Knowledge (XXG)

High-temperature electrolysis

Source đź“ť

58:, as higher energy lowers needed electricity to split molecules and opens up new, potentially better electrolytes like molten salts or hydroxides. Unlike electrolysis at room temperature, HTE operates at elevated temperature ranges depending on the thermal capacity of the material. Because of the detrimental effects of burning fossil fuels on humans and the environment, HTE has become a necessary alternative and efficient method by which hydrogen can be prepared on a large scale and used as fuel. The vision of HTE is to move towards decarbonization in all economic sectors. The material requirements for this process are: the heat source, the electrodes, the electrolyte, the electrolyzer membrane, and the source of electricity. 331: 368:, it takes 141.86 megajoules (MJ) of heat energy to produce one kg of hydrogen, for the HTE process itself and for the electricity required. At 100 Â°C, 350 MJ of thermal energy are required (41% efficient). At 850 Â°C, 225 MJ are required (64% efficient). Above 850 Â°C, one begins to exceed the capacity of standard chromium steels to resist corrosion, and it's already no easy matter to design and implement an industrial scale chemical process to operate at such a high temperature point. 20: 28: 72:
materials used to construct the cells become conductive. Therefore, electrochemical reactions begin to occur, and the cell begins to function once it has reached the proper temperature and electricity is supplied while it is being fed with steam. The steam will eventually split into hydrogen (cathode) and oxygen (anode) according to the equations below:
497:. Since the electricity generation step has a fairly low efficiency and is eliminated, thermochemical production might reach higher efficiencies than HTE. However, large-scale thermochemical production will require significant advances in materials that can withstand high-temperature, high-pressure, highly corrosive environments. 376:
Solid oxide electrolysis cells (SOECs) are electrochemical devices that function at high temperatures and are used for high-temperature electrolysis. These cells' ingredients ensure that the device will function well both physically and electrochemically at high temperatures. Therefore, the selection
1170:
Kazuya Yamada, Shinichi Makino, Kiyoshi Ono, Kentaro Matsunaga, Masato Yoshino, Takashi Ogawa, Shigeo Kasai, Seiji Fujiwara, and Hiroyuki Yamauchi "High Temperature Electrolysis for Hydrogen Production Using Solid Oxide Electrolyte Tubular Cells Assembly Unit", presented at AICHE Annual Meeting, San
466:
Obviously, the most notable advantage of HTE is that it provides an opportunity for which green hydrogen is prepared on a large scale, because it has the potential for zero emissions. The process provides an improved reaction kinetics for the splitting of water molecule. Part of the electricity
71:
The process utilizes energy (in the form of heat) from sources to convert water into steam, which is then passed into an electrolytic system (made up of two electrodes connected to the source of current, an electrolyte, and a membrane). At high temperatures (over 650 °C in most topologies), the
356:
because some of the energy is supplied as heat, which is cheaper than electricity, and also because the electrolysis reaction is more efficient at higher temperatures. In fact, at 2500 Â°C, electrical input is unnecessary because water breaks down to hydrogen and oxygen through
440:
fuel and general energy storage. It may become economical if cheap non-fossil fuel sources of heat (concentrating solar, nuclear, geothermal, waste heat) can be used in conjunction with non-fossil fuel sources of electricity (such as solar, wind, ocean, nuclear).
421:
Even with HTE, electrolysis is a fairly inefficient way to store energy. Significant conversion losses of energy occur both in the electrolysis process, and in the conversion of the resulting hydrogen back into power.
320: 227: 154: 905:
Zainal, Bidattul Syirat; Ker, Pin Jern; Mohamed, Hassan; Ong, Hwai Chyuan; Fattah, I.M.R.; Rahman, S.M. Ashrafur; Nghiem, Long D.; Mahlia, T M Indra (January 2024).
1520: 474:
Above 100 °C, the electrolysis of liquid water requires pressurization, and is therefore limited by the working pressures that can be reasonably attained.
522: 477:
creating materials that are both chemically and physically stable in conditions of intense oxidation and reduction, as well as high working temperatures.
1680: 456:
sources. HTE has been demonstrated in a laboratory at 108 kilojoules (electric) per gram of hydrogen produced, but not at a commercial scale.
1467: 531: 1352: 1258: 1016: 974: 810: 1202: 831: 1425: 658:"STEP Iron, a Chemistry of Iron Formation without CO 2 Emission: Molten Carbonate Solubility and Electrochemistry of Iron Ore Impurities" 1209: 540: 512: 1281:"Review—Challenges and Opportunities for Increased Current Density in Alkaline Electrolysis by Increasing the Operating Temperature" 1411: 1373: 233: 160: 330: 562: 506: 378: 1159:
Most austenitic steels, with chromium contents of at least 18%, can be used at temperatures up to 870°C and even higher.
480:
chemical and physical stability at low electrical conductivities, high working temperatures, and/or ionic concentrations.
78: 1711: 1570: 1481: 744:"Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons" 556: 1591: 1535: 1505: 1624: 570: 518:
has demonstration projects to test 3 nuclear facilities with high-temperature electrolysis in the United States at:
1495: 1460: 597: 382: 1445: 467:
requirement is replaced with heat, which makes it a bit cheaper because electricity is more expensive than heat.
629:
Hauch, A.; Ebbesen, S. D.; Jensen, S. H.; Mogensen, M. (2008). "Highly Efficient high temperature electrolysis".
592: 515: 1563: 1332: 1706: 1558: 1525: 1453: 956: 361:. Such temperatures are impractical; proposed HTE systems operate between 100 Â°C and 850 Â°C. 353: 696: 27: 1292: 918: 868: 708: 580: 490: 429:
of hydrocarbons as an economical source of hydrogen, which produces carbon dioxide as a by-product.
1510: 1388: 544: 494: 1614: 1545: 1540: 1213: 1184: 1102: 1082: 19: 832:"Fact Sheet | Climate, Environmental, and Health Impacts of Fossil Fuels (2021) | White Papers" 352:
High temperature electrolysis is more efficient economically than traditional room-temperature
1609: 1348: 1310: 1254: 1036: 1012: 970: 934: 884: 806: 771: 763: 724: 677: 742:
Ren, Jiawen; Yu, Ao; Peng, Ping; Lefler, Matthew; Li, Fang-Fang; Licht, Stuart (2019-11-19).
1670: 1649: 1575: 1340: 1300: 1246: 1094: 1061: 1004: 962: 926: 876: 798: 755: 716: 669: 638: 535: 526: 453: 1172: 958:
5 High-temperature electrolysis: efficient and versatile solution for multiple applications
1500: 445: 394: 341: 1296: 922: 872: 743: 712: 444:
Possible supplies of cheap high-temperature heat for HTE are all nonchemical, including
1550: 1530: 1344: 1250: 1130: 1008: 437: 433: 1700: 1594: 1238: 1188: 1106: 996: 609: 55: 1279:
Lohmann-Richters, F. P.; Renz, S.; Lehnert, W.; MĂĽller, M.; Carmo, M. (2021-11-01).
1477: 1142: 802: 493:
known to use heat to extract hydrogen from water. For instance, the thermochemical
790: 759: 1685: 1675: 449: 365: 358: 345: 1305: 1280: 930: 880: 720: 1515: 966: 857:"An overview of water electrolysis technologies for green hydrogen production" 1314: 938: 907:"Recent advancement and assessment of green hydrogen production technologies" 906: 888: 856: 767: 728: 681: 657: 1639: 1634: 1131:
Final Report Summary – WELTEMP (Water Electrolysis at Elevated Temperatures)
577: 426: 406: 775: 1066: 1049: 54:
from water at high temperatures or other products, such as iron or carbon
1619: 1604: 1050:"Hydrogen Production Technologies: Current State and Future Developments" 51: 1414:
PDF. Presentation: MARS 2020 Mission and Instruments". November 6, 2014.
1629: 1599: 337: 1426:"NASA's Perseverance Mars Rover Extracts First Oxygen from Red Planet" 673: 1644: 642: 410: 390: 386: 1098: 1331:
Acar, Canan; Dincer, Ibrahim (2018-01-01), Dincer, Ibrahim (ed.),
329: 18: 1374:"3 Nuclear Power Plants Gearing up for Clean Hydrogen Production" 381:
is essential. One option being investigated for the process used
1654: 574: 566: 1449: 1237:
Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg (2015),
1185:"Steam heat: researchers gear up for full-scale hydrogen plant" 432:
HTE is of interest as a more efficient route to the production
997:"Hydrogen production by high-temperature steam electrolysis" 1389:"Oxygen-Generating Mars Rover to Bring Colonization Closer" 1037:
https://inldigitallibrary.inl.gov/sites/sti/sti/4480292.pdf
955:
Crema, Luigi; Testi, Matteo; Trini, Martina (2021-09-07),
315:{\displaystyle {\ce {Anode: 2OH^{-}-> H2O + (1/2)O2}}} 308: 271: 185: 142: 126: 103: 31:
Decarbonization of Economy via hydrogen produced from HTE
1119: 695:
Licht, Stuart; Cui, Baochen; Wang, Baohui (2013-09-01).
425:
At current hydrocarbon prices, HTE can not compete with
1048:
Kalamaras, Christos M.; Efstathiou, Angelos M. (2013).
222:{\displaystyle {\ce {Cathode: 2H2O ->2H + 2OH^{-}}}} 364:
If one assumes that the electricity used comes from a
284: 565:
was used to produce 5.37 grams of oxygen per hour on
470:
However, HTE technology suffered limitations due to:
377:
of materials for the electrodes and electrolyte in a
236: 163: 81: 149:{\displaystyle {\ce {Overall: 2H2O -> 2H2 + O2}}} 1663: 1584: 1488: 1083:"Hydrogen production via solid electrolytic routes" 797:, Berlin, Heidelberg: Springer, pp. 937–939, 334:Theoretical thermal water splitting efficiencies. 314: 221: 148: 1120:Hi2h2 - High temperature electrolysis using SOEC 1143:"Stainless Steel - High Temperature Resistance" 855:Shiva Kumar, S.; Lim, Hankwon (November 2022). 793:, in Drioli, Enrico; Giorno, Lidietta (eds.), 1461: 8: 697:"STEP carbon capture – The barium advantage" 583:rover, using zirconia electrolysis devices. 16:Technique for producing hydrogen from water 1468: 1454: 1446: 1081:Badwal, SPS; Giddey S; Munnings C (2012). 523:Nine Mile Point Nuclear Generating Station 393:steam/Hydrogen electrodes, and d Oxide of 1304: 1065: 656:Licht, Stuart; Wu, Hongjun (2011-12-22). 307: 302: 280: 270: 265: 252: 247: 237: 235: 212: 207: 197: 184: 179: 174: 164: 162: 141: 136: 125: 120: 115: 102: 97: 92: 82: 80: 1681:Standard electrode potential (data page) 911:Renewable and Sustainable Energy Reviews 569:from atmospheric carbon dioxide for the 26: 1412:The Mars Oxygen ISRU Experiment (MOXIE) 1171:Francisco, California, November 2006. 621: 60: 1285:Journal of the Electrochemical Society 610:U.S. DOE high-temperature electrolysis 450:concentrating solar thermal collectors 1326: 1324: 23:High-temperature electrolysis schema. 7: 950: 948: 900: 898: 1339:, Oxford: Elsevier, pp. 1–40, 662:The Journal of Physical Chemistry C 561:High temperature electrolysis with 1585:Materials produced by electrolysis 1345:10.1016/b978-0-12-809597-3.00304-7 1251:10.1016/b978-0-444-62746-9.00011-6 1009:10.1016/b978-1-78242-361-4.00008-x 541:Prairie Island Nuclear Power Plant 501:United States Department of Energy 14: 532:Davis–Besse Nuclear Power Station 961:, De Gruyter, pp. 219–268, 348:to hydrogen is 70-85% efficient 50:) is a technology for producing 1239:"High Temperature Electrolysis" 1203:"Nuclear hydrogen R&D plan" 1149:. AZO Materials. 8 January 2002 791:"High-Temperature Electrolysis" 1521:Electrolysis of carbon dioxide 1245:, Elsevier, pp. 183–209, 1003:, Elsevier, pp. 225–253, 803:10.1007/978-3-662-44324-8_2122 563:solid oxide electrolyser cells 294: 281: 258: 191: 109: 1: 1387:Wall, Mike (August 1, 2014). 1001:Compendium of Hydrogen Energy 748:Accounts of Chemical Research 507:Next Generation Nuclear Plant 379:solid oxide electrolyser cell 36:High-temperature electrolysis 1571:Electrochemical fluorination 1482:Standard electrode potential 1337:Comprehensive Energy Systems 1212:. March 2004. Archived from 1087:WIREs Energy and Environment 760:10.1021/acs.accounts.9b00405 557:In-situ resource utilization 1625:Hydrogen evolution reaction 1424:Potter, Sean (2021-04-21). 1054:Conference Papers in Energy 571:Mars Oxygen ISRU Experiment 1728: 1496:Betts electrolytic process 1243:Carbon Dioxide Utilisation 931:10.1016/j.rser.2023.113941 881:10.1016/j.egyr.2022.10.127 789:Valderrama, CĂ©sar (2016), 721:10.1016/j.jcou.2013.03.006 701:Journal of CO2 Utilization 598:High-pressure electrolysis 554: 504: 383:yttria-stabilized zirconia 1333:"3.1 Hydrogen Production" 967:10.1515/9783110596274-013 795:Encyclopedia of Membranes 461:Advantages and Challenges 1306:10.1149/1945-7111/ac34cc 593:Office of Nuclear Energy 516:Office of Nuclear Energy 1506:Castner–Kellner process 1489:Electrolytic processes 489:There are hundreds of 349: 336:60% efficient at 1000° 316: 223: 150: 32: 24: 1526:Electrolysis of water 491:thermochemical cycles 333: 317: 224: 151: 30: 22: 1536:Hall–HĂ©roult process 1476:Articles related to 1210:U.S. Dept. of Energy 385:(YSZ) electrolytes, 234: 161: 79: 1712:Hydrogen production 1511:Chloralkali process 1297:2021JElS..168k4501L 1067:10.1155/2013/690627 995:Mougin, J. (2015), 923:2024RSERv.18913941Z 873:2022EnRep...813793S 713:2013JCOU....2...58L 668:(50): 25138–25147. 545:Red Wing, Minnesota 495:sulfur-iodine cycle 413:oxygen electrodes. 310: 273: 187: 144: 128: 105: 44:steam electrolysis, 1615:Electrolysed water 1546:Kolbe electrolysis 1541:Hofmann voltameter 436:, to be used as a 417:Economic potential 350: 312: 298: 293: 261: 219: 175: 146: 132: 116: 93: 33: 25: 1694: 1693: 1354:978-0-12-814925-6 1260:978-0-444-62746-9 1187:(Press release). 1018:978-1-78242-361-4 976:978-3-11-059627-4 812:978-3-662-44324-8 754:(11): 3177–3187. 674:10.1021/jp2078715 637:(20): 2331–2340. 301: 292: 276: 264: 251: 240: 211: 200: 190: 178: 167: 135: 119: 108: 96: 85: 1719: 1671:Electrochemistry 1650:Sodium hydroxide 1576:Wohlwill process 1470: 1463: 1456: 1447: 1440: 1439: 1437: 1436: 1421: 1415: 1409: 1403: 1402: 1400: 1399: 1384: 1378: 1377: 1370: 1364: 1363: 1362: 1361: 1328: 1319: 1318: 1308: 1276: 1270: 1269: 1268: 1267: 1234: 1228: 1227: 1225: 1224: 1218: 1207: 1199: 1193: 1192: 1181: 1175: 1168: 1162: 1161: 1156: 1154: 1139: 1133: 1128: 1122: 1117: 1111: 1110: 1078: 1072: 1071: 1069: 1045: 1039: 1034: 1028: 1027: 1026: 1025: 992: 986: 985: 984: 983: 952: 943: 942: 902: 893: 892: 852: 846: 845: 843: 842: 828: 822: 821: 820: 819: 786: 780: 779: 739: 733: 732: 692: 686: 685: 653: 647: 646: 643:10.1039/b718822f 626: 536:Oak Harbor, Ohio 446:nuclear reactors 434:"green" hydrogen 321: 319: 318: 313: 311: 309: 306: 299: 297: 285: 274: 272: 269: 262: 257: 256: 249: 238: 228: 226: 225: 220: 218: 217: 216: 209: 198: 188: 186: 183: 176: 165: 155: 153: 152: 147: 145: 143: 140: 133: 127: 124: 117: 106: 104: 101: 94: 83: 1727: 1726: 1722: 1721: 1720: 1718: 1717: 1716: 1697: 1696: 1695: 1690: 1659: 1640:Potassium metal 1635:Magnesium metal 1580: 1501:Castner process 1484: 1474: 1444: 1443: 1434: 1432: 1423: 1422: 1418: 1410: 1406: 1397: 1395: 1386: 1385: 1381: 1372: 1371: 1367: 1359: 1357: 1355: 1330: 1329: 1322: 1278: 1277: 1273: 1265: 1263: 1261: 1236: 1235: 1231: 1222: 1220: 1216: 1205: 1201: 1200: 1196: 1183: 1182: 1178: 1169: 1165: 1152: 1150: 1141: 1140: 1136: 1129: 1125: 1118: 1114: 1099:10.1002/wene.50 1080: 1079: 1075: 1047: 1046: 1042: 1035: 1031: 1023: 1021: 1019: 994: 993: 989: 981: 979: 977: 954: 953: 946: 904: 903: 896: 867:: 13793–13813. 854: 853: 849: 840: 838: 830: 829: 825: 817: 815: 813: 788: 787: 783: 741: 740: 736: 694: 693: 689: 655: 654: 650: 628: 627: 623: 618: 606: 589: 559: 553: 509: 503: 487: 462: 419: 404: 400: 395:Lanthanum oxide 374: 342:Steam reforming 340: 335: 328: 248: 232: 231: 208: 159: 158: 77: 76: 69: 63: 17: 12: 11: 5: 1725: 1723: 1715: 1714: 1709: 1699: 1698: 1692: 1691: 1689: 1688: 1683: 1678: 1673: 1667: 1665: 1661: 1660: 1658: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1617: 1612: 1607: 1602: 1597: 1588: 1586: 1582: 1581: 1579: 1578: 1573: 1568: 1567: 1566: 1561: 1553: 1551:Hoopes process 1548: 1543: 1538: 1533: 1531:Electrowinning 1528: 1523: 1518: 1513: 1508: 1503: 1498: 1492: 1490: 1486: 1485: 1475: 1473: 1472: 1465: 1458: 1450: 1442: 1441: 1416: 1404: 1379: 1365: 1353: 1320: 1291:(11): 114501. 1271: 1259: 1229: 1194: 1176: 1163: 1134: 1123: 1112: 1093:(5): 473–487. 1073: 1040: 1029: 1017: 987: 975: 944: 894: 861:Energy Reports 847: 823: 811: 781: 734: 687: 648: 631:J. Mater. Chem 620: 619: 617: 614: 613: 612: 605: 602: 601: 600: 595: 588: 585: 552: 549: 548: 547: 538: 529: 502: 499: 486: 483: 482: 481: 478: 475: 460: 438:carbon neutral 418: 415: 402: 398: 373: 370: 327: 324: 323: 322: 305: 296: 291: 288: 283: 279: 268: 260: 255: 246: 243: 229: 215: 206: 203: 196: 193: 182: 173: 170: 156: 139: 131: 123: 114: 111: 100: 91: 88: 68: 65: 61: 15: 13: 10: 9: 6: 4: 3: 2: 1724: 1713: 1710: 1708: 1705: 1704: 1702: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1668: 1666: 1662: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1630:Lithium metal 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1600:Calcium metal 1598: 1596: 1593: 1590: 1589: 1587: 1583: 1577: 1574: 1572: 1569: 1565: 1562: 1560: 1557: 1556: 1554: 1552: 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1502: 1499: 1497: 1494: 1493: 1491: 1487: 1483: 1479: 1471: 1466: 1464: 1459: 1457: 1452: 1451: 1448: 1431: 1427: 1420: 1417: 1413: 1408: 1405: 1394: 1390: 1383: 1380: 1375: 1369: 1366: 1356: 1350: 1346: 1342: 1338: 1334: 1327: 1325: 1321: 1316: 1312: 1307: 1302: 1298: 1294: 1290: 1286: 1282: 1275: 1272: 1262: 1256: 1252: 1248: 1244: 1240: 1233: 1230: 1219:on 2013-09-24 1215: 1211: 1204: 1198: 1195: 1191:. 2008-09-19. 1190: 1189:Science Daily 1186: 1180: 1177: 1174: 1167: 1164: 1160: 1148: 1144: 1138: 1135: 1132: 1127: 1124: 1121: 1116: 1113: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1077: 1074: 1068: 1063: 1059: 1055: 1051: 1044: 1041: 1038: 1033: 1030: 1020: 1014: 1010: 1006: 1002: 998: 991: 988: 978: 972: 968: 964: 960: 959: 951: 949: 945: 940: 936: 932: 928: 924: 920: 916: 912: 908: 901: 899: 895: 890: 886: 882: 878: 874: 870: 866: 862: 858: 851: 848: 837: 833: 827: 824: 814: 808: 804: 800: 796: 792: 785: 782: 777: 773: 769: 765: 761: 757: 753: 749: 745: 738: 735: 730: 726: 722: 718: 714: 710: 706: 702: 698: 691: 688: 683: 679: 675: 671: 667: 663: 659: 652: 649: 644: 640: 636: 632: 625: 622: 615: 611: 608: 607: 603: 599: 596: 594: 591: 590: 586: 584: 582: 579: 576: 572: 568: 564: 558: 550: 546: 542: 539: 537: 533: 530: 528: 524: 521: 520: 519: 517: 514: 508: 500: 498: 496: 492: 484: 479: 476: 473: 472: 471: 468: 464: 463: 457: 455: 451: 447: 442: 439: 435: 430: 428: 423: 416: 414: 412: 408: 396: 392: 388: 384: 380: 371: 369: 367: 362: 360: 355: 347: 343: 339: 332: 325: 303: 289: 286: 277: 266: 253: 244: 241: 230: 213: 204: 201: 194: 180: 171: 168: 157: 137: 129: 121: 112: 98: 89: 86: 75: 74: 73: 66: 64: 59: 57: 56:nanomaterials 53: 49: 45: 41: 37: 29: 21: 1707:Electrolysis 1645:Sodium metal 1595:(extraction) 1555:Dow process 1478:electrolysis 1433:. Retrieved 1429: 1419: 1407: 1396:. Retrieved 1392: 1382: 1368: 1358:, retrieved 1336: 1288: 1284: 1274: 1264:, retrieved 1242: 1232: 1221:. Retrieved 1214:the original 1197: 1179: 1166: 1158: 1151:. Retrieved 1146: 1137: 1126: 1115: 1090: 1086: 1076: 1057: 1053: 1043: 1032: 1022:, retrieved 1000: 990: 980:, retrieved 957: 914: 910: 864: 860: 850: 839:. Retrieved 836:www.eesi.org 835: 826: 816:, retrieved 794: 784: 751: 747: 737: 704: 700: 690: 665: 661: 651: 634: 630: 624: 581:Perseverance 560: 510: 488: 485:Alternatives 469: 465: 459: 458: 443: 431: 424: 420: 375: 363: 354:electrolysis 351: 346:hydrocarbons 70: 62: 47: 43: 39: 35: 34: 1686:Electrology 1676:Gas cracker 366:heat engine 359:thermolysis 1701:Categories 1516:Downs cell 1435:2021-04-22 1398:2014-11-05 1360:2024-04-14 1266:2024-04-14 1223:2008-05-09 1024:2024-04-14 982:2024-04-14 917:: 113941. 841:2024-04-14 818:2024-04-14 604:References 555:See also: 527:Oswego, NY 505:See also: 454:geothermal 326:Efficiency 1592:Aluminium 1564:Magnesium 1393:Space.com 1315:0013-4651 1107:135539661 939:1364-0321 889:2352-4847 768:0001-4842 729:2212-9820 707:: 58–63. 682:1932-7447 616:Footnotes 578:Mars 2020 551:Mars ISRU 427:pyrolysis 407:Strontium 372:Materials 259:⟶ 254:− 214:− 192:⟶ 110:⟶ 67:Principle 1664:See also 1620:Fluorine 1605:Chlorine 1173:abstract 1153:6 August 1147:azom.com 776:31697061 587:See also 52:hydrogen 1559:Bromine 1293:Bibcode 1060:: 1–9. 919:Bibcode 869:Bibcode 709:Bibcode 573:in the 166:Cathode 84:Overall 1610:Copper 1351:  1313:  1257:  1105:  1015:  973:  937:  887:  809:  774:  766:  727:  680:  452:, and 411:Cobalt 391:cermet 387:Nickel 38:(also 1217:(PDF) 1206:(PDF) 1103:S2CID 389:(Ni)- 239:Anode 1655:Zinc 1430:NASA 1349:ISBN 1311:ISSN 1255:ISBN 1155:2021 1058:2013 1013:ISBN 971:ISBN 935:ISSN 885:ISSN 807:ISBN 772:PMID 764:ISSN 725:ISSN 678:ISSN 575:NASA 567:Mars 511:The 409:and 48:HTSE 1341:doi 1301:doi 1289:168 1247:doi 1095:doi 1062:doi 1005:doi 963:doi 927:doi 915:189 877:doi 799:doi 756:doi 717:doi 670:doi 666:115 639:doi 543:in 534:in 525:in 513:DOE 405:), 397:(La 344:of 46:or 42:or 40:HTE 1703:: 1480:/ 1428:. 1391:. 1347:, 1335:, 1323:^ 1309:. 1299:. 1287:. 1283:. 1253:, 1241:, 1208:. 1157:. 1145:. 1101:. 1089:. 1085:. 1056:. 1052:. 1011:, 999:, 969:, 947:^ 933:. 925:. 913:. 909:. 897:^ 883:. 875:. 863:. 859:. 834:. 805:, 770:. 762:. 752:52 750:. 746:. 723:. 715:. 703:. 699:. 676:. 664:. 660:. 635:18 633:. 448:, 250:OH 210:OH 1469:e 1462:t 1455:v 1438:. 1401:. 1376:. 1343:: 1317:. 1303:: 1295:: 1249:: 1226:. 1109:. 1097:: 1091:2 1070:. 1064:: 1007:: 965:: 941:. 929:: 921:: 891:. 879:: 871:: 865:8 844:. 801:: 778:. 758:: 731:. 719:: 711:: 705:2 684:. 672:: 645:. 641:: 403:3 401:O 399:2 338:C 304:2 300:O 295:) 290:2 287:1 282:( 278:+ 275:O 267:2 263:H 245:2 242:: 205:2 202:+ 199:H 195:2 189:O 181:2 177:H 172:2 169:: 138:2 134:O 130:+ 122:2 118:H 113:2 107:O 99:2 95:H 90:2 87::

Index



hydrogen
nanomaterials

C
Steam reforming
hydrocarbons
electrolysis
thermolysis
heat engine
solid oxide electrolyser cell
yttria-stabilized zirconia
Nickel
cermet
Lanthanum oxide
Strontium
Cobalt
pyrolysis
"green" hydrogen
carbon neutral
nuclear reactors
concentrating solar thermal collectors
geothermal
thermochemical cycles
sulfur-iodine cycle
Next Generation Nuclear Plant
DOE
Office of Nuclear Energy
Nine Mile Point Nuclear Generating Station

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑