Knowledge (XXG)

Hermite's problem

Source đź“ť

763:
In 2015, for the first time, a periodic representation for any cubic irrational has been provided by means of ternary continued fractions, i.e., the problem of writing cubic irrationals as a periodic sequence of rational or integer numbers has been solved. However, the periodic representation does
592: 249: 128: 614:
proved that irrational numbers require an infinite sequence to express them as continued fractions. Moreover, this sequence is eventually periodic (again, so that there are natural numbers
689:) with the property that each sequence gives a unique real number and such that this real number belongs to the corresponding set if and only if the sequence is eventually periodic. 841:
algorithm) works for the totally real case only. The input for the algorithm is a triples of cubic vectors. A cubic vector is any vector generating a degree 3 extension of
861: 839: 891: 398: 441: 1150: 772: 183: 765: 1145: 814:
Two subtractive algorithms for finding a periodic representative of cubic vectors were proposed by Oleg Karpenkov. The first (
729: 1140: 696:
asking if this situation could be generalised, that is can one assign a sequence of natural numbers to each real number
740:) that acted as a higher-dimensional analogue of continued fractions. He hoped to show that the sequence attached to ( 676:
of degree 1, while quadratic irrationals are algebraic numbers that satisfy a polynomial of degree 2. For both these
145: 61: 764:
not derive from an algorithm defined over all real numbers and it is derived only starting from the knowledge of the
863:. In this case the cubic vectors are conjugate if and only if the output of the algorithm is periodic. The second ( 944:
Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. (Continuation).
775:. This function ? :  →  also picks out quadratic irrational numbers since ?( 732:. Jacobi himself came up with an early example, finding a sequence corresponding to each pair of real numbers ( 693: 704:
is a cubic irrational, that is an algebraic number of degree 3? Or, more generally, for each natural number
976:
General theory of continued-fraction-like algorithms in which each number is formed from three previous ones
52: 867:
algorithm) is conjectured to work for all cases (including for complex cubic vectors) and all dimensions
1081:
Karpenkov, Oleg (2022), "On Hermite's problem, Jacobi–Perron type algorithms, and Dirichlet groups",
657: 844: 1117: 1090: 1046: 304: 817: 771:
Rather than generalising continued fractions, another approach to the problem is to generalise
1026: 677: 40: 39:, such that the sequence is eventually periodic precisely when the original number is a cubic 870: 1100: 1056: 951: 669: 587:{\displaystyle x=a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}+\ddots }}}}}}.} 1112: 1068: 803:) is a non-dyadic rational number. Various generalisations of this function to either the 313: 262:
only if its decimal expansion is eventually periodic, that is if there are natural numbers
1108: 1064: 792: 259: 24: 911: 36: 1134: 993:
On the periodic writing of cubic irrationals and a generalization of RĂ©dei functions
1022: 968:
Allgemeine Theorie der kettenbruchänlichen Algorithmen, in welche jede Zahl aus
804: 757: 173:, ... are integers between 0 and 9. Given this representation the number 28: 20: 1060: 708:
is there a way of assigning a sequence of natural numbers to each real number
673: 955: 1104: 760:, but was unable to do so and whether this is the case remains unsolved. 32: 808: 141: 1116:; see also Karpenkov's "On a periodic Jacobi-Perron type algorithm", 1051: 680:
of numbers we have a way to construct a sequence of natural numbers (
1121: 1095: 916:, Lausanne: Marcum-Michaelem Bousquet – via The Euler Archive 728:
Sequences that attempt to solve Hermite's problem are often called
783:
is either rational or a quadratic irrational number, and moreover
611: 431:... are natural numbers. From this representation we can recover 1010:
Un Algorithme pour l'approximation simultanée de Deux Granduers
999:(2015), no. 3, pp. 779-799, doi: 10.1142/S1793042115500438 244:{\displaystyle x=\sum _{n=0}^{\infty }{\frac {a_{n}}{10^{n}}}.} 811:
have been made, though none has yet solved Hermite's problem.
700:
such that the sequence is eventually periodic precisely when
610:) terminates after finitely many terms. On the other hand, 1124:, merged into the published journal version of this paper. 545: 533: 512: 500: 479: 467: 548: 536: 515: 503: 482: 470: 303:
Another way of expressing numbers is to write them as
873: 847: 820: 444: 316: 186: 64: 1012:, Inaugural-Dissertation, Universität ZĂĽrich, 1905. 978:), Journal fĂĽr die reine und angewandte Mathematik 51:A standard way of writing real numbers is by their 946:, Journal fĂĽr die reine und angewandte Mathematik 885: 855: 833: 586: 392: 243: 122: 799:is a quadratic irrational precisely when ?( 123:{\displaystyle x=a_{0}.a_{1}a_{2}a_{3}\ldots \ } 748:) was eventually periodic if and only if both 8: 913:Introductio in analysin infinitorum, Vol. I 692:In 1848, Charles Hermite wrote a letter to 27:in 1848. He asked for a way of expressing 807: ×  or the two-dimensional 1094: 1050: 872: 849: 848: 846: 825: 819: 554: 549: 537: 530: 521: 516: 504: 497: 488: 483: 471: 464: 455: 443: 369: 356: 343: 330: 315: 230: 220: 214: 208: 197: 185: 108: 98: 88: 75: 63: 601:is a rational number then the sequence ( 928:L'Ĺ“uvre scientifique de Charles Hermite 902: 1029:(2004), "A two-dimensional Minkowski 7: 730:multidimensional continued fractions 1151:Unsolved problems in number theory 787:is rational if and only if ?( 773:Minkowski's question-mark function 209: 14: 381: 323: 1: 930:, Ann. Sci. École Norm. Sup. 779:) is rational if and only if 972:vorhergehenden gebildet wird 856:{\displaystyle \mathbb {Q} } 1167: 950:(1850), pp.279–315, 1061:10.1016/j.jnt.2004.01.008 934:18 (1901), pp.9–34. 834:{\displaystyle \sin ^{2}} 768:of the cubic irrational. 1039:Journal of Number Theory 995:, Int. J. Number Theory 956:10.1515/crll.1850.40.279 910:Euler, Leonhard (1748), 694:Carl Gustav Jacob Jacobi 663: 1146:Algebraic number theory 982:(1868), pp.29–64. 886:{\displaystyle d\geq 3} 716:is algebraic of degree 712:that can pick out when 887: 857: 835: 588: 394: 245: 213: 124: 53:decimal representation 19:is an open problem in 888: 858: 836: 668:Rational numbers are 589: 395: 393:{\displaystyle x=,\ } 246: 193: 125: 1105:10.4064/aa210614-5-1 871: 845: 818: 658:quadratic irrational 622:such that for every 442: 314: 278:it is the case that 270:such that for every 184: 62: 1141:Continued fractions 626: ≥  547: 535: 514: 502: 481: 469: 305:continued fractions 274: ≥  883: 853: 831: 766:minimal polynomial 758:cubic number field 664:Hermite's question 652:), if and only if 584: 577: 572: 567: 542: 509: 476: 410:is an integer and 390: 241: 120: 966:C. G. J. Jacobi, 670:algebraic numbers 579: 574: 569: 546: 534: 513: 501: 480: 468: 389: 236: 119: 17:Hermite's problem 1158: 1125: 1115: 1098: 1083:Acta Arithmetica 1078: 1072: 1071: 1054: 1036: 1019: 1013: 1006: 1000: 989: 983: 964: 958: 941: 935: 924: 918: 917: 907: 892: 890: 889: 884: 862: 860: 859: 854: 852: 840: 838: 837: 832: 830: 829: 593: 591: 590: 585: 580: 578: 576: 575: 573: 571: 570: 568: 566: 559: 558: 543: 541: 531: 526: 525: 510: 508: 498: 493: 492: 477: 475: 465: 460: 459: 399: 397: 396: 391: 387: 374: 373: 361: 360: 348: 347: 335: 334: 254:The real number 250: 248: 247: 242: 237: 235: 234: 225: 224: 215: 212: 207: 129: 127: 126: 121: 117: 113: 112: 103: 102: 93: 92: 80: 79: 1166: 1165: 1161: 1160: 1159: 1157: 1156: 1155: 1131: 1130: 1129: 1128: 1080: 1079: 1075: 1030: 1027:Garrity, Thomas 1023:Beaver, Olga R. 1021: 1020: 1016: 1007: 1003: 990: 986: 965: 961: 942: 938: 925: 921: 909: 908: 904: 899: 869: 868: 843: 842: 821: 816: 815: 793:dyadic rational 726: 688: 672:that satisfy a 666: 651: 642: 609: 550: 544: 532: 517: 511: 499: 484: 478: 466: 451: 440: 439: 430: 423: 416: 409: 365: 352: 339: 326: 312: 311: 299: 290: 260:rational number 226: 216: 182: 181: 172: 165: 158: 139: 104: 94: 84: 71: 60: 59: 49: 37:natural numbers 25:Charles Hermite 12: 11: 5: 1164: 1162: 1154: 1153: 1148: 1143: 1133: 1132: 1127: 1126: 1073: 1045:(1): 105–134, 1014: 1001: 984: 959: 936: 926:Émile Picard, 919: 901: 900: 898: 895: 882: 879: 876: 851: 828: 824: 756:belonged to a 725: 722: 684: 665: 662: 647: 634: 605: 595: 594: 583: 565: 562: 557: 553: 540: 529: 524: 520: 507: 496: 491: 487: 474: 463: 458: 454: 450: 447: 428: 421: 414: 407: 401: 400: 386: 383: 380: 377: 372: 368: 364: 359: 355: 351: 346: 342: 338: 333: 329: 325: 322: 319: 295: 282: 252: 251: 240: 233: 229: 223: 219: 211: 206: 203: 200: 196: 192: 189: 170: 163: 156: 137: 131: 130: 116: 111: 107: 101: 97: 91: 87: 83: 78: 74: 70: 67: 48: 45: 13: 10: 9: 6: 4: 3: 2: 1163: 1152: 1149: 1147: 1144: 1142: 1139: 1138: 1136: 1123: 1119: 1114: 1110: 1106: 1102: 1097: 1092: 1088: 1084: 1077: 1074: 1070: 1066: 1062: 1058: 1053: 1048: 1044: 1040: 1034: 1028: 1024: 1018: 1015: 1011: 1005: 1002: 998: 994: 991:Nadir Murru, 988: 985: 981: 977: 973: 969: 963: 960: 957: 953: 949: 945: 940: 937: 933: 929: 923: 920: 915: 914: 906: 903: 896: 894: 880: 877: 874: 866: 826: 822: 812: 810: 806: 802: 798: 794: 790: 786: 782: 778: 774: 769: 767: 761: 759: 755: 751: 747: 743: 739: 735: 731: 723: 721: 719: 715: 711: 707: 703: 699: 695: 690: 687: 683: 679: 675: 671: 661: 659: 655: 650: 646: 643: =  641: 637: 633: 629: 625: 621: 617: 613: 608: 604: 600: 581: 563: 560: 555: 551: 538: 527: 522: 518: 505: 494: 489: 485: 472: 461: 456: 452: 448: 445: 438: 437: 436: 434: 427: 420: 413: 406: 384: 378: 375: 370: 366: 362: 357: 353: 349: 344: 340: 336: 331: 327: 320: 317: 310: 309: 308: 306: 301: 298: 294: 291: =  289: 285: 281: 277: 273: 269: 265: 261: 257: 238: 231: 227: 221: 217: 204: 201: 198: 194: 190: 187: 180: 179: 178: 176: 169: 162: 155: 151: 147: 143: 136: 114: 109: 105: 99: 95: 89: 85: 81: 76: 72: 68: 65: 58: 57: 56: 54: 46: 44: 42: 38: 34: 30: 26: 22: 18: 1089:(1): 27–48, 1086: 1082: 1076: 1052:math/0210480 1042: 1038: 1032: 1017: 1009: 1008:L. Kollros, 1004: 996: 992: 987: 979: 975: 971: 967: 962: 947: 943: 939: 931: 927: 922: 912: 905: 864: 813: 800: 796: 788: 784: 780: 776: 770: 762: 753: 749: 745: 741: 737: 733: 727: 717: 713: 709: 705: 701: 697: 691: 685: 681: 667: 653: 648: 644: 639: 635: 631: 627: 623: 619: 615: 606: 602: 598: 596: 432: 425: 418: 411: 404: 402: 302: 296: 292: 287: 283: 279: 275: 271: 267: 263: 255: 253: 177:is equal to 174: 167: 160: 153: 149: 146:integer part 134: 132: 50: 29:real numbers 16: 15: 1037:function", 805:unit square 55:, such as: 21:mathematics 1135:Categories 1122:2101.12627 1096:2101.12707 974:(English: 897:References 724:Approaches 674:polynomial 47:Motivation 41:irrational 878:≥ 564:⋱ 379:… 307:, as in: 210:∞ 195:∑ 115:… 33:sequences 23:posed by 744:,  736:,  630:we have 1113:4415995 1069:2059953 809:simplex 795:, thus 791:) is a 142:integer 1111:  1067:  435:since 403:where 388:  152:, and 144:, the 140:is an 133:where 118:  1118:arXiv 1091:arXiv 1047:arXiv 656:is a 612:Euler 258:is a 970:drei 865:HAPD 752:and 678:sets 618:and 266:and 1101:doi 1087:203 1057:doi 1043:107 952:doi 823:sin 597:If 148:of 35:of 31:as 1137:: 1109:MR 1107:, 1099:, 1085:, 1065:MR 1063:, 1055:, 1041:, 1031:?( 1025:; 997:11 980:69 948:40 893:. 720:? 660:. 424:, 417:, 300:. 228:10 166:, 159:, 43:. 1120:: 1103:: 1093:: 1059:: 1049:: 1035:) 1033:x 954:: 932:3 881:3 875:d 850:Q 827:2 801:x 797:x 789:x 785:x 781:x 777:x 754:y 750:x 746:y 742:x 738:y 734:x 718:d 714:x 710:x 706:d 702:x 698:x 686:n 682:a 654:x 649:n 645:a 640:p 638:+ 636:n 632:a 628:N 624:n 620:p 616:N 607:n 603:a 599:x 582:. 561:+ 556:3 552:a 539:1 528:+ 523:2 519:a 506:1 495:+ 490:1 486:a 473:1 462:+ 457:0 453:a 449:= 446:x 433:x 429:3 426:a 422:2 419:a 415:1 412:a 408:0 405:a 385:, 382:] 376:, 371:3 367:a 363:, 358:2 354:a 350:, 345:1 341:a 337:; 332:0 328:a 324:[ 321:= 318:x 297:n 293:a 288:p 286:+ 284:n 280:a 276:N 272:n 268:p 264:N 256:x 239:. 232:n 222:n 218:a 205:0 202:= 199:n 191:= 188:x 175:x 171:3 168:a 164:2 161:a 157:1 154:a 150:x 138:0 135:a 110:3 106:a 100:2 96:a 90:1 86:a 82:. 77:0 73:a 69:= 66:x

Index

mathematics
Charles Hermite
real numbers
sequences
natural numbers
irrational
decimal representation
integer
integer part
rational number
continued fractions
Euler
quadratic irrational
algebraic numbers
polynomial
sets
Carl Gustav Jacob Jacobi
multidimensional continued fractions
cubic number field
minimal polynomial
Minkowski's question-mark function
dyadic rational
unit square
simplex
Introductio in analysin infinitorum, Vol. I
doi
10.1515/crll.1850.40.279
Beaver, Olga R.
Garrity, Thomas
arXiv

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑