3487: 3466: 3461: 3460: 3439: 3426: 3421: 3420: 3375: 3374: 3323: 3308: 3307: 3283: 3282: 3235: 3234: 3211: 3210: 3206: 3180: 3158: 3150: 3149: 3108: 3103: 3102: 3067: 3039: 3031: 3030: 3009: 2990: 2985: 2984: 2981:cohomology ring 2960: 2943: 2926: 2909: 2892: 2860: 2847:2, 4, 6, ..., 2 2832: 2819:2, 4, 6, ..., 2 2803: 2793: + 1 2774: 2721:variables (see 2703: 2702: 2677: 2659: 2658: 2631: 2630: 2607: 2606: 2583: 2582: 2559: 2558: 2555: 2529: 2516: 2511: 2510: 2491: 2490: 2471: 2470: 2449: 2444: 2443: 2429:Humphreys (1978 2417: 2385: 2363: 2358: 2357: 2336: 2331: 2330: 2261: 2260: 2238: 2237: 2185: 2184: 2152: 2151: 2128: 2127: 2070: 2069: 2010: 2005: 2004: 1956: 1955: 1904: 1903: 1856: 1839: 1790: 1789: 1760: 1759: 1712: 1695: 1633: 1632: 1603: 1591: 1567: 1550: 1538: 1514: 1509: 1508: 1487: 1482: 1481: 1433: 1432: 1397: 1396: 1342: 1341: 1286: 1285: 1282: 1252: 1234: 1233: 1188: 1187: 1150: 1149: 1124: 1119: 1118: 1085: 1084: 1059: 1058: 1057:if and only if 1037: 1024: 1019: 1018: 993: 976: 975: 972: 918: 917: 896: 882: 877: 876: 855: 850: 849: 816: 799: 798: 747: 746: 725: 714: 713: 677: 676: 652: 647: 646: 625: 620: 619: 596: 595: 592: 568: 567: 548: 547: 522: 517: 516: 495: 490: 489: 468: 463: 462: 436: 435: 406: 401: 400: 371: 354: 353: 326: 325: 298: 297: 294: 270: 269: 243: 242: 207: 206: 182: 164: 163: 140: 139: 104: 103: 55: 54: 24: 17: 12: 11: 5: 5977: 5975: 5967: 5966: 5961: 5951: 5950: 5946: 5945: 5940: 5920: 5907: 5890: 5885: 5869: 5854: 5837: 5796: 5794: 5791: 5784: 5781: 5778: 5777: 5755:hep-th/9402022 5732: 5687: 5668: 5664:Humphreys 1978 5656: 5654:, p. 130. 5652:Humphreys 1978 5643: 5642: 5640: 5637: 5636: 5635: 5630: 5623: 5620: 5607: 5587: 5584: 5581: 5578: 5575: 5572: 5569: 5566: 5563: 5560: 5555: 5551: 5530: 5527: 5524: 5521: 5518: 5515: 5512: 5509: 5504: 5500: 5479: 5476: 5473: 5470: 5467: 5464: 5461: 5458: 5455: 5452: 5449: 5446: 5441: 5437: 5431: 5427: 5406: 5400: 5396: 5389: 5384: 5362: 5359: 5354: 5347: 5343: 5337: 5332: 5329: 5323: 5319: 5312: 5307: 5270: 5265: 5260: 5251: 5230: 5227: 5224: 5221: 5218: 5215: 5212: 5207: 5201: 5197: 5192: 5187: 5178: 5174: 5171: 5168: 5165: 5162: 5156: 5152: 5145: 5140: 5115: 5111: 5087: 5084: 5081: 5076: 5049: 5021: 5017: 4994: 4990: 4986: 4983: 4980: 4967:of the vacuum 4956: 4936: 4933: 4927: 4923: 4916: 4913: 4910: 4905: 4880: 4876: 4843: 4836: 4832: 4821:Langlands dual 4792: 4789: 4788: 4787: 4775: 4772: 4769: 4749: 4746: 4743: 4740: 4718: 4714: 4708: 4704: 4700: 4695: 4691: 4687: 4682: 4678: 4657: 4652: 4647: 4643: 4639: 4636: 4631: 4626: 4622: 4616: 4611: 4607: 4603: 4600: 4595: 4590: 4586: 4582: 4579: 4576: 4571: 4567: 4563: 4558: 4554: 4550: 4545: 4541: 4518: 4514: 4491: 4487: 4466: 4461: 4457: 4453: 4448: 4444: 4440: 4435: 4431: 4427: 4424: 4419: 4415: 4411: 4408: 4405: 4400: 4396: 4392: 4387: 4383: 4379: 4374: 4370: 4366: 4361: 4357: 4353: 4350: 4347: 4342: 4338: 4334: 4331: 4326: 4322: 4318: 4313: 4309: 4305: 4300: 4296: 4292: 4289: 4286: 4281: 4277: 4273: 4268: 4264: 4260: 4255: 4251: 4247: 4244: 4239: 4235: 4231: 4209: 4205: 4201: 4196: 4192: 4169: 4165: 4144: 4141: 4138: 4133: 4130: 4125: 4122: 4119: 4116: 4111: 4108: 4103: 4098: 4094: 4090: 4085: 4063: 4061: 4054: 4053: 4052: 4051: 4050: 4049: 4048: 4034: 4030: 4026: 4023: 4020: 4017: 4012: 4008: 3987: 3984: 3981: 3978: 3958: 3955: 3952: 3949: 3927: 3923: 3902: 3882: 3879: 3874: 3869: 3866: 3863: 3858: 3836: 3832: 3828: 3825: 3822: 3817: 3814: 3809: 3804: 3800: 3796: 3791: 3778: 3764: 3742: 3720: 3715: 3711: 3707: 3704: 3701: 3696: 3691: 3687: 3683: 3680: 3676: 3672: 3667: 3663: 3647: 3633: 3629: 3605: 3600: 3596: 3592: 3587: 3582: 3578: 3574: 3571: 3566: 3562: 3558: 3553: 3549: 3545: 3540: 3536: 3513: 3509: 3505: 3500: 3496: 3473: 3469: 3446: 3442: 3438: 3433: 3429: 3408: 3405: 3400: 3395: 3392: 3389: 3384: 3362: 3358: 3354: 3351: 3348: 3343: 3340: 3335: 3330: 3326: 3322: 3317: 3304: 3291: 3266: 3262: 3258: 3255: 3252: 3247: 3244: 3220: 3205: 3202: 3187: 3183: 3179: 3176: 3173: 3170: 3165: 3161: 3157: 3137: 3133: 3129: 3126: 3123: 3120: 3115: 3111: 3082: 3079: 3074: 3070: 3066: 3063: 3060: 3057: 3054: 3051: 3046: 3042: 3038: 3016: 3012: 3008: 3005: 3002: 2997: 2993: 2971: 2970: 2967: 2964: 2961: 2958: 2954: 2953: 2950: 2947: 2944: 2941: 2937: 2936: 2933: 2930: 2927: 2924: 2920: 2919: 2916: 2913: 2910: 2907: 2903: 2902: 2899: 2896: 2893: 2890: 2886: 2885: 2875: 2868: 2861: 2856: 2852: 2851: 2845: 2844: + 1 2839: 2833: 2828: 2824: 2823: 2817: 2810: 2804: 2799: 2795: 2794: 2789:2, 3, 4, ..., 2787: 2786: + 1 2781: 2780: + 1 2775: 2770: 2766: 2765: 2762: 2759: 2756: 2750: 2749: 2746: 2741: 2736:Coxeter number 2733: 2710: 2684: 2680: 2674: 2669: 2666: 2657:observed that 2640: 2616: 2590: 2568: 2554: 2551: 2536: 2532: 2528: 2523: 2519: 2498: 2478: 2456: 2452: 2416: 2413: 2398: 2395: 2392: 2388: 2384: 2379: 2372: 2369: 2343: 2339: 2318: 2313: 2308: 2305: 2302: 2297: 2292: 2289: 2286: 2283: 2280: 2274: 2271: 2245: 2225: 2222: 2219: 2216: 2213: 2210: 2207: 2204: 2201: 2198: 2195: 2192: 2183:it is defined 2172: 2167: 2162: 2159: 2137: 2115: 2110: 2105: 2102: 2099: 2096: 2091: 2086: 2083: 2080: 2077: 2052: 2049: 2046: 2043: 2040: 2037: 2034: 2031: 2028: 2025: 2022: 2017: 2013: 1992: 1987: 1982: 1979: 1976: 1971: 1966: 1963: 1943: 1938: 1933: 1930: 1927: 1924: 1919: 1914: 1911: 1891: 1888: 1885: 1880: 1875: 1872: 1867: 1861: 1855: 1850: 1844: 1838: 1833: 1828: 1825: 1822: 1819: 1816: 1811: 1806: 1803: 1800: 1797: 1775: 1770: 1767: 1747: 1744: 1741: 1736: 1731: 1728: 1723: 1717: 1711: 1706: 1700: 1694: 1689: 1684: 1681: 1678: 1675: 1672: 1667: 1662: 1659: 1656: 1653: 1648: 1643: 1640: 1614: 1608: 1598: 1594: 1590: 1587: 1583: 1579: 1574: 1570: 1566: 1561: 1555: 1545: 1541: 1537: 1534: 1530: 1526: 1521: 1517: 1494: 1490: 1469: 1464: 1459: 1456: 1453: 1448: 1443: 1440: 1417: 1412: 1407: 1404: 1384: 1381: 1376: 1371: 1368: 1365: 1362: 1357: 1352: 1349: 1329: 1326: 1321: 1316: 1313: 1310: 1305: 1300: 1295: 1281: 1278: 1259: 1255: 1249: 1244: 1241: 1221: 1218: 1213: 1208: 1205: 1202: 1197: 1170:positive roots 1157: 1135: 1129: 1098: 1095: 1092: 1072: 1069: 1066: 1044: 1040: 1036: 1031: 1027: 1004: 998: 992: 989: 986: 983: 971: 968: 951: 948: 943: 938: 935: 932: 927: 903: 899: 894: 889: 885: 862: 858: 837: 834: 831: 828: 823: 819: 815: 812: 809: 806: 786: 783: 778: 773: 770: 767: 762: 757: 754: 732: 728: 724: 721: 697: 692: 687: 684: 659: 655: 632: 628: 605: 591: 588: 586:respectively. 575: 555: 529: 525: 502: 498: 475: 471: 460:positive roots 445: 417: 411: 382: 376: 370: 367: 364: 361: 335: 307: 293: 290: 277: 252: 227: 222: 217: 214: 189: 185: 179: 174: 171: 149: 124: 119: 114: 111: 88: 85: 80: 75: 72: 69: 64: 36:Harish-Chandra 15: 13: 10: 9: 6: 4: 3: 2: 5976: 5965: 5962: 5960: 5957: 5956: 5954: 5943: 5937: 5933: 5929: 5925: 5921: 5918: 5914: 5910: 5904: 5900: 5896: 5891: 5888: 5882: 5878: 5874: 5870: 5865: 5861: 5857: 5855:0-387-90053-5 5851: 5847: 5843: 5838: 5835: 5831: 5827: 5823: 5818: 5813: 5809: 5805: 5804: 5798: 5797: 5792: 5790: 5789: 5782: 5773: 5769: 5765: 5761: 5756: 5751: 5747: 5743: 5736: 5733: 5728: 5724: 5720: 5716: 5711: 5706: 5702: 5698: 5691: 5688: 5684:(2): 273–342. 5683: 5679: 5672: 5669: 5665: 5660: 5657: 5653: 5648: 5645: 5638: 5634: 5631: 5629: 5626: 5625: 5621: 5619: 5585: 5582: 5579: 5576: 5573: 5570: 5567: 5564: 5561: 5558: 5553: 5549: 5541:have degrees 5528: 5525: 5522: 5519: 5516: 5513: 5510: 5507: 5502: 5498: 5477: 5474: 5471: 5468: 5465: 5462: 5459: 5456: 5453: 5450: 5447: 5444: 5439: 5435: 5429: 5360: 5345: 5330: 5295: 5290: 5288: 5284: 5249: 5225: 5222: 5219: 5213: 5176: 5172: 5169: 5163: 5082: 5065: 5037: 5019: 5015: 4992: 4988: 4984: 4981: 4978: 4970: 4954: 4911: 4862: 4857: 4834: 4831: 4822: 4818: 4814: 4810: 4806: 4802: 4798: 4790: 4773: 4770: 4767: 4747: 4744: 4741: 4738: 4716: 4706: 4702: 4698: 4693: 4689: 4680: 4676: 4655: 4650: 4645: 4641: 4637: 4634: 4629: 4624: 4620: 4614: 4609: 4605: 4601: 4598: 4593: 4588: 4584: 4580: 4577: 4569: 4565: 4561: 4556: 4552: 4543: 4539: 4516: 4512: 4489: 4485: 4459: 4455: 4446: 4442: 4438: 4433: 4429: 4425: 4417: 4413: 4406: 4398: 4394: 4385: 4381: 4377: 4372: 4368: 4359: 4355: 4348: 4340: 4336: 4332: 4324: 4320: 4316: 4311: 4307: 4298: 4294: 4287: 4279: 4275: 4266: 4262: 4258: 4253: 4249: 4245: 4237: 4233: 4207: 4203: 4199: 4194: 4190: 4167: 4163: 4139: 4123: 4117: 4101: 4096: 4092: 4088: 4073: 4072: 4058: 4032: 4028: 4024: 4018: 4010: 4006: 3982: 3976: 3956: 3953: 3947: 3925: 3921: 3900: 3864: 3826: 3823: 3807: 3802: 3798: 3794: 3779: 3740: 3718: 3713: 3709: 3705: 3702: 3699: 3694: 3689: 3685: 3681: 3665: 3661: 3652: 3648: 3631: 3627: 3603: 3598: 3594: 3590: 3585: 3580: 3576: 3572: 3564: 3560: 3556: 3551: 3547: 3538: 3534: 3511: 3507: 3503: 3498: 3494: 3471: 3467: 3444: 3440: 3436: 3431: 3427: 3390: 3352: 3349: 3333: 3328: 3324: 3320: 3305: 3280: 3256: 3253: 3208: 3207: 3203: 3201: 3185: 3181: 3177: 3174: 3171: 3168: 3163: 3159: 3155: 3127: 3124: 3121: 3113: 3109: 3100: 3096: 3095:Betti numbers 3080: 3077: 3072: 3068: 3064: 3061: 3058: 3055: 3052: 3049: 3044: 3040: 3036: 3014: 3010: 3006: 3003: 3000: 2995: 2991: 2982: 2978: 2968: 2965: 2962: 2956: 2955: 2951: 2948: 2945: 2939: 2938: 2934: 2931: 2928: 2922: 2921: 2917: 2914: 2911: 2905: 2904: 2900: 2897: 2894: 2888: 2887: 2883: 2879: 2876: 2873: 2869: 2866: 2862: 2859: 2854: 2853: 2850: 2846: 2843: 2840: 2838: 2834: 2831: 2826: 2825: 2822: 2818: 2815: 2811: 2809: 2805: 2802: 2797: 2796: 2792: 2788: 2785: 2782: 2779: 2776: 2773: 2768: 2767: 2763: 2760: 2757: 2755: 2752: 2751: 2747: 2745: 2742: 2740: 2737: 2734: 2731: 2730: 2727: 2724: 2708: 2700: 2682: 2664: 2656: 2604: 2588: 2552: 2550: 2534: 2530: 2521: 2517: 2496: 2476: 2454: 2450: 2442: 2438: 2437:Verma modules 2432: 2430: 2426: 2422: 2414: 2412: 2396: 2393: 2390: 2386: 2382: 2377: 2367: 2341: 2337: 2303: 2290: 2287: 2284: 2281: 2278: 2269: 2257: 2243: 2223: 2217: 2211: 2208: 2205: 2202: 2196: 2190: 2157: 2100: 2081: 2078: 2075: 2068: 2063: 2047: 2038: 2032: 2029: 2023: 2015: 2011: 1977: 1964: 1961: 1928: 1909: 1889: 1870: 1865: 1853: 1848: 1823: 1817: 1801: 1798: 1795: 1768: 1765: 1745: 1726: 1721: 1709: 1704: 1679: 1673: 1657: 1654: 1638: 1630: 1612: 1596: 1588: 1585: 1581: 1577: 1572: 1568: 1564: 1559: 1543: 1535: 1532: 1528: 1524: 1519: 1515: 1492: 1454: 1441: 1438: 1429: 1402: 1382: 1366: 1363: 1347: 1311: 1298: 1279: 1277: 1275: 1257: 1239: 1203: 1186: 1182: 1177: 1175: 1171: 1155: 1133: 1116: 1112: 1096: 1093: 1090: 1070: 1067: 1064: 1042: 1038: 1034: 1029: 1025: 1002: 990: 987: 984: 981: 969: 967: 965: 933: 901: 897: 892: 887: 883: 860: 856: 835: 829: 821: 817: 813: 810: 807: 804: 768: 755: 752: 730: 726: 722: 719: 711: 682: 675: 657: 653: 630: 626: 589: 587: 573: 553: 545: 527: 523: 500: 496: 473: 461: 433: 415: 398: 380: 368: 365: 362: 359: 351: 323: 291: 289: 275: 268: 241: 212: 205: 187: 169: 138: 109: 102: 70: 53: 49: 45: 41: 37: 33: 29: 22: 5931: 5894: 5876: 5841: 5810:(1): 28–96, 5807: 5801: 5786: 5745: 5741: 5735: 5700: 5696: 5690: 5681: 5677: 5671: 5659: 5647: 5291: 5286: 5282: 5129:, that is, 5064:loop algebra 4860: 4858: 4823:Lie algebra 4794: 3650: 2974: 2952:2, 6, 8, 12 2881: 2877: 2871: 2864: 2857: 2848: 2841: 2836: 2829: 2820: 2813: 2807: 2800: 2790: 2783: 2777: 2771: 2753: 2738: 2602: 2556: 2433: 2418: 2415:Applications 2258: 2066: 2064: 1507:, defining 1430: 1283: 1178: 1173: 973: 963: 593: 397:weight space 295: 48:Lie algebras 31: 25: 2732:Lie algebra 1428:to itself. 1274:isomorphism 1174:Weyl vector 44:isomorphism 28:mathematics 5953:Categories 5793:References 5710:2008.05256 2425:Victor Kac 1115:Weyl group 267:Weyl group 5926:(2013) , 5748:: 27–62. 5727:254795180 5606:∂ 5580:⋯ 5523:⋯ 5475:≥ 5460:⋯ 5426:∂ 5399:^ 5331:≅ 5322:^ 5173:∈ 5155:^ 5114:^ 5020:∨ 4993:∨ 4985:− 4926:^ 4879:^ 4817:W-algebra 4807:shown by 4797:reductive 4742:≠ 4452:↦ 4426:− 4423:↦ 4391:↦ 4365:↦ 4333:− 4330:↦ 4304:↦ 4272:↦ 4246:− 4243:↦ 3954:− 3951:↦ 3703:⋯ 3504:≅ 3172:⋯ 3114:∗ 3078:− 3059:⋯ 3050:− 3004:⋯ 2977:Lie group 2535:μ 2527:→ 2522:λ 2497:μ 2477:λ 2455:λ 2397:δ 2394:− 2391:λ 2387:χ 2378:λ 2371:~ 2368:χ 2342:λ 2338:χ 2301:→ 2288:γ 2285:∘ 2282:τ 2273:~ 2270:γ 2244:δ 2212:δ 2209:− 2191:τ 2098:→ 2076:τ 2067:twist map 2048:λ 2033:γ 2016:λ 2012:χ 1975:→ 1962:γ 1926:→ 1866:− 1854:∩ 1818:⊕ 1799:∈ 1769:∈ 1722:− 1674:⊕ 1613:α 1597:− 1593:Φ 1589:∈ 1586:α 1582:⨁ 1573:− 1560:α 1540:Φ 1536:∈ 1533:α 1529:⨁ 1489:Φ 1452:→ 1439:γ 1156:δ 1134:∗ 1097:δ 1091:μ 1071:δ 1065:λ 1043:μ 1039:χ 1030:λ 1026:χ 1003:∗ 991:∈ 988:μ 982:λ 902:μ 898:χ 888:λ 884:χ 861:μ 822:λ 818:χ 808:⋅ 756:∈ 731:λ 723:∈ 658:μ 631:λ 618:-modules 574:μ 554:λ 528:μ 501:λ 470:Φ 416:∗ 381:∗ 369:∈ 366:μ 360:λ 42:), is an 5875:(2008), 5772:17099900 5622:See also 5490:, where 5098:part of 5007:, where 3204:Examples 2549:exists. 1148:, where 974:For any 708:and its 5917:1330919 5864:0499562 5834:0044515 5826:1990524 5034:is the 4813:Frenkel 2601:be its 1113:of the 430:is the 399:(where 202:of the 99:of the 38: ( 5938:  5915:  5905:  5883:  5862:  5852:  5832:  5824:  5770:  5725:  5241:where 4809:Feigin 3733:where 710:center 52:center 30:, the 5822:JSTOR 5768:S2CID 5750:arXiv 5723:S2CID 5705:arXiv 5703:(8). 5639:Notes 4760:(and 2969:2, 6 2259:Then 2236:with 2126:. On 1111:orbit 320:be a 238:of a 135:of a 5936:ISBN 5903:ISBN 5881:ISBN 5850:ISBN 5598:and 5038:for 4859:The 4811:and 4504:and 4074:For 3780:For 3306:For 2603:rank 2557:For 2411:is. 1083:and 745:and 645:and 594:The 566:and 515:and 432:dual 352:and 348:its 296:Let 40:1951 5812:doi 5760:doi 5746:166 5715:doi 5701:111 5285:or 5254:cri 5181:cri 3209:If 2701:in 2629:of 2439:or 1758:If 1340:to 1232:to 1117:of 542:be 434:of 26:In 5955:: 5930:, 5913:MR 5911:, 5901:, 5860:MR 5858:. 5848:. 5830:MR 5828:, 5820:, 5808:70 5806:, 5766:. 5758:. 5744:. 5721:. 5713:. 5699:. 5682:76 5680:. 5296:: 5289:. 5164::= 4856:. 3200:. 2946:12 2932:30 2929:30 2915:18 2912:18 2898:12 2895:12 2764:1 2653:. 1276:. 1176:. 966:. 814::= 797:, 324:, 288:. 5866:. 5814:: 5774:. 5762:: 5752:: 5729:. 5717:: 5707:: 5586:l 5583:, 5577:, 5574:1 5571:= 5568:i 5565:, 5562:1 5559:+ 5554:i 5550:d 5529:l 5526:, 5520:, 5517:1 5514:= 5511:i 5508:, 5503:i 5499:S 5478:0 5472:n 5469:, 5466:l 5463:, 5457:, 5454:1 5451:= 5448:i 5445:, 5440:i 5436:S 5430:n 5405:) 5395:g 5388:( 5383:Z 5361:. 5358:) 5353:g 5346:L 5342:( 5336:W 5328:) 5318:g 5311:( 5306:Z 5269:) 5264:g 5259:( 5250:V 5229:} 5226:0 5223:= 5220:S 5217:] 5214:t 5211:[ 5206:g 5200:| 5196:) 5191:g 5186:( 5177:V 5170:S 5167:{ 5161:) 5151:g 5144:( 5139:Z 5110:g 5086:] 5083:t 5080:[ 5075:g 5048:g 5016:h 4989:h 4982:= 4979:k 4955:S 4935:) 4932:) 4922:g 4915:( 4912:U 4909:( 4904:Z 4875:g 4842:g 4835:L 4774:b 4771:, 4768:a 4748:a 4745:2 4739:b 4717:2 4713:) 4707:2 4703:h 4699:, 4694:1 4690:h 4686:( 4681:2 4677:f 4656:. 4651:4 4646:2 4642:h 4638:a 4635:+ 4630:2 4625:2 4621:h 4615:2 4610:1 4606:h 4602:b 4599:+ 4594:4 4589:1 4585:h 4581:a 4578:= 4575:) 4570:2 4566:h 4562:, 4557:1 4553:h 4549:( 4544:4 4540:f 4517:2 4513:h 4490:1 4486:h 4465:) 4460:1 4456:h 4447:2 4443:h 4439:, 4434:2 4430:h 4418:1 4414:h 4410:( 4407:, 4404:) 4399:1 4395:h 4386:2 4382:h 4378:, 4373:2 4369:h 4360:1 4356:h 4352:( 4349:, 4346:) 4341:2 4337:h 4325:2 4321:h 4317:, 4312:1 4308:h 4299:1 4295:h 4291:( 4288:, 4285:) 4280:2 4276:h 4267:2 4263:h 4259:, 4254:1 4250:h 4238:1 4234:h 4230:( 4208:2 4204:h 4200:, 4195:1 4191:h 4168:8 4164:D 4143:) 4140:4 4137:( 4132:p 4129:s 4124:= 4121:) 4118:5 4115:( 4110:o 4107:s 4102:= 4097:2 4093:B 4089:= 4084:g 4064:2 4047:. 4033:2 4029:h 4025:= 4022:) 4019:h 4016:( 4011:2 4007:f 3986:] 3983:h 3980:[ 3977:K 3957:h 3948:h 3926:2 3922:S 3901:h 3881:) 3878:) 3873:g 3868:( 3865:U 3862:( 3857:Z 3835:) 3831:C 3827:, 3824:2 3821:( 3816:l 3813:s 3808:= 3803:1 3799:A 3795:= 3790:g 3763:h 3741:r 3719:2 3714:r 3710:h 3706:+ 3700:+ 3695:2 3690:1 3686:h 3682:= 3679:) 3675:h 3671:( 3666:2 3662:f 3646:. 3632:2 3628:A 3604:2 3599:2 3595:h 3591:+ 3586:2 3581:1 3577:h 3573:= 3570:) 3565:2 3561:h 3557:, 3552:1 3548:h 3544:( 3539:2 3535:f 3512:6 3508:D 3499:3 3495:S 3472:2 3468:A 3445:2 3441:h 3437:, 3432:1 3428:h 3407:) 3404:) 3399:g 3394:( 3391:U 3388:( 3383:Z 3361:) 3357:C 3353:, 3350:3 3347:( 3342:l 3339:s 3334:= 3329:2 3325:A 3321:= 3316:g 3290:R 3265:) 3261:R 3257:, 3254:2 3251:( 3246:l 3243:s 3219:g 3186:r 3182:d 3178:2 3175:, 3169:, 3164:1 3160:d 3156:2 3136:) 3132:R 3128:, 3125:G 3122:B 3119:( 3110:H 3081:1 3073:r 3069:d 3065:2 3062:, 3056:, 3053:1 3045:1 3041:d 3037:2 3015:r 3011:d 3007:, 3001:, 2996:1 2992:d 2966:4 2963:6 2959:2 2957:G 2949:9 2942:4 2940:F 2925:8 2923:E 2908:7 2906:E 2891:6 2889:E 2882:n 2878:n 2872:n 2870:2 2865:n 2863:2 2858:n 2855:D 2849:n 2842:n 2837:n 2835:2 2830:n 2827:C 2821:n 2814:n 2812:2 2808:n 2806:2 2801:n 2798:B 2791:n 2784:n 2778:n 2772:n 2769:A 2761:0 2758:0 2754:R 2739:h 2709:r 2683:W 2679:) 2673:h 2668:( 2665:S 2639:g 2615:h 2589:r 2567:g 2531:V 2518:V 2451:V 2383:= 2317:) 2312:h 2307:( 2304:S 2296:Z 2291:: 2279:= 2224:1 2221:) 2218:h 2215:( 2206:h 2203:= 2200:) 2197:h 2194:( 2171:) 2166:h 2161:( 2158:U 2136:h 2114:) 2109:h 2104:( 2101:S 2095:) 2090:h 2085:( 2082:S 2079:: 2051:) 2045:( 2042:) 2039:x 2036:( 2030:= 2027:) 2024:x 2021:( 1991:) 1986:h 1981:( 1978:S 1970:Z 1965:: 1942:) 1937:h 1932:( 1929:U 1923:) 1918:g 1913:( 1910:U 1890:. 1887:) 1884:) 1879:g 1874:( 1871:U 1860:n 1849:+ 1843:n 1837:) 1832:g 1827:( 1824:U 1821:( 1815:) 1810:h 1805:( 1802:U 1796:z 1774:Z 1766:z 1746:. 1743:) 1740:) 1735:g 1730:( 1727:U 1716:n 1710:+ 1705:+ 1699:n 1693:) 1688:g 1683:( 1680:U 1677:( 1671:) 1666:h 1661:( 1658:U 1655:= 1652:) 1647:g 1642:( 1639:U 1607:g 1578:= 1569:n 1565:, 1554:g 1544:+ 1525:= 1520:+ 1516:n 1493:+ 1468:) 1463:h 1458:( 1455:S 1447:Z 1442:: 1416:) 1411:h 1406:( 1403:S 1383:, 1380:) 1375:h 1370:( 1367:S 1364:= 1361:) 1356:h 1351:( 1348:U 1328:) 1325:) 1320:g 1315:( 1312:U 1309:( 1304:Z 1299:= 1294:Z 1258:W 1254:) 1248:h 1243:( 1240:S 1220:) 1217:) 1212:g 1207:( 1204:U 1201:( 1196:Z 1128:h 1094:+ 1068:+ 1035:= 997:h 985:, 950:) 947:) 942:g 937:( 934:U 931:( 926:Z 893:, 857:V 836:v 833:) 830:x 827:( 811:v 805:x 785:) 782:) 777:g 772:( 769:U 766:( 761:Z 753:x 727:V 720:v 696:) 691:g 686:( 683:U 654:V 627:V 604:g 524:V 497:V 474:+ 444:h 410:h 375:h 363:, 334:h 306:g 276:W 251:h 226:) 221:h 216:( 213:S 188:W 184:) 178:h 173:( 170:S 148:g 123:) 118:g 113:( 110:U 87:) 84:) 79:g 74:( 71:U 68:( 63:Z 23:.

Index

Harish-Chandra homomorphism
mathematics
Harish-Chandra
1951
isomorphism
Lie algebras
center
universal enveloping algebra
reductive Lie algebra
symmetric algebra
Cartan subalgebra
Weyl group
semisimple Lie algebra
Cartan subalgebra
weight space
dual
positive roots
highest weight modules
universal enveloping algebra
center
orbit
Weyl group
positive roots
Harish-Chandra homomorphism
universal enveloping algebra
isomorphism
Poincaré–Birkhoff–Witt theorem
Weyl's character formula
Victor Kac
Humphreys (1978

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑