Knowledge (XXG)

Hausdorff dimension

Source 📝

1618: 2380: 1655: 1460: 210: 42:, where after each iteration, all original line segments are replaced with four, each a self-similar copy that is 1/3 the length of the original. One formalism of the Hausdorff dimension uses the scale factor (S = 3) and the number of self-similar objects (N = 4) to calculate the dimension, D, after the first iteration to be D = (log N)/(log S) = (log 4)/(log 3) ≈ 1.26. 3980: 31: 714: 1374: 184:
triangle that points outward, and this base segment is then deleted to leave a final object from the iteration of unit length of 4. That is, after the first iteration, each original line segment has been replaced with N=4, where each self-similar copy is 1/S = 1/3 as long as the original. Stated
2329: 1622: 544: 408:, sets with noninteger Hausdorff dimensions, are found everywhere in nature. He observed that the proper idealization of most rough shapes you see around you is not in terms of smooth idealized shapes, but in terms of fractal idealized shapes: 2214: 297:
Every space-filling curve hits some points multiple times and does not have a continuous inverse. It is impossible to map two dimensions onto one in a way that is continuous and continuously invertible. The topological dimension, also called
2534: 1912: 1205: 185:
another way, we have taken an object with Euclidean dimension, D, and reduced its linear scale by 1/3 in each direction, so that its length increases to N=S. This equation is easily solved for D, yielding the ratio of logarithms (or
1040: 321:
But topological dimension is a very crude measure of the local size of a space (size near a point). A curve that is almost space-filling can still have topological dimension one, even if it fills up most of the area of a region. A
1829: 1583:
is a union of three copies of itself, each copy shrunk by a factor of 1/2; this yields a Hausdorff dimension of ln(3)/ln(2) â‰ˆ 1.58. These Hausdorff dimensions are related to the "critical exponent" of the
844: 179:
shown at right is constructed from an equilateral triangle; in each iteration, its component line segments are divided into 3 segments of unit length, the newly created middle segment is used as the base of a new
3047: 2954: 2753: 400:
For shapes that are smooth, or shapes with a small number of corners, the shapes of traditional geometry and science, the Hausdorff dimension is an integer agreeing with the topological dimension. But
2236: 2629: 920: 709:{\displaystyle H_{\delta }^{d}(S)=\inf \left\{\sum _{i=1}^{\infty }(\operatorname {diam} U_{i})^{d}:\bigcup _{i=1}^{\infty }U_{i}\supseteq S,\operatorname {diam} U_{i}<\delta \right\},} 2863: 150: 1448: 85:
is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an
2121: 1451:). The Hausdorff measure and the Hausdorff content can both be used to determine the dimension of a set, but if the measure of the set is non-zero, their actual values may disagree. 1982:
points in has Hausdorff dimension zero and Minkowski dimension one. There are also compact sets for which the Minkowski dimension is strictly larger than the Hausdorff dimension.
266:
is the number of independent parameters one needs to pick out a unique point inside. However, any point specified by two parameters can be instead specified by one, because the
1512: 1085: 536: 1418: 2129: 498: 93:. However, formulas have also been developed that allow calculation of the dimension of other less simple objects, where, solely on the basis of their properties of 1559: 1369:{\displaystyle C_{H}^{d}(S):=H_{\infty }^{d}(S)=\inf \left\{\sum _{k=1}^{\infty }(\operatorname {diam} U_{k})^{d}:\bigcup _{k=1}^{\infty }U_{k}\supseteq S\right\}} 1579:, is a union of two copies of itself, each copy shrunk by a factor 1/3; hence, it can be shown that its Hausdorff dimension is ln(2)/ln(3) â‰ˆ 0.63. The 2457: 1840: 1532: 1197: 1173: 1145: 1125: 1105: 940: 868: 761: 741: 468: 948: 2334:
This inequality can be strict. It is possible to find two sets of dimension 0 whose product has dimension 1. In the opposite direction, it is known that when
152:, as opposed to the more intuitive notion of dimension, which is not associated to general metric spaces, and only takes values in the non-negative integers. 1632:
performed detailed experiments to measure the approximate Hausdorff dimension for various coastlines. His results have varied from 1.02 for the coastline of
1420:
has the construction of the Hausdorff measure where the covering sets are allowed to have arbitrarily large sizes (Here, we use the standard convention that
3150:
Gneiting, Tilmann; Ơevčíková, Hana; Percival, Donald B. (2012). "Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data".
3911: 424:
is yet another similar notion which gives the same value for many shapes, but there are well-documented exceptions where all these dimensions differ.
314: + 1 balls overlap. For example, when one covers a line with short open intervals, some points must be covered twice, giving dimension  1756: 3087: 1585: 766: 412:
Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line.
3688: 2397: 1672: 227: 2965: 2881: 4014: 417: 390: 193: 3964: 3769: 3569: 3480: 3247: 2419: 1694: 249: 326:
has an integer topological dimension, but in terms of the amount of space it takes up, it behaves like a higher-dimensional space.
3213:(workshop), Society for Chaos Theory in Psychology and the Life Sciences annual meeting, June 28, 1996, Berkeley, California, see 2692: 3264: 2324:{\displaystyle \dim _{\operatorname {Haus} }(X\times Y)\geq \dim _{\operatorname {Haus} }(X)+\dim _{\operatorname {Haus} }(Y).} 397:
is a critical boundary between growth rates that are insufficient to cover the space, and growth rates that are overabundant.
3904: 2401: 1978:
is similar to, and at least as large as, the Hausdorff dimension, and they are equal in many situations. However, the set of
1676: 231: 106: 109:
allowing computation of dimensions for highly irregular or "rough" sets, this dimension is also commonly referred to as the
282:
involving interweaving the digits of two numbers to yield a single number encoding the same information). The example of a
279: 171:. This underlies the earlier statement that the Hausdorff dimension of a point is zero, of a line is one, etc., and that 2568: 3999: 2640: 299: 3194:
Larry Riddle, 2014, "Classic Iterated Function Systems: Koch Snowflake", Agnes Scott College e-Academy (online), see
884: 189:) appearing in the figures, and giving—in the Koch and other fractal cases—non-integer dimensions for these objects. 2432:
Many sets defined by a self-similarity condition have dimensions which can be determined explicitly. Roughly, a set
3680: 3390: 2390: 1665: 220: 4213: 3897: 2809: 120: 329:
The Hausdorff dimension measures the local size of a space taking into account the distance between points, the
126: 4208: 3934: 3784: 3214: 1424: 2077: 3289:
Farkas, Abel; Fraser, Jonathan (30 July 2015). "On the equality of Hausdorff measure and Hausdorff content".
4142: 4137: 4117: 3534:
Dodson, M. Maurice; Kristensen, Simon (June 12, 2003). "Hausdorff Dimension and Diophantine Approximation".
3096:, another variation of fractal dimension that, like Hausdorff dimension, is defined using coverings by balls 2792: 290:(taking one real number into a pair of real numbers in a way so that all pairs of numbers are covered) and 4127: 4122: 4102: 1593: 1576: 3138: 4132: 4112: 4107: 3703: 3403:
This Knowledge (XXG) article also discusses further useful characterizations of the Hausdorff dimension.
1991: 1568: 1488: 1052: 503: 3644: 3549: 3422: 1629: 119:, i.e. a set where the distances between all members are defined. The dimension is drawn from the 2209:{\displaystyle \dim _{\operatorname {Haus} }(X)=\sup _{i\in I}\dim _{\operatorname {Haus} }(X_{i}).} 4004: 3874: 3859: 3371: 3099: 2540: 2063: 1975: 1725: 1599: 1589: 1580: 1468: 438:
The formal definition of the Hausdorff dimension is arrived at by defining first the d-dimensional
287: 283: 164: 90: 3078:. Under the same conditions as the previous theorem, the unique fixed point of ψ is self-similar. 1382: 4183: 4024: 3979: 3883: 3815: 3720: 3660: 3575: 3539: 3438: 3348: 3322: 3290: 3177: 3159: 2660: 2648: 847: 342: 155:
In mathematical terms, the Hausdorff dimension generalizes the notion of the dimension of a real
94: 477: 192:
The Hausdorff dimension is a successor to the simpler, but usually equivalent, box-counting or
17: 4203: 4019: 3765: 3732: 3698: 3684: 3605: 3565: 3476: 3340: 3243: 3231: 3109: 3104: 3093: 3069: 3065: 2359: 439: 433: 421: 401: 186: 105:—have non-integer Hausdorff dimensions. Because of the significant technical advances made by 59: 3195: 3949: 3840: 3807: 3799: 3748: 3712: 3652: 3621: 3557: 3509: 3430: 3332: 3169: 1963: 443: 70: 1537: 3994: 3939: 3587: 2795:
around some point. Then the unique fixed point of ψ is a set whose Hausdorff dimension is
2529:{\displaystyle \psi _{i}:\mathbf {R} ^{n}\rightarrow \mathbf {R} ^{n},\quad i=1,\ldots ,m} 1979: 1907:{\displaystyle \inf _{Y}\dim _{\operatorname {Haus} }(Y)=\dim _{\operatorname {ind} }(X),} 1717: 1610: 1483: 98: 66: 3313:
Schleicher, Dierk (June 2007). "Hausdorff Dimension, Its Properties, and Its Surprises".
1035:{\displaystyle \dim _{\operatorname {H} }{(X)}:=\inf\{d\geq 0:{\mathcal {H}}^{d}(X)=0\}.} 3648: 3553: 3426: 1617: 4076: 4061: 3672: 1517: 1182: 1158: 1130: 1110: 1090: 925: 853: 746: 726: 453: 176: 39: 3595: 4197: 4066: 3819: 3724: 3664: 3591: 3579: 3442: 3236: 2759: 2636: 2436:
is self-similar if it is the fixed point of a set-valued transformation ψ, that is ψ(
2230:
are non-empty metric spaces, then the Hausdorff dimension of their product satisfies
1995: 1637: 1476: 447: 115:
More specifically, the Hausdorff dimension is a dimensional number associated with a
63: 3561: 3181: 294:, so that a one-dimensional object completely fills up a higher-dimensional object. 4086: 4051: 3944: 3780: 3736: 3352: 3336: 1922: 1633: 471: 330: 156: 116: 74: 2959:
is self-similar if and only if the intersections satisfy the following condition:
4171: 3954: 2379: 1732:
which is defined recursively. It is always an integer (or +∞) and is denoted dim
1654: 1603: 267: 209: 181: 47: 3845: 3828: 3752: 3538:. Proceedings of Symposia in Pure Mathematics. Vol. 72. pp. 305–347. 3514: 3497: 1824:{\displaystyle \dim _{\mathrm {Haus} }(X)\geq \dim _{\operatorname {ind} }(X).} 4166: 4046: 3811: 3656: 3434: 2868:
The contraction coefficient of a similitude is the magnitude of the dilation.
1572: 1459: 271: 3344: 4147: 4056: 3969: 3920: 839:{\displaystyle {\mathcal {H}}^{d}(S)=\lim _{\delta \to 0}H_{\delta }^{d}(S)} 275: 35: 3626: 3609: 2765:
The open set condition is a separation condition that ensures the images ψ
4071: 4034: 3959: 2788: 1721: 1046: 3133:
MacGregor Campbell, 2013, "5.6 Scaling and the Hausdorff Dimension," at
4081: 3803: 3716: 2404: in this section. Unsourced material may be challenged and removed. 1679: in this section. Unsourced material may be challenged and removed. 1564: 1464: 1421: 720: 405: 323: 234: in this section. Unsourced material may be challenged and removed. 172: 102: 86: 3878: 3173: 3072:(the intersections are just points), but is also true more generally: 30: 3544: 3327: 2643:
applied to the complete metric space of non-empty compact subsets of
78: 3635:
Marstrand, J. M. (1954). "The dimension of cartesian product sets".
3413:
Marstrand, J. M. (1954). "The dimension of Cartesian product sets".
1613:
in dimension 2 and above is conjectured to be Hausdorff dimension 2.
4038: 3295: 3164: 3042:{\displaystyle H^{s}\left(\psi _{i}(E)\cap \psi _{j}(E)\right)=0,} 1616: 1458: 29: 3536:
Fractal Geometry and Applications: A Jubilee of BenoĂźt Mandelbrot
101:, one is led to the conclusion that particular objects—including 3090:
Examples of deterministic fractals, random and natural fractals.
2949:{\displaystyle A\mapsto \psi (A)=\bigcup _{i=1}^{m}\psi _{i}(A)} 1567:
often are spaces whose Hausdorff dimension strictly exceeds the
82: 3893: 763:. The Hausdorff d-dimensional outer measure is then defined as 2373: 1648: 203: 89:
agreeing with the usual sense of dimension, also known as the
3701:(1929). "On Linear Sets of Points of Fractional Dimensions". 2669:(in certain cases), we need a technical condition called the 3889: 1000: 773: 286:
shows that one can even map the real line to the real plane
175:
can have noninteger Hausdorff dimensions. For instance, the
3856:
Fractal Geometry: Mathematical Foundations and Applications
3458:
Fractal geometry. Mathematical foundations and applications
3368:
Fractal Geometry: Mathematical Foundations and Applications
3209:
Keith Clayton, 1996, "Fractals and the Fractal Dimension,"
1471:, an object with Hausdorff dimension of log(3)/log(2)≈1.58. 2748:{\displaystyle \bigcup _{i=1}^{m}\psi _{i}(V)\subseteq V,} 1966:(1907–1976), e.g., see Hurewicz and Wallman, Chapter VII. 1606:
have the same Hausdorff dimension as the space they fill.
1127:
is infinite (except that when this latter set of numbers
262:
The intuitive concept of dimension of a geometric object
302:, explains why. This dimension is the greatest integer 1937:
have the same underlying set of points and the metric
393:, which equals the Hausdorff dimension when the value 310:
by small open balls there is at least one point where
3758:
Several selections from this volume are reprinted in
3129: 3127: 3125: 2968: 2884: 2812: 2695: 2571: 2460: 2239: 2132: 2080: 1843: 1759: 1540: 1520: 1491: 1427: 1385: 1208: 1185: 1161: 1133: 1113: 1093: 1055: 951: 928: 887: 856: 769: 749: 729: 547: 506: 480: 456: 416:
For fractals that occur in nature, the Hausdorff and
129: 3242:. Lecture notes in mathematics 1358. W. H. Freeman. 2354:
is bounded from above by the Hausdorff dimension of
69:. For instance, the Hausdorff dimension of a single 4159: 4095: 4033: 3987: 3927: 3460:. John Wiley & Sons, Inc., Hoboken, New Jersey. 2665:To determine the dimension of the self-similar set 2219:This can be verified directly from the definition. 3235: 3041: 2948: 2857: 2747: 2623: 2528: 2323: 2208: 2115: 1906: 1823: 1553: 1526: 1506: 1442: 1412: 1368: 1191: 1167: 1139: 1119: 1099: 1079: 1034: 934: 914: 862: 838: 755: 735: 708: 530: 492: 462: 389:approaches zero. More precisely, this defines the 144: 34:Example of non-integer dimensions. The first four 3677:Geometry of sets and measures in Euclidean spaces 3205: 3203: 2781:. Suppose the open set condition holds and each ψ 2758:where the sets in union on the left are pairwise 2624:{\displaystyle A=\bigcup _{i=1}^{m}\psi _{i}(A).} 2444:, although the exact definition is given below. 2159: 1845: 1428: 1263: 979: 797: 575: 2366:. These facts are discussed in Mattila (1995). 915:{\displaystyle \dim _{\operatorname {H} }{(X)}} 373:, the Hausdorff dimension is the unique number 3211:Basic Concepts in Nonlinear Dynamics and Chaos 3905: 3475:. Cambridge, UK: Cambridge University Press. 3263:Briggs, Jimmy; Tyree, Tim (3 December 2016). 2787:is a similitude, that is a composition of an 1962:These results were originally established by 8: 3308: 3306: 3226: 3224: 3222: 1026: 982: 2858:{\displaystyle \sum _{i=1}^{m}r_{i}^{s}=1.} 1970:Hausdorff dimension and Minkowski dimension 1708:Hausdorff dimension and inductive dimension 1147:is empty the Hausdorff dimension is zero). 3912: 3898: 3890: 3741:Journal of the London Mathematical Society 2875:which is carried onto itself by a mapping 1986:Hausdorff dimensions and Frostman measures 1621:Estimating the Hausdorff dimension of the 145:{\displaystyle {\overline {\mathbb {R} }}} 3844: 3739:(1937). "Sets of Fractional Dimensions". 3625: 3543: 3513: 3326: 3294: 3163: 3135:Annenberg Learner:MATHematics illuminated 3010: 2988: 2973: 2967: 2931: 2921: 2910: 2883: 2843: 2838: 2828: 2817: 2811: 2721: 2711: 2700: 2694: 2603: 2593: 2582: 2570: 2495: 2490: 2480: 2475: 2465: 2459: 2420:Learn how and when to remove this message 2300: 2275: 2244: 2238: 2194: 2178: 2162: 2137: 2131: 2107: 2091: 2079: 1883: 1858: 1848: 1842: 1800: 1765: 1764: 1758: 1695:Learn how and when to remove this message 1545: 1539: 1519: 1498: 1494: 1493: 1490: 1443:{\displaystyle \inf \varnothing =\infty } 1426: 1395: 1390: 1384: 1349: 1339: 1328: 1315: 1305: 1286: 1275: 1245: 1240: 1218: 1213: 1207: 1184: 1160: 1132: 1112: 1092: 1054: 1005: 999: 998: 965: 956: 950: 927: 901: 892: 886: 855: 821: 816: 800: 778: 772: 771: 768: 748: 728: 686: 661: 651: 640: 627: 617: 598: 587: 557: 552: 546: 505: 479: 455: 442:, a fractional-dimension analogue of the 250:Learn how and when to remove this message 159:. That is, the Hausdorff dimension of an 133: 132: 130: 128: 2116:{\displaystyle X=\bigcup _{i\in I}X_{i}} 846:, and the restriction of the mapping to 3471:Falconer, K. J. (1985). "Theorem 8.3". 3121: 3088:List of fractals by Hausdorff dimension 2673:(OSC) on the sequence of contractions ψ 2641:contractive mapping fixed point theorem 1431: 850:justifies it as a measure, called the 27:Invariant measure of fractal dimension 2123:is a finite or countable union, then 7: 2402:adding citations to reliable sources 2062:. A partial converse is provided by 1677:adding citations to reliable sources 232:adding citations to reliable sources 3068:. This is clear in the case of the 2070:Behaviour under unions and products 723:is taken over all countable covers 369:. For a sufficiently well-behaved 274:is equal to the cardinality of the 1775: 1772: 1769: 1766: 1577:zero-dimensional topological space 1437: 1340: 1287: 1241: 1107:-dimensional Hausdorff measure of 1071: 957: 893: 652: 599: 522: 25: 3315:The American Mathematical Monthly 1645:Properties of Hausdorff dimension 62:, that was introduced in 1918 by 3978: 2686:with compact closure, such that 2491: 2476: 2378: 1653: 1507:{\displaystyle \mathbb {R} ^{n}} 1080:{\displaystyle d\in [0,\infty )} 870:-dimensional Hausdorff Measure. 531:{\displaystyle d\in [0,\infty )} 208: 111:Hausdorff–Besicovitch dimension. 2554:< 1. Then there is a unique 2504: 2389:needs additional citations for 1950:is topologically equivalent to 1664:needs additional citations for 306:such that in every covering of 219:needs additional citations for 18:Hausdorff-Besicovitch dimension 3886:at Encyclopedia of Mathematics 3829:"Fractals and self similarity" 3498:"Fractals and self similarity" 3337:10.1080/00029890.2007.11920440 3238:The Fractal Geometry of Nature 3056:is the Hausdorff dimension of 3022: 3016: 3000: 2994: 2943: 2937: 2900: 2894: 2888: 2733: 2727: 2615: 2609: 2486: 2315: 2309: 2290: 2284: 2265: 2253: 2200: 2187: 2152: 2146: 1898: 1892: 1873: 1867: 1815: 1809: 1790: 1784: 1636:to 1.25 for the west coast of 1407: 1401: 1312: 1292: 1257: 1251: 1230: 1224: 1074: 1062: 1017: 1011: 972: 966: 908: 902: 833: 827: 804: 790: 784: 624: 604: 569: 563: 525: 513: 107:Abram Samoilovitch Besicovitch 1: 3600:. Princeton University Press. 3456:Falconer, Kenneth J. (2003). 2775:) do not overlap "too much". 2346:, the Hausdorff dimension of 194:Minkowski–Bouligand dimension 3827:Hutchinson, John E. (1981). 3496:Hutchinson, John E. (1981). 3473:The Geometry of Fractal Sets 1413:{\displaystyle C_{H}^{d}(S)} 365:) grows polynomially with 1/ 137: 3879:Encyclopedia of Mathematics 3785:"Dimension und Ă€ußeres Maß" 3637:Proc. Cambridge Philos. Soc 3610:"La dimension et la mesure" 3562:10.1090/pspum/072.1/2112110 3415:Proc. Cambridge Philos. Soc 1479:have Hausdorff dimension 0. 1177:unlimited Hausdorff content 300:Lebesgue covering dimension 4230: 3854:Falconer, Kenneth (2003). 3846:10.1512/iumj.1981.30.30055 3764:. Boston: Addison-Wesley. 3681:Cambridge University Press 3515:10.1512/iumj.1981.30.30055 3391:Cambridge University Press 3366:Falconer, Kenneth (2003). 3270:. University of Washington 2803:is the unique solution of 2658: 2547:with contraction constant 2034:> 0 and for every ball 1998:subsets of a metric space 1921:ranges over metric spaces 1561:has Hausdorff dimension 1. 493:{\displaystyle S\subset X} 431: 4180: 3976: 3760:Edgar, Gerald A. (1993). 3657:10.1017/S0305004100029236 3435:10.1017/S0305004100029236 2635:The theorem follows from 1720:metric space. There is a 3753:10.1112/jlms/s1-12.45.18 3216:, accessed 5 March 2015. 3197:, accessed 5 March 2015. 3140:, accessed 5 March 2015. 2030:holds for some constant 1514:has Hausdorff dimension 1045:This is the same as the 278:(this can be seen by an 58:, or more specifically, 3614:Fundamenta Mathematicae 3385:Morters, Peres (2010). 2360:upper packing dimension 1463:Dimension of a further 3064:denotes s-dimensional 3043: 2950: 2926: 2859: 2833: 2749: 2716: 2655:The open set condition 2633: 2625: 2598: 2530: 2325: 2210: 2117: 1908: 1825: 1625: 1623:coast of Great Britain 1594:analysis of algorithms 1555: 1528: 1508: 1472: 1444: 1414: 1370: 1344: 1291: 1193: 1169: 1141: 1121: 1101: 1081: 1036: 936: 916: 864: 840: 757: 737: 710: 656: 603: 532: 494: 464: 418:box-counting dimension 414: 391:box-counting dimension 333:. Consider the number 146: 43: 3833:Indiana Univ. Math. J 3792:Mathematische Annalen 3704:Mathematische Annalen 3627:10.4064/fm-28-1-81-89 3502:Indiana Univ. Math. J 3044: 2951: 2906: 2860: 2813: 2750: 2696: 2682:There is an open set 2626: 2578: 2531: 2446: 2342:are Borel subsets of 2326: 2211: 2118: 1909: 1826: 1620: 1569:topological dimension 1556: 1554:{\displaystyle S^{1}} 1529: 1509: 1462: 1445: 1415: 1371: 1324: 1271: 1194: 1170: 1142: 1122: 1102: 1082: 1037: 937: 917: 865: 841: 758: 738: 711: 636: 583: 533: 495: 465: 410: 147: 121:extended real numbers 91:topological dimension 33: 4096:Dimensions by number 3776:See chapters 9,10,11 3762:Classics on fractals 2966: 2882: 2810: 2693: 2569: 2458: 2398:improve this article 2237: 2130: 2078: 1841: 1757: 1750:is non-empty. Then 1673:improve this article 1630:Lewis Fry Richardson 1600:Space-filling curves 1590:recurrence relations 1538: 1518: 1489: 1425: 1383: 1206: 1183: 1159: 1131: 1111: 1091: 1053: 949: 926: 885: 854: 767: 747: 727: 545: 504: 478: 454: 450:is constructed: Let 228:improve this article 127: 3875:Hausdorff dimension 3860:John Wiley and Sons 3649:1954PCPS...50..198M 3554:2003math......5399D 3427:1954PCPS...50..198M 3372:John Wiley and Sons 3265:"Hausdorff Measure" 3152:Statistical Science 3100:Intrinsic dimension 2848: 1976:Minkowski dimension 1726:inductive dimension 1581:Sierpinski triangle 1571:. For example, the 1469:Sierpinski triangle 1400: 1250: 1223: 880:Hausdorff dimension 874:Hausdorff dimension 826: 562: 284:space-filling curve 165:inner product space 52:Hausdorff dimension 4025:Degrees of freedom 3928:Dimensional spaces 3812:10338.dmlcz/100363 3804:10.1007/BF01457179 3717:10.1007/BF01454831 3232:Mandelbrot, BenoĂźt 3039: 2946: 2871:In general, a set 2855: 2834: 2745: 2671:open set condition 2661:Open set condition 2649:Hausdorff distance 2621: 2526: 2321: 2206: 2173: 2113: 2102: 1929:. In other words, 1904: 1853: 1821: 1626: 1609:The trajectory of 1551: 1524: 1504: 1473: 1440: 1410: 1386: 1366: 1236: 1209: 1189: 1165: 1137: 1117: 1097: 1077: 1032: 932: 912: 860: 836: 812: 811: 753: 733: 706: 548: 528: 490: 460: 349:required to cover 345:of radius at most 187:natural logarithms 142: 44: 4191: 4190: 4000:Lebesgue covering 3965:Algebraic variety 3884:Hausdorff measure 3733:A. S. Besicovitch 3699:A. S. Besicovitch 3690:978-0-521-65595-8 3174:10.1214/11-STS370 3110:Fractal dimension 3105:Packing dimension 3094:Assouad dimension 3070:Sierpinski gasket 3066:Hausdorff measure 2430: 2429: 2422: 2370:Self-similar sets 2158: 2087: 1844: 1705: 1704: 1697: 1534:, and the circle 1527:{\displaystyle n} 1192:{\displaystyle S} 1168:{\displaystyle d} 1151:Hausdorff content 1140:{\displaystyle d} 1120:{\displaystyle X} 1100:{\displaystyle d} 935:{\displaystyle X} 863:{\displaystyle d} 796: 756:{\displaystyle S} 736:{\displaystyle U} 463:{\displaystyle X} 440:Hausdorff measure 434:Hausdorff measure 428:Formal definition 422:packing dimension 402:Benoit Mandelbrot 353:completely. When 260: 259: 252: 140: 60:fractal dimension 16:(Redirected from 4221: 4214:Dimension theory 3988:Other dimensions 3982: 3950:Projective space 3914: 3907: 3900: 3891: 3863: 3858:(2nd ed.). 3850: 3848: 3823: 3798:(1–2): 157–179. 3789: 3775: 3756: 3728: 3694: 3668: 3631: 3629: 3601: 3597:Dimension Theory 3588:Hurewicz, Witold 3583: 3547: 3520: 3519: 3517: 3493: 3487: 3486: 3468: 3462: 3461: 3453: 3447: 3446: 3410: 3404: 3401: 3395: 3394: 3382: 3376: 3375: 3370:(2nd ed.). 3363: 3357: 3356: 3330: 3310: 3301: 3300: 3298: 3286: 3280: 3279: 3277: 3275: 3269: 3260: 3254: 3253: 3241: 3228: 3217: 3207: 3198: 3192: 3186: 3185: 3167: 3147: 3141: 3131: 3048: 3046: 3045: 3040: 3029: 3025: 3015: 3014: 2993: 2992: 2978: 2977: 2955: 2953: 2952: 2947: 2936: 2935: 2925: 2920: 2864: 2862: 2861: 2856: 2847: 2842: 2832: 2827: 2754: 2752: 2751: 2746: 2726: 2725: 2715: 2710: 2630: 2628: 2627: 2622: 2608: 2607: 2597: 2592: 2535: 2533: 2532: 2527: 2500: 2499: 2494: 2485: 2484: 2479: 2470: 2469: 2425: 2418: 2414: 2411: 2405: 2382: 2374: 2330: 2328: 2327: 2322: 2305: 2304: 2280: 2279: 2249: 2248: 2215: 2213: 2212: 2207: 2199: 2198: 2183: 2182: 2172: 2142: 2141: 2122: 2120: 2119: 2114: 2112: 2111: 2101: 2064:Frostman's lemma 1964:Edward Szpilrajn 1913: 1911: 1910: 1905: 1888: 1887: 1863: 1862: 1852: 1830: 1828: 1827: 1822: 1805: 1804: 1780: 1779: 1778: 1716:be an arbitrary 1700: 1693: 1689: 1686: 1680: 1657: 1649: 1560: 1558: 1557: 1552: 1550: 1549: 1533: 1531: 1530: 1525: 1513: 1511: 1510: 1505: 1503: 1502: 1497: 1449: 1447: 1446: 1441: 1419: 1417: 1416: 1411: 1399: 1394: 1379:In other words, 1375: 1373: 1372: 1367: 1365: 1361: 1354: 1353: 1343: 1338: 1320: 1319: 1310: 1309: 1290: 1285: 1249: 1244: 1222: 1217: 1198: 1196: 1195: 1190: 1174: 1172: 1171: 1166: 1146: 1144: 1143: 1138: 1126: 1124: 1123: 1118: 1106: 1104: 1103: 1098: 1086: 1084: 1083: 1078: 1041: 1039: 1038: 1033: 1010: 1009: 1004: 1003: 975: 961: 960: 941: 939: 938: 933: 921: 919: 918: 913: 911: 897: 896: 869: 867: 866: 861: 845: 843: 842: 837: 825: 820: 810: 783: 782: 777: 776: 762: 760: 759: 754: 742: 740: 739: 734: 715: 713: 712: 707: 702: 698: 691: 690: 666: 665: 655: 650: 632: 631: 622: 621: 602: 597: 561: 556: 537: 535: 534: 529: 499: 497: 496: 491: 469: 467: 466: 461: 444:Lebesgue measure 318: = 1. 255: 248: 244: 241: 235: 212: 204: 151: 149: 148: 143: 141: 136: 131: 54:is a measure of 21: 4229: 4228: 4224: 4223: 4222: 4220: 4219: 4218: 4209:Metric geometry 4194: 4193: 4192: 4187: 4176: 4155: 4091: 4029: 3983: 3974: 3940:Euclidean space 3923: 3918: 3871: 3866: 3853: 3826: 3787: 3779: 3772: 3759: 3757: 3731: 3697: 3691: 3673:Mattila, Pertti 3671: 3634: 3604: 3586: 3572: 3533: 3529: 3527:Further reading 3524: 3523: 3495: 3494: 3490: 3483: 3470: 3469: 3465: 3455: 3454: 3450: 3412: 3411: 3407: 3402: 3398: 3387:Brownian Motion 3384: 3383: 3379: 3365: 3364: 3360: 3312: 3311: 3304: 3288: 3287: 3283: 3273: 3271: 3267: 3262: 3261: 3257: 3250: 3230: 3229: 3220: 3208: 3201: 3193: 3189: 3149: 3148: 3144: 3132: 3123: 3118: 3084: 3006: 2984: 2983: 2979: 2969: 2964: 2963: 2927: 2880: 2879: 2808: 2807: 2786: 2770: 2717: 2691: 2690: 2678: 2663: 2657: 2599: 2567: 2566: 2552: 2489: 2474: 2461: 2456: 2455: 2426: 2415: 2409: 2406: 2395: 2383: 2372: 2296: 2271: 2240: 2235: 2234: 2190: 2174: 2133: 2128: 2127: 2103: 2076: 2075: 2072: 2053: 1988: 1972: 1958: 1945: 1879: 1854: 1839: 1838: 1796: 1760: 1755: 1754: 1735: 1710: 1701: 1690: 1684: 1681: 1670: 1658: 1647: 1611:Brownian motion 1541: 1536: 1535: 1516: 1515: 1492: 1487: 1486: 1484:Euclidean space 1457: 1423: 1422: 1381: 1380: 1345: 1311: 1301: 1270: 1266: 1204: 1203: 1181: 1180: 1157: 1156: 1153: 1129: 1128: 1109: 1108: 1089: 1088: 1051: 1050: 997: 952: 947: 946: 924: 923: 888: 883: 882: 876: 852: 851: 848:measurable sets 770: 765: 764: 745: 744: 725: 724: 682: 657: 623: 613: 582: 578: 543: 542: 502: 501: 476: 475: 452: 451: 436: 430: 357:is very small, 256: 245: 239: 236: 225: 213: 202: 125: 124: 99:self-similarity 81:is 2, and of a 67:Felix Hausdorff 28: 23: 22: 15: 12: 11: 5: 4227: 4225: 4217: 4216: 4211: 4206: 4196: 4195: 4189: 4188: 4181: 4178: 4177: 4175: 4174: 4169: 4163: 4161: 4157: 4156: 4154: 4153: 4145: 4140: 4135: 4130: 4125: 4120: 4115: 4110: 4105: 4099: 4097: 4093: 4092: 4090: 4089: 4084: 4079: 4077:Cross-polytope 4074: 4069: 4064: 4062:Hyperrectangle 4059: 4054: 4049: 4043: 4041: 4031: 4030: 4028: 4027: 4022: 4017: 4012: 4007: 4002: 3997: 3991: 3989: 3985: 3984: 3977: 3975: 3973: 3972: 3967: 3962: 3957: 3952: 3947: 3942: 3937: 3931: 3929: 3925: 3924: 3919: 3917: 3916: 3909: 3902: 3894: 3888: 3887: 3881: 3870: 3869:External links 3867: 3865: 3864: 3851: 3839:(5): 713–747. 3824: 3783:(March 1919). 3777: 3770: 3729: 3711:(1): 161–193. 3695: 3689: 3669: 3643:(3): 198–202. 3632: 3602: 3592:Wallman, Henry 3584: 3570: 3530: 3528: 3525: 3522: 3521: 3508:(5): 713–747. 3488: 3481: 3463: 3448: 3421:(3): 198–202. 3405: 3396: 3377: 3358: 3321:(6): 509–528. 3302: 3281: 3255: 3248: 3218: 3199: 3187: 3158:(2): 247–277. 3142: 3120: 3119: 3117: 3114: 3113: 3112: 3107: 3102: 3097: 3091: 3083: 3080: 3050: 3049: 3038: 3035: 3032: 3028: 3024: 3021: 3018: 3013: 3009: 3005: 3002: 2999: 2996: 2991: 2987: 2982: 2976: 2972: 2957: 2956: 2945: 2942: 2939: 2934: 2930: 2924: 2919: 2916: 2913: 2909: 2905: 2902: 2899: 2896: 2893: 2890: 2887: 2866: 2865: 2854: 2851: 2846: 2841: 2837: 2831: 2826: 2823: 2820: 2816: 2782: 2766: 2756: 2755: 2744: 2741: 2738: 2735: 2732: 2729: 2724: 2720: 2714: 2709: 2706: 2703: 2699: 2674: 2659:Main article: 2656: 2653: 2632: 2631: 2620: 2617: 2614: 2611: 2606: 2602: 2596: 2591: 2588: 2585: 2581: 2577: 2574: 2550: 2537: 2536: 2525: 2522: 2519: 2516: 2513: 2510: 2507: 2503: 2498: 2493: 2488: 2483: 2478: 2473: 2468: 2464: 2428: 2427: 2386: 2384: 2377: 2371: 2368: 2332: 2331: 2320: 2317: 2314: 2311: 2308: 2303: 2299: 2295: 2292: 2289: 2286: 2283: 2278: 2274: 2270: 2267: 2264: 2261: 2258: 2255: 2252: 2247: 2243: 2217: 2216: 2205: 2202: 2197: 2193: 2189: 2186: 2181: 2177: 2171: 2168: 2165: 2161: 2157: 2154: 2151: 2148: 2145: 2140: 2136: 2110: 2106: 2100: 2097: 2094: 2090: 2086: 2083: 2071: 2068: 2051: 1990:If there is a 1987: 1984: 1971: 1968: 1954: 1941: 1915: 1914: 1903: 1900: 1897: 1894: 1891: 1886: 1882: 1878: 1875: 1872: 1869: 1866: 1861: 1857: 1851: 1847: 1832: 1831: 1820: 1817: 1814: 1811: 1808: 1803: 1799: 1795: 1792: 1789: 1786: 1783: 1777: 1774: 1771: 1768: 1763: 1733: 1709: 1706: 1703: 1702: 1661: 1659: 1652: 1646: 1643: 1642: 1641: 1615: 1614: 1607: 1597: 1586:Master theorem 1562: 1548: 1544: 1523: 1501: 1496: 1480: 1477:Countable sets 1456: 1453: 1439: 1436: 1433: 1430: 1409: 1406: 1403: 1398: 1393: 1389: 1377: 1376: 1364: 1360: 1357: 1352: 1348: 1342: 1337: 1334: 1331: 1327: 1323: 1318: 1314: 1308: 1304: 1300: 1297: 1294: 1289: 1284: 1281: 1278: 1274: 1269: 1265: 1262: 1259: 1256: 1253: 1248: 1243: 1239: 1235: 1232: 1229: 1226: 1221: 1216: 1212: 1199:is defined by 1188: 1164: 1152: 1149: 1136: 1116: 1096: 1087:such that the 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1049:of the set of 1043: 1042: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1008: 1002: 996: 993: 990: 987: 984: 981: 978: 974: 971: 968: 964: 959: 955: 942:is defined by 931: 910: 907: 904: 900: 895: 891: 875: 872: 859: 835: 832: 829: 824: 819: 815: 809: 806: 803: 799: 795: 792: 789: 786: 781: 775: 752: 732: 717: 716: 705: 701: 697: 694: 689: 685: 681: 678: 675: 672: 669: 664: 660: 654: 649: 646: 643: 639: 635: 630: 626: 620: 616: 612: 609: 606: 601: 596: 593: 590: 586: 581: 577: 574: 571: 568: 565: 560: 555: 551: 527: 524: 521: 518: 515: 512: 509: 489: 486: 483: 459: 432:Main article: 429: 426: 420:coincide. The 404:observed that 258: 257: 216: 214: 207: 201: 198: 177:Koch snowflake 173:irregular sets 139: 135: 73:is zero, of a 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4226: 4215: 4212: 4210: 4207: 4205: 4202: 4201: 4199: 4186: 4185: 4179: 4173: 4170: 4168: 4165: 4164: 4162: 4158: 4152: 4150: 4146: 4144: 4141: 4139: 4136: 4134: 4131: 4129: 4126: 4124: 4121: 4119: 4116: 4114: 4111: 4109: 4106: 4104: 4101: 4100: 4098: 4094: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4067:Demihypercube 4065: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4045: 4044: 4042: 4040: 4036: 4032: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3992: 3990: 3986: 3981: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3932: 3930: 3926: 3922: 3915: 3910: 3908: 3903: 3901: 3896: 3895: 3892: 3885: 3882: 3880: 3876: 3873: 3872: 3868: 3861: 3857: 3852: 3847: 3842: 3838: 3834: 3830: 3825: 3821: 3817: 3813: 3809: 3805: 3801: 3797: 3793: 3786: 3782: 3778: 3773: 3771:0-201-58701-7 3767: 3763: 3754: 3750: 3746: 3742: 3738: 3734: 3730: 3726: 3722: 3718: 3714: 3710: 3706: 3705: 3700: 3696: 3692: 3686: 3682: 3678: 3674: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3638: 3633: 3628: 3623: 3619: 3615: 3611: 3607: 3603: 3599: 3598: 3593: 3589: 3585: 3581: 3577: 3573: 3571:9780821836378 3567: 3563: 3559: 3555: 3551: 3546: 3541: 3537: 3532: 3531: 3526: 3516: 3511: 3507: 3503: 3499: 3492: 3489: 3484: 3482:0-521-25694-1 3478: 3474: 3467: 3464: 3459: 3452: 3449: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3409: 3406: 3400: 3397: 3392: 3388: 3381: 3378: 3373: 3369: 3362: 3359: 3354: 3350: 3346: 3342: 3338: 3334: 3329: 3324: 3320: 3316: 3309: 3307: 3303: 3297: 3292: 3285: 3282: 3266: 3259: 3256: 3251: 3249:0-7167-1186-9 3245: 3240: 3239: 3233: 3227: 3225: 3223: 3219: 3215: 3212: 3206: 3204: 3200: 3196: 3191: 3188: 3183: 3179: 3175: 3171: 3166: 3161: 3157: 3153: 3146: 3143: 3139: 3136: 3130: 3128: 3126: 3122: 3115: 3111: 3108: 3106: 3103: 3101: 3098: 3095: 3092: 3089: 3086: 3085: 3081: 3079: 3077: 3073: 3071: 3067: 3063: 3059: 3055: 3036: 3033: 3030: 3026: 3019: 3011: 3007: 3003: 2997: 2989: 2985: 2980: 2974: 2970: 2962: 2961: 2960: 2940: 2932: 2928: 2922: 2917: 2914: 2911: 2907: 2903: 2897: 2891: 2885: 2878: 2877: 2876: 2874: 2869: 2852: 2849: 2844: 2839: 2835: 2829: 2824: 2821: 2818: 2814: 2806: 2805: 2804: 2802: 2798: 2794: 2790: 2785: 2780: 2776: 2774: 2769: 2763: 2761: 2742: 2739: 2736: 2730: 2722: 2718: 2712: 2707: 2704: 2701: 2697: 2689: 2688: 2687: 2685: 2680: 2677: 2672: 2668: 2662: 2654: 2652: 2650: 2646: 2642: 2638: 2637:Stefan Banach 2618: 2612: 2604: 2600: 2594: 2589: 2586: 2583: 2579: 2575: 2572: 2565: 2564: 2563: 2561: 2557: 2553: 2546: 2542: 2523: 2520: 2517: 2514: 2511: 2508: 2505: 2501: 2496: 2481: 2471: 2466: 2462: 2454: 2453: 2452: 2450: 2445: 2443: 2439: 2435: 2424: 2421: 2413: 2403: 2399: 2393: 2392: 2387:This section 2385: 2381: 2376: 2375: 2369: 2367: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2318: 2312: 2306: 2301: 2297: 2293: 2287: 2281: 2276: 2272: 2268: 2262: 2259: 2256: 2250: 2245: 2241: 2233: 2232: 2231: 2229: 2225: 2220: 2203: 2195: 2191: 2184: 2179: 2175: 2169: 2166: 2163: 2155: 2149: 2143: 2138: 2134: 2126: 2125: 2124: 2108: 2104: 2098: 2095: 2092: 2088: 2084: 2081: 2069: 2067: 2065: 2061: 2057: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2010:) > 0 and 2009: 2005: 2001: 1997: 1994:ÎŒ defined on 1993: 1985: 1983: 1981: 1977: 1969: 1967: 1965: 1960: 1957: 1953: 1949: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1901: 1895: 1889: 1884: 1880: 1876: 1870: 1864: 1859: 1855: 1849: 1837: 1836: 1835: 1818: 1812: 1806: 1801: 1797: 1793: 1787: 1781: 1761: 1753: 1752: 1751: 1749: 1745: 1741: 1739: 1731: 1727: 1723: 1719: 1715: 1707: 1699: 1696: 1688: 1678: 1674: 1668: 1667: 1662:This section 1660: 1656: 1651: 1650: 1644: 1639: 1638:Great Britain 1635: 1631: 1628: 1627: 1624: 1619: 1612: 1608: 1605: 1601: 1598: 1595: 1591: 1587: 1582: 1578: 1574: 1570: 1566: 1563: 1546: 1542: 1521: 1499: 1485: 1481: 1478: 1475: 1474: 1470: 1467:example. The 1466: 1461: 1454: 1452: 1450: 1434: 1404: 1396: 1391: 1387: 1362: 1358: 1355: 1350: 1346: 1335: 1332: 1329: 1325: 1321: 1316: 1306: 1302: 1298: 1295: 1282: 1279: 1276: 1272: 1267: 1260: 1254: 1246: 1237: 1233: 1227: 1219: 1214: 1210: 1202: 1201: 1200: 1186: 1178: 1175:-dimensional 1162: 1150: 1148: 1134: 1114: 1094: 1068: 1065: 1059: 1056: 1048: 1029: 1023: 1020: 1014: 1006: 994: 991: 988: 985: 976: 969: 962: 953: 945: 944: 943: 929: 905: 898: 889: 881: 873: 871: 857: 849: 830: 822: 817: 813: 807: 801: 793: 787: 779: 750: 730: 722: 703: 699: 695: 692: 687: 683: 679: 676: 673: 670: 667: 662: 658: 647: 644: 641: 637: 633: 628: 618: 614: 610: 607: 594: 591: 588: 584: 579: 572: 566: 558: 553: 549: 541: 540: 539: 519: 516: 510: 507: 487: 484: 481: 473: 457: 449: 448:outer measure 445: 441: 435: 427: 425: 423: 419: 413: 409: 407: 403: 398: 396: 392: 388: 384: 381:) grows as 1/ 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 332: 327: 325: 319: 317: 313: 309: 305: 301: 295: 293: 289: 285: 281: 277: 273: 269: 265: 254: 251: 243: 233: 229: 223: 222: 217:This section 215: 211: 206: 205: 199: 197: 195: 190: 188: 183: 178: 174: 170: 166: 163:-dimensional 162: 158: 153: 122: 118: 113: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 65: 64:mathematician 61: 57: 53: 49: 41: 37: 32: 19: 4182: 4148: 4087:Hyperpyramid 4052:Hypersurface 4009: 3945:Affine space 3935:Vector space 3855: 3836: 3832: 3795: 3791: 3781:F. Hausdorff 3761: 3747:(1): 18–25. 3744: 3740: 3737:H. D. Ursell 3708: 3702: 3676: 3640: 3636: 3617: 3613: 3606:E. Szpilrajn 3596: 3545:math/0305399 3535: 3505: 3501: 3491: 3472: 3466: 3457: 3451: 3418: 3414: 3408: 3399: 3386: 3380: 3367: 3361: 3328:math/0505099 3318: 3314: 3284: 3272:. Retrieved 3258: 3237: 3210: 3190: 3155: 3151: 3145: 3134: 3075: 3074: 3061: 3057: 3053: 3051: 2958: 2872: 2870: 2867: 2800: 2796: 2783: 2778: 2777: 2772: 2767: 2764: 2757: 2683: 2681: 2675: 2670: 2666: 2664: 2644: 2634: 2559: 2558:compact set 2555: 2548: 2544: 2538: 2448: 2447: 2441: 2437: 2433: 2431: 2416: 2407: 2396:Please help 2391:verification 2388: 2363: 2355: 2351: 2347: 2343: 2339: 2335: 2333: 2227: 2223: 2221: 2218: 2073: 2059: 2055: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1989: 1973: 1961: 1955: 1951: 1947: 1942: 1938: 1934: 1930: 1926: 1923:homeomorphic 1918: 1916: 1833: 1747: 1743: 1742: 1737: 1729: 1713: 1711: 1691: 1682: 1671:Please help 1666:verification 1663: 1634:South Africa 1588:for solving 1378: 1176: 1154: 1044: 879: 877: 718: 472:metric space 446:. First, an 437: 415: 411: 399: 394: 386: 382: 378: 377:such that N( 374: 370: 366: 362: 358: 354: 350: 346: 338: 334: 328: 320: 315: 311: 307: 303: 296: 292:continuously 291: 288:surjectively 263: 261: 246: 237: 226:Please help 221:verification 218: 191: 168: 160: 157:vector space 154: 117:metric space 114: 110: 75:line segment 55: 51: 45: 4172:Codimension 4151:-dimensions 4072:Hypersphere 3955:Free module 2543:mapping on 2541:contraction 2539:are each a 1722:topological 1604:Peano curve 268:cardinality 182:equilateral 77:is 1, of a 48:mathematics 4198:Categories 4167:Hyperspace 4047:Hyperplane 3274:3 February 3116:References 2562:such that 2451:. Suppose 2410:March 2015 2050:, then dim 2002:such that 1834:Moreover, 1746:. Suppose 1724:notion of 1685:March 2015 1573:Cantor set 719:where the 272:real plane 240:March 2015 40:Koch curve 36:iterations 4057:Hypercube 4035:Polytopes 4015:Minkowski 4010:Hausdorff 4005:Inductive 3970:Spacetime 3921:Dimension 3820:122001234 3725:125368661 3665:122475292 3580:119613948 3443:122475292 3345:0002-9890 3296:1411.0867 3165:1101.1444 3008:ψ 3004:∩ 2986:ψ 2929:ψ 2908:⋃ 2892:ψ 2889:↦ 2815:∑ 2737:⊆ 2719:ψ 2698:⋃ 2647:with the 2601:ψ 2580:⋃ 2556:non-empty 2518:… 2487:→ 2463:ψ 2358:plus the 2307:⁡ 2282:⁡ 2269:≥ 2260:× 2251:⁡ 2185:⁡ 2167:∈ 2144:⁡ 2096:∈ 2089:⋃ 1890:⁡ 1865:⁡ 1807:⁡ 1794:≥ 1782:⁡ 1718:separable 1602:like the 1438:∞ 1432:∅ 1356:⊇ 1341:∞ 1326:⋃ 1299:⁡ 1288:∞ 1273:∑ 1242:∞ 1072:∞ 1060:∈ 989:≥ 963:⁡ 899:⁡ 818:δ 805:→ 802:δ 696:δ 680:⁡ 668:⊇ 653:∞ 638:⋃ 611:⁡ 600:∞ 585:∑ 554:δ 523:∞ 511:∈ 485:⊂ 276:real line 200:Intuition 138:¯ 56:roughness 4204:Fractals 4184:Category 4160:See also 3960:Manifold 3675:(1995). 3620:: 81–9. 3608:(1937). 3594:(1948). 3234:(1982). 3182:88512325 3082:See also 2793:dilation 2789:isometry 2760:disjoint 1980:rational 1565:Fractals 1455:Examples 1047:supremum 406:fractals 280:argument 103:fractals 4082:Simplex 4020:Fractal 3645:Bibcode 3550:Bibcode 3423:Bibcode 3353:9811750 3076:Theorem 2779:Theorem 2449:Theorem 1992:measure 1744:Theorem 1592:in the 1465:fractal 721:infimum 324:fractal 270:of the 167:equals 95:scaling 87:integer 38:of the 4039:shapes 3818:  3768:  3723:  3687:  3663:  3578:  3568:  3479:  3441:  3351:  3343:  3246:  3180:  3137:, see 3052:where 2799:where 2791:and a 1917:where 331:metric 79:square 4143:Eight 4138:Seven 4118:Three 3995:Krull 3816:S2CID 3788:(PDF) 3721:S2CID 3661:S2CID 3576:S2CID 3540:arXiv 3439:S2CID 3349:S2CID 3323:arXiv 3291:arXiv 3268:(PDF) 3178:S2CID 3160:arXiv 2046:) in 2026:)) ≀ 1996:Borel 474:. If 470:be a 343:balls 341:) of 71:point 4128:Five 4123:Four 4103:Zero 4037:and 3766:ISBN 3685:ISBN 3566:ISBN 3477:ISBN 3341:ISSN 3276:2022 3244:ISBN 3060:and 2440:) = 2338:and 2302:Haus 2277:Haus 2246:Haus 2226:and 2180:Haus 2139:Haus 2058:) ≄ 2052:Haus 1974:The 1933:and 1860:Haus 1728:for 1712:Let 1575:, a 1482:The 1296:diam 1155:The 878:The 693:< 677:diam 608:diam 500:and 97:and 83:cube 4133:Six 4113:Two 4108:One 3877:at 3841:doi 3808:hdl 3800:doi 3749:doi 3713:doi 3709:101 3653:doi 3622:doi 3558:doi 3510:doi 3431:doi 3333:doi 3319:114 3170:doi 2639:'s 2400:by 2362:of 2298:dim 2273:dim 2242:dim 2222:If 2176:dim 2160:sup 2135:dim 2074:If 1946:of 1925:to 1885:ind 1881:dim 1856:dim 1846:inf 1802:ind 1798:dim 1762:dim 1740:). 1734:ind 1675:by 1429:inf 1264:inf 1179:of 980:inf 954:dim 922:of 890:dim 798:lim 743:of 576:inf 385:as 230:by 46:In 4200:: 3837:30 3835:. 3831:. 3814:. 3806:. 3796:79 3794:. 3790:. 3745:12 3743:. 3735:; 3719:. 3707:. 3683:. 3679:. 3659:. 3651:. 3641:50 3639:. 3618:28 3616:. 3612:. 3590:; 3574:. 3564:. 3556:. 3548:. 3506:30 3504:. 3500:. 3437:. 3429:. 3419:50 3417:. 3389:. 3347:. 3339:. 3331:. 3317:. 3305:^ 3221:^ 3202:^ 3176:. 3168:. 3156:27 3154:. 3124:^ 2853:1. 2762:. 2679:. 2651:. 2350:× 2066:. 2042:, 2022:, 1959:. 1234::= 977::= 538:, 196:. 123:, 50:, 4149:n 3913:e 3906:t 3899:v 3862:. 3849:. 3843:: 3822:. 3810:: 3802:: 3774:. 3755:. 3751:: 3727:. 3715:: 3693:. 3667:. 3655:: 3647:: 3630:. 3624:: 3582:. 3560:: 3552:: 3542:: 3518:. 3512:: 3485:. 3445:. 3433:: 3425:: 3393:. 3374:. 3355:. 3335:: 3325:: 3299:. 3293:: 3278:. 3252:. 3184:. 3172:: 3162:: 3062:H 3058:E 3054:s 3037:, 3034:0 3031:= 3027:) 3023:) 3020:E 3017:( 3012:j 3001:) 2998:E 2995:( 2990:i 2981:( 2975:s 2971:H 2944:) 2941:A 2938:( 2933:i 2923:m 2918:1 2915:= 2912:i 2904:= 2901:) 2898:A 2895:( 2886:A 2873:E 2850:= 2845:s 2840:i 2836:r 2830:m 2825:1 2822:= 2819:i 2801:s 2797:s 2784:i 2773:V 2771:( 2768:i 2743:, 2740:V 2734:) 2731:V 2728:( 2723:i 2713:m 2708:1 2705:= 2702:i 2684:V 2676:i 2667:A 2645:R 2619:. 2616:) 2613:A 2610:( 2605:i 2595:m 2590:1 2587:= 2584:i 2576:= 2573:A 2560:A 2551:i 2549:r 2545:R 2524:m 2521:, 2515:, 2512:1 2509:= 2506:i 2502:, 2497:n 2492:R 2482:n 2477:R 2472:: 2467:i 2442:E 2438:E 2434:E 2423:) 2417:( 2412:) 2408:( 2394:. 2364:Y 2356:X 2352:Y 2348:X 2344:R 2340:Y 2336:X 2319:. 2316:) 2313:Y 2310:( 2294:+ 2291:) 2288:X 2285:( 2266:) 2263:Y 2257:X 2254:( 2228:Y 2224:X 2204:. 2201:) 2196:i 2192:X 2188:( 2170:I 2164:i 2156:= 2153:) 2150:X 2147:( 2109:i 2105:X 2099:I 2093:i 2085:= 2082:X 2060:s 2056:X 2054:( 2048:X 2044:r 2040:x 2038:( 2036:B 2032:s 2028:r 2024:r 2020:x 2018:( 2016:B 2014:( 2012:ÎŒ 2008:X 2006:( 2004:ÎŒ 2000:X 1956:X 1952:d 1948:Y 1943:Y 1939:d 1935:Y 1931:X 1927:X 1919:Y 1902:, 1899:) 1896:X 1893:( 1877:= 1874:) 1871:Y 1868:( 1850:Y 1819:. 1816:) 1813:X 1810:( 1791:) 1788:X 1785:( 1776:s 1773:u 1770:a 1767:H 1748:X 1738:X 1736:( 1730:X 1714:X 1698:) 1692:( 1687:) 1683:( 1669:. 1640:. 1596:. 1547:1 1543:S 1522:n 1500:n 1495:R 1435:= 1408:) 1405:S 1402:( 1397:d 1392:H 1388:C 1363:} 1359:S 1351:k 1347:U 1336:1 1333:= 1330:k 1322:: 1317:d 1313:) 1307:k 1303:U 1293:( 1283:1 1280:= 1277:k 1268:{ 1261:= 1258:) 1255:S 1252:( 1247:d 1238:H 1231:) 1228:S 1225:( 1220:d 1215:H 1211:C 1187:S 1163:d 1135:d 1115:X 1095:d 1075:) 1069:, 1066:0 1063:[ 1057:d 1030:. 1027:} 1024:0 1021:= 1018:) 1015:X 1012:( 1007:d 1001:H 995:: 992:0 986:d 983:{ 973:) 970:X 967:( 958:H 930:X 909:) 906:X 903:( 894:H 858:d 834:) 831:S 828:( 823:d 814:H 808:0 794:= 791:) 788:S 785:( 780:d 774:H 751:S 731:U 704:, 700:} 688:i 684:U 674:, 671:S 663:i 659:U 648:1 645:= 642:i 634:: 629:d 625:) 619:i 615:U 605:( 595:1 592:= 589:i 580:{ 573:= 570:) 567:S 564:( 559:d 550:H 526:) 520:, 517:0 514:[ 508:d 488:X 482:S 458:X 395:d 387:r 383:r 379:r 375:d 371:X 367:r 363:r 361:( 359:N 355:r 351:X 347:r 339:r 337:( 335:N 316:n 312:n 308:X 304:n 264:X 253:) 247:( 242:) 238:( 224:. 169:n 161:n 134:R 20:)

Index

Hausdorff-Besicovitch dimension

iterations
Koch curve
mathematics
fractal dimension
mathematician
Felix Hausdorff
point
line segment
square
cube
integer
topological dimension
scaling
self-similarity
fractals
Abram Samoilovitch Besicovitch
metric space
extended real numbers
vector space
inner product space
irregular sets
Koch snowflake
equilateral
natural logarithms
Minkowski–Bouligand dimension

verification
improve this article

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑