Knowledge (XXG)

Heston model

Source 📝

971:
This is of course problematic; while any of the risk-free measures may theoretically be used to price a derivative, it is likely that each of them will give a different price. In theory, however, only one of these risk-free measures would be compatible with the market prices of volatility-dependent
967:
In the Heston model, we still have one asset (volatility is not considered to be directly observable or tradeable in the market) but we now have two Wiener processes - the first in the Stochastic Differential Equation (SDE) for the stock price and the second in the SDE for the variance of the stock
1099:
of the objective function with respect to the model parameters. This was usually computed with a finite difference approximation although it is less accurate, less efficient and less elegant than an analytical gradient because an insightful expression of the latter became available only when a new
1036:
An explicit solution of the Heston price equation in terms of the volatility was developed by Kouritzin. This can be combined with known weak solutions for the volatility equation and Girsanov's theorem to produce explicit weak solutions of the Heston model. Such solutions are useful for efficient
867:
Now consider each of the underlying assets as providing a constraint on the set of equivalent measures, as its expected discount process must be equal to a constant (namely, its initial value). By adding one asset at a time, we may consider each additional constraint as reducing the dimension of
756:
A risk-neutral measure, also known as an equivalent martingale measure, is one which is equivalent to the real-world measure, and which is arbitrage-free: under such a measure, the discounted price of each of the underlying assets is a martingale. See
921:, we have one asset and one Wiener process. The dimension of the set of equivalent martingale measures is zero; hence it can be shown that there is a single value for the drift, and thus a single risk-neutral measure, under which the discounted asset 764:
In the Black-Scholes and Heston frameworks (where filtrations are generated from a linearly independent set of Wiener processes alone), any equivalent measure can be described in a very loose sense by adding a drift to each of the Wiener
444: 297: 984:). Hence we could add a volatility-dependent asset; by doing so, we add an additional constraint, and thus choose a single risk-free measure which is compatible with the market. This measure may be used for pricing. 165: 724: 1026:
An expression of the characteristic function of the Heston model that is both numerically continuous and easily differentiable with respect to the parameters was introduced by Cui et al.
1840: 497: 199: 2375: 962: 1383:
Christoffersen, P.; Heston, S.; Jacobs, K. (2009). "The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well".
753:
To price a derivative whose payoff is a function of one or more underlying assets, we evaluate the expected value of its discounted payoff under a risk-neutral measure.
2199: 679: 534: 330: 614: 556: 588: 342: 642: 2802: 1795: 912: 2332: 2312: 886: 858: 834: 810: 790: 210: 2716: 2633: 2643: 2317: 2327: 2685: 2400: 888:
by one dimension. Hence we can see that in the general situation described above, the dimension of the set of equivalent martingale measures is
2582: 1069:. Sometimes the model is also calibrated to the variance swap term-structure as in Guillaume and Schoutens. Yet another approach is to include 68: 2872: 2862: 2385: 2772: 2736: 768:
By selecting certain values for the drifts described above, we may obtain an equivalent measure which fulfills the arbitrage-free condition.
2689: 3040: 2777: 1887: 1788: 1016:
A derivation of closed-form option prices for the double Heston model was given by Christoffersen et al. and by Gauthier and Possamai.
1084:
Under the Heston model, the price of vanilla options is given analytically, but requires a numerical method to compute the integral.
2842: 2420: 2390: 2693: 2677: 2887: 2592: 1812: 1296: 2792: 2757: 2726: 2721: 2360: 2157: 2074: 1133: 2731: 2059: 202: 3066: 2355: 2162: 2081: 2817: 2697: 3081: 3045: 2822: 2658: 2557: 2542: 1954: 1870: 1781: 2832: 2468: 1505:
Cui, Y.; Del BaĂąo Rollin, S.; Germano, G. (2017). "Full and fast calibration of the Heston stochastic volatility model".
1100:
representation of the characteristic function was introduced by Cui et al. in 2017 . Another possibility is to resort to
2827: 1169:(1993). "A closed-form solution for options with stochastic volatility with applications to bond and currency options". 2430: 2014: 1959: 1875: 1045:
There are few known parameterisations of the volatility surface based on the Heston model (Schonbusher, SVI and gSVI).
968:
price. Here, the dimension of the set of equivalent martingale measures is one; there is no unique risk-free measure.
2762: 2752: 2395: 2365: 749:; this is explained in further depth in the above article. For our purposes, it is sufficient to note the following: 43:
model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a
3076: 2767: 1932: 1830: 2478: 2054: 1835: 1586:
Kouritzin, M. (2018). "Explicit Heston solutions and stochastic approximation for path-dependent option pricing".
816:, the space of possible drifts. Consider the set of equivalent martingale measures to be isomorphic to a manifold 687: 3071: 2847: 2648: 2562: 2547: 1937: 1105: 1101: 1062:
minimizing the squared difference between the prices observed in the market and those calculated from the model.
2681: 2567: 1989: 2069: 2044: 2787: 2370: 1905: 1011:
A derivation of closed-form option prices for the time-dependent Heston model was presented by Benhamou et al.
2982: 2972: 2663: 2445: 2184: 2049: 1860: 452: 2267: 1709:
Damghani, Babak Mahdavi; Kos, Andrew (2013). "De-arbitraging with a weak smile: Application to skew risk".
2924: 2852: 2111: 1318: 1267: 1232: 1085: 2947: 2929: 2909: 2904: 2623: 2455: 2435: 2282: 2225: 2064: 1974: 1753: 1656: 1559: 1436: 1396: 1356: 1138: 1117: 173: 40: 2415: 1551: 1464: 1128: 758: 924: 3022: 2977: 2967: 2708: 2653: 2628: 2597: 2577: 2337: 2322: 2189: 1631: 1122: 1070: 746: 737: 32: 1323: 1237: 3017: 2857: 2782: 2587: 2347: 2257: 2147: 1021:
An extension of the Heston model with stochastic interest rates was given by Grzelak and Oosterlee.
918: 1272: 2987: 2952: 2867: 2837: 2607: 2602: 2425: 2262: 1927: 1865: 1804: 1728: 1711: 1613: 1595: 1532: 1514: 1484: 1336: 1194: 1186: 1059: 28: 2668: 1227:
Albrecher, H.; Mayer, P.; Schoutens, W.; Tistaert, J. (January 2007), "The little Heston trap",
654:
If the parameters obey the following condition (known as the Feller condition) then the process
1252: 3007: 2812: 2463: 2220: 2137: 2106: 1999: 1979: 1969: 1825: 1820: 1648: 1644: 1428: 1424: 1388: 1384: 1348: 1344: 994: 657: 512: 439:{\displaystyle d\nu _{t}=\kappa (\theta -\nu _{t})\,dt+\xi {\sqrt {\nu _{t}}}\,dW_{t}^{\nu },} 308: 302: 2673: 2410: 599: 541: 3027: 2914: 2797: 2167: 2142: 2091: 2019: 1942: 1895: 1720: 1692: 1605: 1524: 1476: 1328: 1277: 1178: 1166: 1089: 1078: 998: 973: 24: 1683:
Le Floc'h, Fabien (2018). "An adaptive Filon quadrature for stochastic volatility models".
1643:
Guillaume, Florence; Schoutens, Wim (2013). "Heston model: The variance swap calibration".
573: 2992: 2892: 2877: 2638: 2572: 2250: 2194: 2177: 1922: 1766: 1669: 1572: 1449: 1409: 1369: 1074: 1031:
The use of the model in a local stochastic volatility context was given by Van Der Weijst.
627: 292:{\displaystyle d{\sqrt {\nu _{t}}}=-\theta {\sqrt {\nu _{t}}}\,dt+\delta \,dW_{t}^{\nu }.} 2807: 2039: 891: 2997: 2962: 2882: 2488: 2235: 2152: 2121: 2116: 2096: 2086: 2029: 2024: 2004: 1984: 1949: 1917: 1900: 1066: 871: 843: 819: 795: 775: 644:, the volatility of the volatility, or 'vol of vol', which determines the variance of ν 591: 500: 44: 1423:
Gauthier, P.; Possamai, D. (2009). "Efficient simulation of the double Heston model".
3060: 2899: 2440: 2277: 2272: 2230: 2172: 1994: 1910: 1850: 1732: 1617: 1055: 981: 1536: 1340: 1198: 1104:. For example, the tangent mode of algorithmic differentiation may be applied using 1006:
A discussion of the implementation of the Heston model was given by Kahl and Jäckel.
2957: 2919: 2473: 2294: 2289: 2101: 2034: 2009: 1845: 1488: 2537: 3002: 2521: 2516: 2511: 2501: 2304: 2245: 2240: 2204: 1964: 1855: 977: 333: 1528: 3012: 2552: 2496: 2380: 1609: 1088:
summarized the various quadratures applied and proposed an efficient adaptive
36: 2506: 1042:
High precision reference prices are available in a blog post by Alan Lewis.
1696: 1281: 1182: 1332: 1317:
Benhamou, E.; Gobet, E.; Miri, M. (2009). "Time dependent Heston model".
160:{\displaystyle dS_{t}=\mu S_{t}\,dt+{\sqrt {\nu _{t}}}S_{t}\,dW_{t}^{S},} 2333:
Generalized autoregressive conditional heteroskedasticity (GARCH) model
1773: 1724: 1190: 1480: 1741: 1742:"CLOSED FORM SOLUTION FOR HESTON PDE BY GEOMETRICALTRANSFORMATIONS" 1600: 1519: 1143: 558:, the long variance, or long-run average variance of the price; as 1632:
https://financepress.com/2019/02/15/heston-model-reference-prices/
812:
Wiener processes. The set of equivalent measures is isomorphic to
332:, the instantaneous variance, is given by a Feller square-root or 62:, the price of the asset, is determined by a stochastic process, 840:; initially, consider the situation where we have no assets and 1777: 1552:"Numerical solutions for the stochastic local volatility model" 1096: 1054:
The calibration of the Heston model is often formulated as a
2313:
Autoregressive conditional heteroskedasticity (ARCH) model
1841:
Independent and identically distributed random variables
1588:
International Journal of Theoretical and Applied Finance
1144:
MATLAB code for implementation by Kahl, Jäckel and Lord
2318:
Autoregressive integrated moving average (ARIMA) model
927: 894: 874: 846: 822: 798: 778: 690: 660: 630: 602: 576: 544: 515: 455: 345: 311: 213: 176: 71: 1465:"On the Heston model with stochastic interest rates" 1125:(another name for the equivalent martingale measure) 792:
underlying assets and a linearly independent set of
745:
A fundamental concept in derivatives pricing is the
503:(i.e., continuous random walks) with correlation ρ. 2940: 2745: 2707: 2616: 2530: 2487: 2454: 2346: 2303: 2213: 2130: 1886: 1811: 1253:"Option valuation using the fast Fourier transform" 956: 906: 880: 852: 828: 804: 784: 718: 673: 636: 608: 582: 550: 528: 491: 438: 324: 291: 193: 159: 2200:Stochastic chains with memory of variable length 1297:"Not-so-complex logarithms in the Heston model" 1789: 8: 719:{\displaystyle 2\kappa \theta >\xi ^{2}.} 772:Consider a general situation where we have 2328:Autoregressive–moving-average (ARMA) model 1796: 1782: 1774: 1500: 1498: 562:tends to infinity, the expected value of ν 1599: 1518: 1322: 1271: 1236: 1077:as well, in order to capture the forward 948: 932: 926: 893: 873: 845: 821: 797: 777: 707: 689: 665: 659: 629: 601: 575: 543: 520: 514: 483: 478: 465: 460: 454: 427: 422: 414: 406: 400: 387: 378: 353: 344: 316: 310: 280: 275: 267: 254: 246: 240: 223: 217: 212: 183: 177: 175: 148: 143: 135: 129: 117: 111: 101: 95: 79: 70: 1507:European Journal of Operational Research 1463:Grzelak, L.A.; Oosterlee, C.W. (2011). 1155: 2634:Doob's martingale convergence theorems 1762: 1751: 1665: 1654: 1568: 1557: 1445: 1434: 1405: 1394: 1365: 1354: 492:{\displaystyle W_{t}^{S},W_{t}^{\nu }} 2386:Constant elasticity of variance (CEV) 2376:Chan–Karolyi–Longstaff–Sanders (CKLS) 1469:SIAM Journal on Financial Mathematics 7: 1214:Paul Wilmott on Quantitative Finance 1161: 1159: 55:The basic Heston model assumes that 31:that describes the evolution of the 2873:Skorokhod's representation theorem 2654:Law of large numbers (weak/strong) 1065:The prices are typically those of 194:{\displaystyle {\sqrt {\nu _{t}}}} 14: 2843:Martingale representation theorem 1095:Calibration usually requires the 2888:Stochastic differential equation 2778:Doob's optional stopping theorem 2773:Doob–Meyer decomposition theorem 1685:Journal of Computational Finance 1260:Journal of Computational Finance 957:{\displaystyle e^{-\rho t}S_{t}} 2758:Convergence of random variables 2644:Fisher–Tippett–Gnedenko theorem 1134:Martingale (probability theory) 506:The model has five parameters: 2356:Binomial options pricing model 384: 365: 1: 2823:Kolmogorov continuity theorem 2659:Law of the iterated logarithm 1550:van der Weijst, Roel (2017). 1295:Kahl, C.; Jäckel, P. (2005). 1108:in a straightforward manner. 590:, the correlation of the two 2828:Kolmogorov extension theorem 2507:Generalized queueing network 2015:Interacting particle systems 1251:Carr, P.; Madan, D. (1999). 1001:was shown by Carr and Madan. 1960:Continuous-time random walk 1216:(2nd ed.), p. 861 1171:Review of Financial Studies 3098: 2968:Extreme value theory (EVT) 2768:Doob decomposition theorem 2060:Ornstein–Uhlenbeck process 1831:Chinese restaurant process 1529:10.1016/j.ejor.2017.05.018 203:Ornstein-Uhlenbeck process 3036: 2848:Optional stopping theorem 2649:Large deviation principle 2401:Heath–Jarrow–Morton (HJM) 2338:Moving-average (MA) model 2323:Autoregressive (AR) model 2148:Hidden Markov model (HMM) 2082:Schramm–Loewner evolution 1610:10.1142/S0219024918500061 1102:automatic differentiation 2763:DolĂŠans-Dade exponential 2593:Progressively measurable 2391:Cox–Ingersoll–Ross (CIR) 1740:Mario, Dell'Era (2014). 740:for the complete article 674:{\displaystyle \nu _{t}} 529:{\displaystyle \nu _{0}} 325:{\displaystyle \nu _{t}} 2983:Mathematical statistics 2973:Large deviations theory 2803:Infinitesimal generator 2664:Maximal ergodic theorem 2583:Piecewise-deterministic 2185:Random dynamical system 2050:Markov additive process 976:(for example, European 609:{\displaystyle \kappa } 551:{\displaystyle \theta } 536:, the initial variance. 2818:Karhunen–Loève theorem 2753:Cameron–Martin formula 2717:Burkholder–Davis–Gundy 2112:Variance gamma process 1761:Cite journal requires 1664:Cite journal requires 1567:Cite journal requires 1444:Cite journal requires 1404:Cite journal requires 1364:Cite journal requires 980:, or more explicitly, 964:will be a martingale. 958: 908: 882: 854: 830: 806: 786: 720: 681:is strictly positive 675: 638: 610: 584: 552: 530: 493: 440: 326: 293: 195: 161: 3067:Derivatives (finance) 2948:Actuarial mathematics 2910:Uniform integrability 2905:Stratonovich integral 2833:LĂŠvy–Prokhorov metric 2737:Marcinkiewicz–Zygmund 2624:Central limit theorem 2226:Gaussian random field 2055:McKean–Vlasov process 1975:Dyson Brownian motion 1836:Galton–Watson process 1697:10.21314/JCF.2018.356 1282:10.21314/JCF.1999.043 1139:SABR volatility model 1118:Stochastic volatility 1071:forward start options 1056:least squares problem 959: 909: 883: 855: 831: 807: 787: 721: 676: 639: 616:, the rate at which ν 611: 585: 583:{\displaystyle \rho } 553: 531: 494: 441: 327: 294: 196: 170:where the volatility 162: 41:stochastic volatility 3082:Mathematical finance 3023:Time series analysis 2978:Mathematical finance 2863:Reflection principle 2190:Regenerative process 1990:Fleming–Viot process 1805:Stochastic processes 1333:10.2139/ssrn.1367955 1212:Wilmott, P. (2006), 1123:Risk-neutral measure 925: 892: 872: 844: 820: 796: 776: 747:risk-neutral measure 738:Risk-neutral measure 730:Risk-neutral measure 688: 658: 637:{\displaystyle \xi } 628: 600: 574: 542: 513: 453: 343: 309: 211: 174: 69: 3018:Stochastic analysis 2858:Quadratic variation 2853:Prokhorov's theorem 2788:Feynman–Kac formula 2258:Markov random field 1906:Birth–death process 1183:10.1093/rfs/6.2.327 919:Black-Scholes model 907:{\displaystyle m-n} 488: 470: 432: 285: 153: 2988:Probability theory 2868:Skorokhod integral 2838:Malliavin calculus 2421:Korn-Kreer-Lenssen 2305:Time series models 2268:Pitman–Yor process 1725:10.1002/wilm.10201 1129:Girsanov's theorem 1060:objective function 954: 904: 878: 850: 826: 802: 782: 759:Girsanov's theorem 716: 671: 634: 606: 580: 548: 526: 489: 474: 456: 436: 418: 322: 289: 271: 191: 157: 139: 51:Basic Heston model 29:mathematical model 3077:Options (finance) 3054: 3053: 3008:Signal processing 2727:Doob's upcrossing 2722:Doob's martingale 2686:Engelbert–Schmidt 2629:Donsker's theorem 2563:Feller-continuous 2431:Rendleman–Bartter 2221:Dirichlet process 2138:Branching process 2107:Telegraph process 2000:Geometric process 1980:Empirical process 1970:Diffusion process 1826:Branching process 1821:Bernoulli process 1481:10.1137/090756119 1167:Heston, Steven L. 995:Fourier transform 881:{\displaystyle M} 860:is isomorphic to 853:{\displaystyle M} 829:{\displaystyle M} 805:{\displaystyle m} 785:{\displaystyle n} 412: 252: 229: 189: 123: 3089: 3072:Financial models 3028:Machine learning 2915:Usual hypotheses 2798:Girsanov theorem 2783:Dynkin's formula 2548:Continuous paths 2456:Actuarial models 2396:Garman–Kohlhagen 2366:Black–Karasinski 2361:Black–Derman–Toy 2348:Financial models 2214:Fields and other 2143:Gaussian process 2092:Sigma-martingale 1896:Additive process 1798: 1791: 1784: 1775: 1770: 1764: 1759: 1757: 1749: 1736: 1701: 1700: 1680: 1674: 1673: 1667: 1662: 1660: 1652: 1640: 1634: 1628: 1622: 1621: 1603: 1583: 1577: 1576: 1570: 1565: 1563: 1555: 1547: 1541: 1540: 1522: 1502: 1493: 1492: 1460: 1454: 1453: 1447: 1442: 1440: 1432: 1420: 1414: 1413: 1407: 1402: 1400: 1392: 1380: 1374: 1373: 1367: 1362: 1360: 1352: 1326: 1314: 1308: 1307: 1304:Wilmott Magazine 1301: 1292: 1286: 1285: 1275: 1257: 1248: 1242: 1241: 1240: 1229:Wilmott Magazine 1224: 1218: 1217: 1209: 1203: 1202: 1163: 1090:Filon quadrature 963: 961: 960: 955: 953: 952: 943: 942: 913: 911: 910: 905: 887: 885: 884: 879: 859: 857: 856: 851: 835: 833: 832: 827: 811: 809: 808: 803: 791: 789: 788: 783: 725: 723: 722: 717: 712: 711: 680: 678: 677: 672: 670: 669: 643: 641: 640: 635: 615: 613: 612: 607: 592:Wiener processes 589: 587: 586: 581: 557: 555: 554: 549: 535: 533: 532: 527: 525: 524: 501:Wiener processes 498: 496: 495: 490: 487: 482: 469: 464: 445: 443: 442: 437: 431: 426: 413: 411: 410: 401: 383: 382: 358: 357: 331: 329: 328: 323: 321: 320: 305:then shows that 298: 296: 295: 290: 284: 279: 253: 251: 250: 241: 230: 228: 227: 218: 200: 198: 197: 192: 190: 188: 187: 178: 166: 164: 163: 158: 152: 147: 134: 133: 124: 122: 121: 112: 100: 99: 84: 83: 25:Steven L. Heston 19:In finance, the 16:Model in finance 3097: 3096: 3092: 3091: 3090: 3088: 3087: 3086: 3057: 3056: 3055: 3050: 3032: 2993:Queueing theory 2936: 2878:Skorokhod space 2741: 2732:Kunita–Watanabe 2703: 2669:Sanov's theorem 2639:Ergodic theorem 2612: 2608:Time-reversible 2526: 2489:Queueing models 2483: 2479:Sparre–Anderson 2469:CramĂŠr–Lundberg 2450: 2436:SABR volatility 2342: 2299: 2251:Boolean network 2209: 2195:Renewal process 2126: 2075:Non-homogeneous 2065:Poisson process 1955:Contact process 1918:Brownian motion 1888:Continuous time 1882: 1876:Maximal entropy 1807: 1802: 1760: 1750: 1739: 1708: 1705: 1704: 1682: 1681: 1677: 1663: 1653: 1642: 1641: 1637: 1629: 1625: 1585: 1584: 1580: 1566: 1556: 1549: 1548: 1544: 1504: 1503: 1496: 1462: 1461: 1457: 1443: 1433: 1422: 1421: 1417: 1403: 1393: 1382: 1381: 1377: 1363: 1353: 1324:10.1.1.657.6271 1316: 1315: 1311: 1299: 1294: 1293: 1289: 1255: 1250: 1249: 1245: 1238:10.1.1.170.9335 1226: 1225: 1221: 1211: 1210: 1206: 1165: 1164: 1157: 1152: 1114: 1075:barrier options 1067:vanilla options 1052: 993:The use of the 990: 944: 928: 923: 922: 890: 889: 870: 869: 842: 841: 818: 817: 794: 793: 774: 773: 732: 703: 686: 685: 661: 656: 655: 649: 626: 625: 621: 598: 597: 572: 571: 567: 540: 539: 516: 511: 510: 451: 450: 402: 374: 349: 341: 340: 312: 307: 306: 242: 219: 209: 208: 179: 172: 171: 125: 113: 91: 75: 67: 66: 60: 53: 39:asset. It is a 17: 12: 11: 5: 3095: 3093: 3085: 3084: 3079: 3074: 3069: 3059: 3058: 3052: 3051: 3049: 3048: 3043: 3041:List of topics 3037: 3034: 3033: 3031: 3030: 3025: 3020: 3015: 3010: 3005: 3000: 2998:Renewal theory 2995: 2990: 2985: 2980: 2975: 2970: 2965: 2963:Ergodic theory 2960: 2955: 2953:Control theory 2950: 2944: 2942: 2938: 2937: 2935: 2934: 2933: 2932: 2927: 2917: 2912: 2907: 2902: 2897: 2896: 2895: 2885: 2883:Snell envelope 2880: 2875: 2870: 2865: 2860: 2855: 2850: 2845: 2840: 2835: 2830: 2825: 2820: 2815: 2810: 2805: 2800: 2795: 2790: 2785: 2780: 2775: 2770: 2765: 2760: 2755: 2749: 2747: 2743: 2742: 2740: 2739: 2734: 2729: 2724: 2719: 2713: 2711: 2705: 2704: 2702: 2701: 2682:Borel–Cantelli 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2620: 2618: 2617:Limit theorems 2614: 2613: 2611: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2545: 2540: 2534: 2532: 2528: 2527: 2525: 2524: 2519: 2514: 2509: 2504: 2499: 2493: 2491: 2485: 2484: 2482: 2481: 2476: 2471: 2466: 2460: 2458: 2452: 2451: 2449: 2448: 2443: 2438: 2433: 2428: 2423: 2418: 2413: 2408: 2403: 2398: 2393: 2388: 2383: 2378: 2373: 2368: 2363: 2358: 2352: 2350: 2344: 2343: 2341: 2340: 2335: 2330: 2325: 2320: 2315: 2309: 2307: 2301: 2300: 2298: 2297: 2292: 2287: 2286: 2285: 2280: 2270: 2265: 2260: 2255: 2254: 2253: 2248: 2238: 2236:Hopfield model 2233: 2228: 2223: 2217: 2215: 2211: 2210: 2208: 2207: 2202: 2197: 2192: 2187: 2182: 2181: 2180: 2175: 2170: 2165: 2155: 2153:Markov process 2150: 2145: 2140: 2134: 2132: 2128: 2127: 2125: 2124: 2122:Wiener sausage 2119: 2117:Wiener process 2114: 2109: 2104: 2099: 2097:Stable process 2094: 2089: 2087:Semimartingale 2084: 2079: 2078: 2077: 2072: 2062: 2057: 2052: 2047: 2042: 2037: 2032: 2030:Jump diffusion 2027: 2022: 2017: 2012: 2007: 2005:Hawkes process 2002: 1997: 1992: 1987: 1985:Feller process 1982: 1977: 1972: 1967: 1962: 1957: 1952: 1950:Cauchy process 1947: 1946: 1945: 1940: 1935: 1930: 1925: 1915: 1914: 1913: 1903: 1901:Bessel process 1898: 1892: 1890: 1884: 1883: 1881: 1880: 1879: 1878: 1873: 1868: 1863: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1817: 1815: 1809: 1808: 1803: 1801: 1800: 1793: 1786: 1778: 1772: 1771: 1763:|journal= 1737: 1703: 1702: 1675: 1666:|journal= 1635: 1623: 1578: 1569:|journal= 1542: 1513:(2): 625–638. 1494: 1455: 1446:|journal= 1415: 1406:|journal= 1375: 1366:|journal= 1309: 1287: 1243: 1219: 1204: 1177:(2): 327–343. 1154: 1153: 1151: 1148: 1147: 1146: 1141: 1136: 1131: 1126: 1120: 1113: 1110: 1051: 1048: 1047: 1046: 1043: 1039: 1038: 1033: 1032: 1028: 1027: 1023: 1022: 1018: 1017: 1013: 1012: 1008: 1007: 1003: 1002: 989: 988:Implementation 986: 982:variance swaps 951: 947: 941: 938: 935: 931: 903: 900: 897: 877: 849: 825: 801: 781: 770: 769: 766: 762: 754: 743: 742: 731: 728: 727: 726: 715: 710: 706: 702: 699: 696: 693: 668: 664: 652: 651: 645: 633: 623: 617: 605: 595: 579: 569: 563: 547: 537: 523: 519: 486: 481: 477: 473: 468: 463: 459: 447: 446: 435: 430: 425: 421: 417: 409: 405: 399: 396: 393: 390: 386: 381: 377: 373: 370: 367: 364: 361: 356: 352: 348: 319: 315: 300: 299: 288: 283: 278: 274: 270: 266: 263: 260: 257: 249: 245: 239: 236: 233: 226: 222: 216: 186: 182: 168: 167: 156: 151: 146: 142: 138: 132: 128: 120: 116: 110: 107: 104: 98: 94: 90: 87: 82: 78: 74: 58: 52: 49: 45:random process 23:, named after 15: 13: 10: 9: 6: 4: 3: 2: 3094: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3064: 3062: 3047: 3044: 3042: 3039: 3038: 3035: 3029: 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2989: 2986: 2984: 2981: 2979: 2976: 2974: 2971: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2945: 2943: 2939: 2931: 2928: 2926: 2923: 2922: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2901: 2900:Stopping time 2898: 2894: 2891: 2890: 2889: 2886: 2884: 2881: 2879: 2876: 2874: 2871: 2869: 2866: 2864: 2861: 2859: 2856: 2854: 2851: 2849: 2846: 2844: 2841: 2839: 2836: 2834: 2831: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2774: 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2754: 2751: 2750: 2748: 2744: 2738: 2735: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2714: 2712: 2710: 2706: 2699: 2695: 2691: 2690:Hewitt–Savage 2687: 2683: 2679: 2675: 2674:Zero–one laws 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2621: 2619: 2615: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2539: 2536: 2535: 2533: 2529: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2494: 2492: 2490: 2486: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2461: 2459: 2457: 2453: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2427: 2424: 2422: 2419: 2417: 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2371:Black–Scholes 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2353: 2351: 2349: 2345: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2310: 2308: 2306: 2302: 2296: 2293: 2291: 2288: 2284: 2281: 2279: 2276: 2275: 2274: 2273:Point process 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2252: 2249: 2247: 2244: 2243: 2242: 2239: 2237: 2234: 2232: 2231:Gibbs measure 2229: 2227: 2224: 2222: 2219: 2218: 2216: 2212: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2160: 2159: 2156: 2154: 2151: 2149: 2146: 2144: 2141: 2139: 2136: 2135: 2133: 2129: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2076: 2073: 2071: 2068: 2067: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2020:ItĂ´ diffusion 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1995:Gamma process 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1948: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1920: 1919: 1916: 1912: 1909: 1908: 1907: 1904: 1902: 1899: 1897: 1894: 1893: 1891: 1889: 1885: 1877: 1874: 1872: 1869: 1867: 1866:Self-avoiding 1864: 1862: 1859: 1858: 1857: 1854: 1852: 1851:Moran process 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1818: 1816: 1814: 1813:Discrete time 1810: 1806: 1799: 1794: 1792: 1787: 1785: 1780: 1779: 1776: 1768: 1755: 1748:(6): 793–807. 1747: 1743: 1738: 1734: 1730: 1726: 1722: 1718: 1714: 1713: 1707: 1706: 1698: 1694: 1690: 1686: 1679: 1676: 1671: 1658: 1650: 1646: 1639: 1636: 1633: 1627: 1624: 1619: 1615: 1611: 1607: 1602: 1597: 1593: 1589: 1582: 1579: 1574: 1561: 1553: 1546: 1543: 1538: 1534: 1530: 1526: 1521: 1516: 1512: 1508: 1501: 1499: 1495: 1490: 1486: 1482: 1478: 1474: 1470: 1466: 1459: 1456: 1451: 1438: 1430: 1426: 1419: 1416: 1411: 1398: 1390: 1386: 1379: 1376: 1371: 1358: 1350: 1346: 1342: 1338: 1334: 1330: 1325: 1320: 1313: 1310: 1305: 1298: 1291: 1288: 1283: 1279: 1274: 1273:10.1.1.6.9994 1269: 1265: 1261: 1254: 1247: 1244: 1239: 1234: 1230: 1223: 1220: 1215: 1208: 1205: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1162: 1160: 1156: 1149: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1124: 1121: 1119: 1116: 1115: 1111: 1109: 1107: 1103: 1098: 1093: 1091: 1087: 1082: 1080: 1076: 1072: 1068: 1063: 1061: 1057: 1049: 1044: 1041: 1040: 1035: 1034: 1030: 1029: 1025: 1024: 1020: 1019: 1015: 1014: 1010: 1009: 1005: 1004: 1000: 999:value options 996: 992: 991: 987: 985: 983: 979: 975: 969: 965: 949: 945: 939: 936: 933: 929: 920: 915: 901: 898: 895: 875: 865: 863: 847: 839: 823: 815: 799: 779: 767: 763: 760: 755: 752: 751: 750: 748: 741: 739: 734: 733: 729: 713: 708: 704: 700: 697: 694: 691: 684: 683: 682: 666: 662: 648: 631: 624: 622:reverts to θ. 620: 603: 596: 593: 577: 570: 566: 561: 545: 538: 521: 517: 509: 508: 507: 504: 502: 484: 479: 475: 471: 466: 461: 457: 433: 428: 423: 419: 415: 407: 403: 397: 394: 391: 388: 379: 375: 371: 368: 362: 359: 354: 350: 346: 339: 338: 337: 335: 317: 313: 304: 286: 281: 276: 272: 268: 264: 261: 258: 255: 247: 243: 237: 234: 231: 224: 220: 214: 207: 206: 205: 204: 184: 180: 154: 149: 144: 140: 136: 130: 126: 118: 114: 108: 105: 102: 96: 92: 88: 85: 80: 76: 72: 65: 64: 63: 61: 50: 48: 46: 42: 38: 34: 30: 26: 22: 2958:Econometrics 2920:Wiener space 2808:ItĂ´ integral 2709:Inequalities 2598:Self-similar 2568:Gauss–Markov 2558:Exchangeable 2538:CĂ dlĂ g paths 2474:Risk process 2426:LIBOR market 2405: 2295:Random graph 2290:Random field 2102:Superprocess 2040:LĂŠvy process 2035:Jump process 2010:Hunt process 1846:Markov chain 1754:cite journal 1745: 1719:(1): 40–49. 1716: 1710: 1691:(3): 65–88. 1688: 1684: 1678: 1657:cite journal 1638: 1626: 1591: 1587: 1581: 1560:cite journal 1545: 1510: 1506: 1472: 1468: 1458: 1437:cite journal 1418: 1397:cite journal 1378: 1357:cite journal 1312: 1303: 1290: 1266:(4): 61–73. 1263: 1259: 1246: 1228: 1222: 1213: 1207: 1174: 1170: 1106:dual numbers 1094: 1083: 1064: 1053: 970: 966: 916: 866: 861: 837: 836:embedded in 813: 771: 744: 735: 653: 646: 618: 564: 559: 505: 448: 301: 169: 56: 54: 21:Heston model 20: 18: 3003:Ruin theory 2941:Disciplines 2813:ItĂ´'s lemma 2588:Predictable 2263:Percolation 2246:Potts model 2241:Ising model 2205:White noise 2163:Differences 2025:ItĂ´ process 1965:Cox process 1861:Loop-erased 1856:Random walk 1594:: 1850006. 1475:: 255–286. 1058:, with the 1050:Calibration 1037:simulation. 568:tends to θ. 334:CIR process 303:ItĂ´'s lemma 201:follows an 3061:Categories 3013:Statistics 2793:Filtration 2694:Kolmogorov 2678:Blumenthal 2603:Stationary 2543:Continuous 2531:Properties 2416:Hull–White 2158:Martingale 2045:Local time 1933:Fractional 1911:pure birth 1601:1608.02028 1520:1511.08718 1150:References 765:processes. 37:underlying 33:volatility 2925:Classical 1938:Geometric 1928:Excursion 1733:154646708 1618:158891879 1319:CiteSeerX 1306:: 74–103. 1268:CiteSeerX 1233:CiteSeerX 1231:: 83–92, 1086:Le Floc'h 937:ρ 934:− 899:− 705:ξ 698:θ 695:κ 663:ν 632:ξ 604:κ 578:ρ 546:θ 518:ν 485:ν 429:ν 404:ν 398:ξ 376:ν 372:− 369:θ 363:κ 351:ν 314:ν 282:ν 265:δ 244:ν 238:θ 235:− 221:ν 181:ν 115:ν 89:μ 3046:Category 2930:Abstract 2464:BĂźhlmann 2070:Compound 1537:25667130 1341:12804395 1199:16091300 1112:See also 1097:gradient 2553:Ergodic 2441:Vašíček 2283:Poisson 1943:Meander 1712:Wilmott 1649:2255550 1489:9132119 1429:1434853 1389:1447362 1349:1367955 1191:2962057 974:options 917:In the 27:, is a 2893:Tanaka 2578:Mixing 2573:Markov 2446:Wilkie 2411:Ho–Lee 2406:Heston 2178:Super- 1923:Bridge 1871:Biased 1731:  1647:  1616:  1535:  1487:  1427:  1387:  1347:  1339:  1321:  1270:  1235:  1197:  1189:  35:of an 2746:Tools 2522:M/M/c 2517:M/M/1 2512:M/G/1 2502:Fluid 2168:Local 1729:S2CID 1614:S2CID 1596:arXiv 1533:S2CID 1515:arXiv 1485:S2CID 1337:S2CID 1300:(PDF) 1256:(PDF) 1195:S2CID 1187:JSTOR 1079:smile 1073:, or 978:calls 2698:LĂŠvy 2497:Bulk 2381:Chen 2173:Sub- 2131:Both 1767:help 1717:2013 1670:help 1645:SSRN 1630:url= 1573:help 1450:help 1425:SSRN 1410:help 1385:SSRN 1370:help 1345:SSRN 736:See 701:> 499:are 449:and 2278:Cox 1721:doi 1693:doi 1606:doi 1525:doi 1511:263 1477:doi 1329:doi 1278:doi 1179:doi 997:to 3063:: 2696:, 2692:, 2688:, 2684:, 2680:, 1758:: 1756:}} 1752:{{ 1744:. 1727:. 1715:. 1689:22 1687:. 1661:: 1659:}} 1655:{{ 1612:. 1604:. 1592:21 1590:. 1564:: 1562:}} 1558:{{ 1531:. 1523:. 1509:. 1497:^ 1483:. 1471:. 1467:. 1441:: 1439:}} 1435:{{ 1401:: 1399:}} 1395:{{ 1361:: 1359:}} 1355:{{ 1343:. 1335:. 1327:. 1302:. 1276:. 1262:. 1258:. 1193:. 1185:. 1173:. 1158:^ 1092:. 1081:. 914:. 864:. 336:, 47:. 2700:) 2676:( 1797:e 1790:t 1783:v 1769:) 1765:( 1746:4 1735:. 1723:: 1699:. 1695:: 1672:) 1668:( 1651:. 1620:. 1608:: 1598:: 1575:) 1571:( 1554:. 1539:. 1527:: 1517:: 1491:. 1479:: 1473:2 1452:) 1448:( 1431:. 1412:) 1408:( 1391:. 1372:) 1368:( 1351:. 1331:: 1284:. 1280:: 1264:2 1201:. 1181:: 1175:6 950:t 946:S 940:t 930:e 902:n 896:m 876:M 862:R 848:M 838:R 824:M 814:R 800:m 780:n 761:. 714:. 709:2 692:2 667:t 650:. 647:t 619:t 594:. 565:t 560:t 522:0 480:t 476:W 472:, 467:S 462:t 458:W 434:, 424:t 420:W 416:d 408:t 395:+ 392:t 389:d 385:) 380:t 366:( 360:= 355:t 347:d 318:t 287:. 277:t 273:W 269:d 262:+ 259:t 256:d 248:t 232:= 225:t 215:d 185:t 155:, 150:S 145:t 141:W 137:d 131:t 127:S 119:t 109:+ 106:t 103:d 97:t 93:S 86:= 81:t 77:S 73:d 59:t 57:S

Index

Steven L. Heston
mathematical model
volatility
underlying
stochastic volatility
random process
Ornstein-Uhlenbeck process
ItĂ´'s lemma
CIR process
Wiener processes
Wiener processes
Risk-neutral measure
risk-neutral measure
Girsanov's theorem
Black-Scholes model
options
calls
variance swaps
Fourier transform
value options
least squares problem
objective function
vanilla options
forward start options
barrier options
smile
Le Floc'h
Filon quadrature
gradient
automatic differentiation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑