Knowledge (XXG)

Hellinger–Toeplitz theorem

Source 📝

917: 379: 212:
in quantum mechanics correspond to self-adjoint operators on some Hilbert space, but some observables (like energy) are unbounded. By Hellinger–Toeplitz, such operators cannot be everywhere defined (but they may be defined on a
149: 74: 247: 806: 469: 205: 197:. One relies on the symmetric assumption, therefore the inner product structure, in proving the theorem. Also crucial is the fact that the given operator 632: 941: 759: 614: 590: 438: 482: 571: 462: 174:, so this theorem can also be stated as follows: an everywhere-defined self-adjoint operator is bounded. The theorem is named after 841: 486: 94: 637: 430: 194: 693: 920: 642: 627: 455: 657: 218: 902: 662: 856: 780: 45: 897: 713: 647: 749: 550: 426: 622: 374:{\displaystyle (x)=-{\frac {1}{2}}{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}f(x)+{\frac {1}{2}}x^{2}f(x).} 946: 846: 877: 821: 785: 175: 171: 860: 186: 826: 764: 478: 20: 851: 718: 32: 831: 434: 836: 754: 723: 703: 688: 683: 678: 515: 77: 698: 652: 600: 595: 566: 447: 401: 190: 525: 420: 887: 739: 540: 935: 892: 816: 545: 530: 520: 422:
Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators
416: 179: 40: 36: 882: 535: 505: 214: 811: 801: 708: 510: 405: 24: 744: 584: 580: 576: 385: 209: 204:
The Hellinger–Toeplitz theorem reveals certain technical difficulties in the
201:
is defined everywhere (and, in turn, the completeness of Hilbert spaces).
222: 237:
is defined by (assuming the units are chosen such that ℏ = 
388:
are 1/2, 3/2, 5/2, ...), so it cannot be defined on the whole of L(
451: 410:
Methods of Mathematical Physics, Volume 1: Functional Analysis.
185:
This theorem can be viewed as an immediate corollary of the
144:{\displaystyle \langle Ax|y\rangle =\langle x|Ay\rangle } 250: 97: 48: 870: 794: 773: 732: 671: 613: 559: 494: 807:Spectral theory of ordinary differential equations 373: 143: 68: 384:This operator is self-adjoint and unbounded (its 229:), the space of square integrable functions on 463: 206:mathematical formulation of quantum mechanics 69:{\displaystyle \langle \cdot |\cdot \rangle } 16:Theorem on boundedness of symmetric operators 8: 193:. Alternatively, it can be argued using the 138: 121: 115: 98: 63: 49: 498: 470: 456: 448: 412:Academic Press, 1980. See Section III.5. 350: 336: 312: 303: 296: 291: 288: 278: 249: 127: 107: 96: 55: 47: 760:Group algebra of a locally compact group 7: 304: 292: 31:states that an everywhere-defined 14: 916: 915: 842:Topological quantum field theory 189:, as self-adjoint operators are 942:Theorems in functional analysis 365: 359: 330: 324: 269: 263: 260: 251: 241: = ω = 1) 128: 108: 56: 1: 638:Uniform boundedness principle 431:American Mathematical Society 195:uniform boundedness principle 80:. By definition, an operator 221:. Here the Hilbert space is 219:quantum harmonic oscillator 963: 781:Invariant subspace problem 233:, and the energy operator 170:operators are necessarily 29:Hellinger–Toeplitz theorem 911: 501: 217:). Take for instance the 750:Spectrum of a C*-algebra 847:Noncommutative geometry 166:. Note that symmetric 903:Tomita–Takesaki theory 878:Approximation property 822:Calculus of variations 375: 145: 70: 898:Banach–Mazur distance 861:Generalized functions 376: 176:Ernst David Hellinger 146: 71: 643:Kakutani fixed-point 628:Riesz representation 248: 187:closed graph theorem 95: 46: 827:Functional calculus 786:Mahler's conjecture 765:Von Neumann algebra 479:Functional analysis 21:functional analysis 852:Riemann hypothesis 551:Topological vector 371: 168:everywhere-defined 141: 66: 33:symmetric operator 929: 928: 832:Integral operator 609: 608: 440:978-0-8218-4660-5 344: 319: 286: 162:in the domain of 954: 919: 918: 837:Jones polynomial 755:Operator algebra 499: 472: 465: 458: 449: 444: 380: 378: 377: 372: 355: 354: 345: 337: 320: 318: 317: 316: 307: 301: 300: 295: 289: 287: 279: 150: 148: 147: 142: 131: 111: 75: 73: 72: 67: 59: 962: 961: 957: 956: 955: 953: 952: 951: 932: 931: 930: 925: 907: 871:Advanced topics 866: 790: 769: 728: 694:Hilbert–Schmidt 667: 658:Gelfand–Naimark 605: 555: 490: 476: 441: 415: 398: 346: 308: 302: 290: 246: 245: 93: 92: 44: 43: 17: 12: 11: 5: 960: 958: 950: 949: 947:Hilbert spaces 944: 934: 933: 927: 926: 924: 923: 912: 909: 908: 906: 905: 900: 895: 890: 888:Choquet theory 885: 880: 874: 872: 868: 867: 865: 864: 854: 849: 844: 839: 834: 829: 824: 819: 814: 809: 804: 798: 796: 792: 791: 789: 788: 783: 777: 775: 771: 770: 768: 767: 762: 757: 752: 747: 742: 740:Banach algebra 736: 734: 730: 729: 727: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 675: 673: 669: 668: 666: 665: 663:Banach–Alaoglu 660: 655: 650: 645: 640: 635: 630: 625: 619: 617: 611: 610: 607: 606: 604: 603: 598: 593: 591:Locally convex 588: 574: 569: 563: 561: 557: 556: 554: 553: 548: 543: 538: 533: 528: 523: 518: 513: 508: 502: 496: 492: 491: 477: 475: 474: 467: 460: 452: 446: 445: 439: 417:Teschl, Gerald 413: 397: 394: 382: 381: 370: 367: 364: 361: 358: 353: 349: 343: 340: 335: 332: 329: 326: 323: 315: 311: 306: 299: 294: 285: 282: 277: 274: 271: 268: 265: 262: 259: 256: 253: 152: 151: 140: 137: 134: 130: 126: 123: 120: 117: 114: 110: 106: 103: 100: 65: 62: 58: 54: 51: 23:, a branch of 15: 13: 10: 9: 6: 4: 3: 2: 959: 948: 945: 943: 940: 939: 937: 922: 914: 913: 910: 904: 901: 899: 896: 894: 893:Weak topology 891: 889: 886: 884: 881: 879: 876: 875: 873: 869: 862: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 817:Index theorem 815: 813: 810: 808: 805: 803: 800: 799: 797: 793: 787: 784: 782: 779: 778: 776: 774:Open problems 772: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 737: 735: 731: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 676: 674: 670: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 620: 618: 616: 612: 602: 599: 597: 594: 592: 589: 586: 582: 578: 575: 573: 570: 568: 565: 564: 562: 558: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 509: 507: 504: 503: 500: 497: 493: 488: 484: 480: 473: 468: 466: 461: 459: 454: 453: 450: 442: 436: 432: 428: 424: 423: 418: 414: 411: 407: 403: 402:Reed, Michael 400: 399: 395: 393: 391: 387: 368: 362: 356: 351: 347: 341: 338: 333: 327: 321: 313: 309: 297: 283: 280: 275: 272: 266: 257: 254: 244: 243: 242: 240: 236: 232: 228: 224: 220: 216: 211: 207: 202: 200: 196: 192: 188: 183: 181: 180:Otto Toeplitz 177: 173: 169: 165: 161: 157: 135: 132: 124: 118: 112: 104: 101: 91: 90: 89: 87: 83: 79: 60: 52: 42: 41:inner product 38: 37:Hilbert space 34: 30: 26: 22: 883:Balanced set 857:Distribution 795:Applications 648:Krein–Milman 633:Closed graph 421: 409: 406:Simon, Barry 389: 383: 238: 234: 230: 226: 215:dense subset 203: 198: 184: 172:self-adjoint 167: 163: 159: 155: 153: 85: 81: 28: 18: 812:Heat kernel 802:Hardy space 709:Trace class 623:Hahn–Banach 585:Topological 386:eigenvalues 210:Observables 25:mathematics 936:Categories 745:C*-algebra 560:Properties 427:Providence 396:References 719:Unbounded 714:Transpose 672:Operators 601:Separable 596:Reflexive 581:Algebraic 567:Barrelled 276:− 139:⟩ 122:⟨ 116:⟩ 99:⟨ 86:symmetric 64:⟩ 61:⋅ 53:⋅ 50:⟨ 921:Category 733:Algebras 615:Theorems 572:Complete 541:Schwartz 487:glossary 419:(2009). 154:for all 724:Unitary 704:Nuclear 689:Compact 684:Bounded 679:Adjoint 653:Min–max 546:Sobolev 531:Nuclear 521:Hilbert 516:Fréchet 481: ( 78:bounded 699:Normal 536:Orlicz 526:Hölder 506:Banach 495:Spaces 483:topics 437:  191:closed 27:, the 511:Besov 39:with 35:on a 859:(or 577:Dual 435:ISBN 404:and 178:and 88:if 392:). 182:. 84:is 76:is 19:In 938:: 485:– 433:. 429:: 425:. 408:: 208:. 158:, 863:) 587:) 583:/ 579:( 489:) 471:e 464:t 457:v 443:. 390:R 369:. 366:) 363:x 360:( 357:f 352:2 348:x 342:2 339:1 334:+ 331:) 328:x 325:( 322:f 314:2 310:x 305:d 298:2 293:d 284:2 281:1 273:= 270:) 267:x 264:( 261:] 258:f 255:H 252:[ 239:m 235:H 231:R 227:R 225:( 223:L 199:A 164:A 160:y 156:x 136:y 133:A 129:| 125:x 119:= 113:y 109:| 105:x 102:A 82:A 57:|

Index

functional analysis
mathematics
symmetric operator
Hilbert space
inner product
bounded
self-adjoint
Ernst David Hellinger
Otto Toeplitz
closed graph theorem
closed
uniform boundedness principle
mathematical formulation of quantum mechanics
Observables
dense subset
quantum harmonic oscillator
L
eigenvalues
Reed, Michael
Simon, Barry
Teschl, Gerald
Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators
Providence
American Mathematical Society
ISBN
978-0-8218-4660-5
v
t
e
Functional analysis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.