Knowledge (XXG)

Heronian tetrahedron

Source 📝

88:
is the smallest possible length of the longest edge of a perfect tetrahedron with integral edge lengths. Its other edge lengths are 51, 52, 53, 80 and 84. 8064 is the smallest possible volume (and 6384 is the smallest possible surface area) of a perfect tetrahedron. The integral edge lengths of a
140:, tetrahedra in which all faces are congruent and each pair of opposite sides has equal lengths. In this case, there are only three edge lengths needed to describe the tetrahedron, rather than six, and the triples of lengths that define Heronian tetrahedra can be characterized using an 96:
with base 896 and sides 1073, and the other two faces are also isosceles with base 990 and the same sides. However, Starke made an error in reporting its volume which has become widely copied. The correct volume is
514: 368: 71:. The lengths of the edges on the path of axis-parallel edges are 153, 104, and 672, and the other three edge lengths are 185, 680, and 697, forming four right triangle faces described by the 587: 424: 281: 841:
along a common side. This definition has also been generalized to three dimensions, leading to a different class of tetrahedra that have also been called Heron tetrahedra.
129:(one with all faces being equilateral) cannot be a Heronian tetrahedron because, for regular tetrahedra whose edge lengths are integers, the face areas and volume are 1331: 1035: 733: 700: 813: 793: 773: 647: 627: 607: 209: 189: 169: 151:
There are also infinitely many Heronian birectangular tetrahedra. One method for generating tetrahedra of this type derives the axis-parallel edge lengths
1088: 980: 430: 1210: 292: 875: 867: 144:. There are also infinitely many Heronian tetrahedra with a cycle of four equal edge lengths, in which all faces are 819:, a rectangular cuboid in which the sides, two of the three face diagonals, and the body diagonal are all integers. 526: 823: 110:
Sascha Kurz has used computer search algorithms to find all Heronian tetrahedra with longest edge length at most
374: 1259: 1214: 926: 220: 64: 67:, a tetrahedron with a path of three edges parallel to the three coordinate axes and with all faces being 1040: 133:. For the same reason no Heronian tetrahedron can have an equilateral triangle as one of its faces. 1326: 126: 837:
An alternative definition of Heronian triangles is that they can be formed by gluing together two
1276: 1183: 1129: 900: 838: 145: 93: 72: 44: 1299: 1112:
Starke, E. P. (June–July 1943), "E 544: A commensurable tetrahedron", Problems and solutions,
863: 130: 40: 1231: 1098: 1268: 1121: 1013: 995: 945: 935: 884: 1197: 1009: 959: 896: 1193: 1005: 955: 892: 136:
There are infinitely many Heronian tetrahedra, and more strongly infinitely many Heronian
48: 1302: 888: 89:
Heronian tetrahedron with this volume and surface area are 25, 39, 56, 120, 153 and 160.
1149: 1044: 715: 682: 1084: 1058: 798: 778: 758: 632: 612: 592: 520: 212: 194: 174: 154: 141: 79: 68: 60: 1320: 1033:
Gardner, Martin (1983), "Chapter 2: Diophantine Analysis and Fermat's Last Theorem",
904: 1093: 85: 1257:
Lin, C.-S. (November 2011), "95.66 The reciprocal volume of a Heron tetrahedron",
816: 32: 1272: 1000: 940: 137: 1307: 950: 924:
Chisholm, C.; MacDougall, J. A. (2006), "Rational and Heron tetrahedra",
1280: 92:
In 1943, E. P. Starke published another example, in which two faces are
1133: 36: 829:
A complete classification of all Heronian tetrahedra remains unknown.
519:
For instance, the tetrahedron derived in this way from an identity of
16:
Tetrahedron whose edge lengths, face areas and volume are all integers
1125: 121:
Classification, infinite families, and special types of tetrahedron
1188: 78:
Eight examples of Heronian tetrahedra were discovered in 1877 by
1174:
Kurz, Sascha (2008), "On the generation of Heronian triangles",
75:(153,104,185), (104,672,680), (153,680,697), and (185,672,697). 745:, and the hypotenuse of the remaining two sides equal to 1236:
Sitzungsberichte der Berliner Mathematische Gesellschaft
509:{\displaystyle c={\bigl |}(pr)^{2})-|(qs)^{2}{\bigr |}.} 826:
had been found and no one has proven that none exist.
363:{\displaystyle a={\bigl |}(pq)^{2}-(rs)^{2}{\bigr |},} 801: 781: 761: 718: 685: 635: 615: 595: 529: 433: 377: 295: 223: 197: 177: 157: 1245: 1072: 1061:(1877), "Über rationale Dreikante und Tetraeder", 807: 787: 767: 727: 694: 641: 621: 601: 581: 508: 418: 362: 275: 203: 183: 163: 51:so that its vertex coordinates are also integers. 35:whose edge lengths, face areas and volume are all 47:). Every Heronian tetrahedron can be arranged in 988:Bulletin of the Australian Mathematical Society 1284:(about a different concept with the same name) 1219:(3rd ed.), Dover, Table I(i), pp. 292–293 1036:Wheels, Life and Other Mathematical Amusements 582:{\displaystyle 59^{4}+158^{4}=133^{4}+134^{4}} 498: 442: 408: 386: 352: 304: 8: 1232:"Rationale Tetraeder mit kongruenten Seiten" 868:"Heronian tetrahedra are lattice tetrahedra" 419:{\displaystyle b={\bigl |}2pqrs{\bigr |},} 1187: 1028: 1026: 999: 949: 939: 800: 780: 760: 717: 684: 634: 614: 594: 573: 560: 547: 534: 528: 497: 496: 490: 472: 460: 441: 440: 432: 407: 406: 385: 384: 376: 351: 350: 344: 322: 303: 302: 294: 267: 254: 241: 228: 222: 196: 176: 156: 679:, with the hypotenuse of right triangle 850: 276:{\displaystyle p^{4}+s^{4}=q^{4}+r^{4}} 107:, twice the number reported by Starke. 1144: 1142: 919: 917: 915: 913: 858: 856: 854: 1332:Arithmetic problems of solid geometry 974: 972: 970: 968: 7: 889:10.4169/amer.math.monthly.120.02.140 712:, the hypotenuse of right triangle 39:. The faces must therefore all be 14: 1114:The American Mathematical Monthly 1039:, W. H. Freeman, pp. 10–19, 1246:Chisholm & MacDougall (2006) 1073:Chisholm & MacDougall (2006) 1063:Archiv der Mathematik und Physik 979:Buchholz, Ralph Heiner (1992), 866:; Perlis, Alexander R. (2013), 487: 477: 473: 466: 457: 447: 341: 331: 319: 309: 1: 1089:"Math Trek: Perfect Pyramids" 876:American Mathematical Monthly 1176:Serdica Journal of Computing 815:form the edge lengths of an 1048:; see in particular page 14 1348: 824:trirectangular tetrahedron 1273:10.1017/S0025557200003740 1001:10.1017/S0004972700030252 941:10.1016/j.jnt.2006.02.009 822:No example of a Heronian 65:birectangular tetrahedron 1260:The Mathematical Gazette 927:Journal of Number Theory 755:. For these tetrahedra, 839:integer right triangles 1303:"Heronian tetrahedron" 1163:(5): 162–166, May 1985 809: 789: 769: 729: 696: 643: 623: 603: 583: 510: 420: 364: 277: 205: 185: 165: 1230:Güntsche, R. (1907), 817:almost-perfect cuboid 810: 790: 770: 730: 697: 644: 624: 604: 584: 511: 421: 365: 278: 213:sums of fourth powers 206: 186: 166: 1101:on February 20, 2008 799: 779: 759: 716: 683: 633: 613: 593: 527: 431: 375: 293: 221: 195: 175: 155: 59:An example known to 21:Heronian tetrahedron 1157:Crux Mathematicorum 1045:1983wlom.book.....G 1019:on October 27, 2009 286:using the formulas 146:isosceles triangles 127:regular tetrahedron 94:isosceles triangles 73:Pythagorean triples 1300:Weisstein, Eric W. 981:"Perfect pyramids" 864:Marshall, Susan H. 805: 785: 765: 728:{\displaystyle bc} 725: 695:{\displaystyle ab} 692: 639: 619: 599: 579: 506: 416: 360: 273: 201: 181: 161: 131:irrational numbers 45:Hero of Alexandria 41:Heronian triangles 1216:Regular Polytopes 1211:Coxeter, H. S. M. 808:{\displaystyle c} 788:{\displaystyle b} 768:{\displaystyle a} 642:{\displaystyle c} 622:{\displaystyle b} 602:{\displaystyle a} 204:{\displaystyle c} 184:{\displaystyle b} 164:{\displaystyle a} 25:Heron tetrahedron 1339: 1313: 1312: 1285: 1283: 1267:(534): 542–545, 1254: 1248: 1243: 1227: 1221: 1220: 1207: 1201: 1200: 1191: 1171: 1165: 1164: 1154: 1146: 1137: 1136: 1109: 1103: 1102: 1097:, archived from 1081: 1075: 1070: 1055: 1049: 1047: 1030: 1021: 1020: 1018: 1012:, archived from 1003: 985: 976: 963: 962: 953: 943: 921: 908: 907: 872: 860: 814: 812: 811: 806: 794: 792: 791: 786: 774: 772: 771: 766: 754: 753: 750: 744: 743: 740: 734: 732: 731: 726: 711: 710: 707: 701: 699: 698: 693: 678: 677: 674: 668: 667: 664: 658: 657: 654: 648: 646: 645: 640: 628: 626: 625: 620: 608: 606: 605: 600: 588: 586: 585: 580: 578: 577: 565: 564: 552: 551: 539: 538: 515: 513: 512: 507: 502: 501: 495: 494: 476: 465: 464: 446: 445: 425: 423: 422: 417: 412: 411: 390: 389: 369: 367: 366: 361: 356: 355: 349: 348: 327: 326: 308: 307: 282: 280: 279: 274: 272: 271: 259: 258: 246: 245: 233: 232: 210: 208: 207: 202: 190: 188: 187: 182: 170: 168: 167: 162: 116: 115: 106: 105: 102: 1347: 1346: 1342: 1341: 1340: 1338: 1337: 1336: 1317: 1316: 1298: 1297: 1294: 1289: 1288: 1256: 1255: 1251: 1229: 1228: 1224: 1209: 1208: 1204: 1173: 1172: 1168: 1152: 1148: 1147: 1140: 1126:10.2307/2303724 1111: 1110: 1106: 1085:Peterson, Ivars 1083: 1082: 1078: 1057: 1056: 1052: 1032: 1031: 1024: 1016: 983: 978: 977: 966: 923: 922: 911: 870: 862: 861: 852: 847: 835: 797: 796: 777: 776: 757: 756: 751: 748: 746: 741: 738: 736: 714: 713: 708: 705: 703: 681: 680: 675: 672: 670: 665: 662: 660: 655: 652: 650: 631: 630: 611: 610: 591: 590: 569: 556: 543: 530: 525: 524: 486: 456: 429: 428: 373: 372: 340: 318: 291: 290: 263: 250: 237: 224: 219: 218: 211:from two equal 193: 192: 173: 172: 153: 152: 123: 113: 111: 103: 100: 98: 69:right triangles 57: 49:Euclidean space 29:perfect pyramid 23:(also called a 17: 12: 11: 5: 1345: 1343: 1335: 1334: 1329: 1319: 1318: 1315: 1314: 1293: 1292:External links 1290: 1287: 1286: 1249: 1244:, as cited by 1222: 1202: 1182:(2): 181–196, 1166: 1138: 1104: 1076: 1071:, as cited by 1050: 1022: 994:(3): 353–368, 964: 934:(1): 153–185, 909: 883:(2): 140–149, 849: 848: 846: 843: 834: 833:Related shapes 831: 804: 784: 764: 724: 721: 691: 688: 638: 618: 598: 576: 572: 568: 563: 559: 555: 550: 546: 542: 537: 533: 521:Leonhard Euler 517: 516: 505: 500: 493: 489: 485: 482: 479: 475: 471: 468: 463: 459: 455: 452: 449: 444: 439: 436: 426: 415: 410: 405: 402: 399: 396: 393: 388: 383: 380: 370: 359: 354: 347: 343: 339: 336: 333: 330: 325: 321: 317: 314: 311: 306: 301: 298: 284: 283: 270: 266: 262: 257: 253: 249: 244: 240: 236: 231: 227: 200: 180: 160: 142:elliptic curve 122: 119: 80:Reinhold Hoppe 63:is a Heronian 61:Leonhard Euler 56: 53: 15: 13: 10: 9: 6: 4: 3: 2: 1344: 1333: 1330: 1328: 1325: 1324: 1322: 1310: 1309: 1304: 1301: 1296: 1295: 1291: 1282: 1278: 1274: 1270: 1266: 1262: 1261: 1253: 1250: 1247: 1241: 1237: 1233: 1226: 1223: 1218: 1217: 1212: 1206: 1203: 1199: 1195: 1190: 1185: 1181: 1177: 1170: 1167: 1162: 1158: 1155:, Solutions, 1151: 1150:"Problem 930" 1145: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1108: 1105: 1100: 1096: 1095: 1090: 1087:(July 2003), 1086: 1080: 1077: 1074: 1068: 1064: 1060: 1054: 1051: 1046: 1042: 1038: 1037: 1029: 1027: 1023: 1015: 1011: 1007: 1002: 997: 993: 989: 982: 975: 973: 971: 969: 965: 961: 957: 952: 951:1959.13/26739 947: 942: 937: 933: 929: 928: 920: 918: 916: 914: 910: 906: 902: 898: 894: 890: 886: 882: 878: 877: 869: 865: 859: 857: 855: 851: 844: 842: 840: 832: 830: 827: 825: 820: 818: 802: 782: 762: 722: 719: 689: 686: 636: 616: 596: 574: 570: 566: 561: 557: 553: 548: 544: 540: 535: 531: 522: 503: 491: 483: 480: 469: 461: 453: 450: 437: 434: 427: 413: 403: 400: 397: 394: 391: 381: 378: 371: 357: 345: 337: 334: 328: 323: 315: 312: 299: 296: 289: 288: 287: 268: 264: 260: 255: 251: 247: 242: 238: 234: 229: 225: 217: 216: 215: 214: 198: 178: 158: 149: 147: 143: 139: 134: 132: 128: 120: 118: 108: 95: 90: 87: 83: 81: 76: 74: 70: 66: 62: 54: 52: 50: 46: 42: 38: 34: 30: 26: 22: 1306: 1264: 1258: 1252: 1239: 1235: 1225: 1215: 1205: 1179: 1175: 1169: 1160: 1156: 1117: 1113: 1107: 1099:the original 1094:Science News 1092: 1079: 1066: 1062: 1053: 1034: 1014:the original 991: 987: 931: 925: 880: 874: 836: 828: 821: 518: 285: 150: 135: 124: 109: 91: 84: 77: 58: 28: 24: 20: 18: 138:disphenoids 43:(named for 33:tetrahedron 1327:Tetrahedra 1321:Categories 1120:(6): 390, 845:References 1308:MathWorld 1189:1401.6150 1059:Hoppe, R. 735:equal to 702:equal to 649:equal to 470:− 329:− 1281:23248533 1213:(1973), 905:15888158 55:Examples 37:integers 1242:: 38–53 1198:2473583 1134:2303724 1069:: 86–98 1041:Bibcode 1010:1165142 960:2268761 897:3029939 31:) is a 1279:  1196:  1132:  1008:  958:  903:  895:  795:, and 669:, and 629:, and 589:, has 191:, and 1277:JSTOR 1184:arXiv 1153:(PDF) 1130:JSTOR 1017:(PDF) 984:(PDF) 901:S2CID 871:(PDF) 1269:doi 1122:doi 996:doi 946:hdl 936:doi 932:121 885:doi 881:120 752:657 749:318 747:635 742:032 739:093 737:504 709:993 706:828 704:509 676:360 673:083 671:379 666:368 663:273 661:332 656:175 653:678 651:386 571:134 558:133 545:158 114:000 112:600 104:600 101:185 99:124 86:117 27:or 1323:: 1305:. 1275:, 1265:95 1263:, 1238:, 1234:, 1194:MR 1192:, 1178:, 1161:11 1159:, 1141:^ 1128:, 1118:50 1116:, 1091:, 1067:61 1065:, 1025:^ 1006:MR 1004:, 992:45 990:, 986:, 967:^ 956:MR 954:, 944:, 930:, 912:^ 899:, 893:MR 891:, 879:, 873:, 853:^ 775:, 659:, 609:, 532:59 523:, 171:, 148:. 125:A 117:. 82:. 19:A 1311:. 1271:: 1240:6 1186:: 1180:2 1124:: 1043:: 998:: 948:: 938:: 887:: 803:c 783:b 763:a 723:c 720:b 690:b 687:a 637:c 617:b 597:a 575:4 567:+ 562:4 554:= 549:4 541:+ 536:4 504:. 499:| 492:2 488:) 484:s 481:q 478:( 474:| 467:) 462:2 458:) 454:r 451:p 448:( 443:| 438:= 435:c 414:, 409:| 404:s 401:r 398:q 395:p 392:2 387:| 382:= 379:b 358:, 353:| 346:2 342:) 338:s 335:r 332:( 324:2 320:) 316:q 313:p 310:( 305:| 300:= 297:a 269:4 265:r 261:+ 256:4 252:q 248:= 243:4 239:s 235:+ 230:4 226:p 199:c 179:b 159:a

Index

tetrahedron
integers
Heronian triangles
Hero of Alexandria
Euclidean space
Leonhard Euler
birectangular tetrahedron
right triangles
Pythagorean triples
Reinhold Hoppe
117
isosceles triangles
regular tetrahedron
irrational numbers
disphenoids
elliptic curve
isosceles triangles
sums of fourth powers
Leonhard Euler
almost-perfect cuboid
trirectangular tetrahedron
integer right triangles



Marshall, Susan H.
"Heronian tetrahedra are lattice tetrahedra"
American Mathematical Monthly
doi
10.4169/amer.math.monthly.120.02.140

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.