Knowledge (XXG)

High potential iron–sulfur protein

Source 📝

495:
cluster in a hydrophobic core, only being able to form about five conserved H-bond to the cluster ligands from the backbone. In contrast, the protein associated with the Fd's allows these clusters to contact solvent resulting in 8 protein H-bonding interactions. The protein binds Fd via conserved CysXXCysXXCys structure (X stands for any amino acid). Also, the unique protein structure and dipolar interactions from peptide and intermolecular water contribute to shielding the cluster from the attack of random outside electron donors, which protects itself from hydrolysis.
26: 489: 249:
the ferredoxin (Fd) family and the high-potential iron–suflur protein (HiPIP) family. Both HiPIP and Fd share the same resting state: , which have the same geometric and spectroscopic features. Differences arise when it comes to their active state: HiPIP forms by oxidation to , and Fd is formed by reduction to .
248:
The clusters are abundant cofactors of metalloproteins. They participate in electron-transfer sequences. The core structure for the cluster is a cube with alternating Fe and S vertices. These clusters exist in two oxidation states with a small structural change. Two families of clusters are known:
494:
The different oxidation states are explained by the proteins that combined with the cluster. Analysis from crystallographic data suggests that HiPIP is capable of preserving its higher oxidation state by forming fewer hydrogen bonds with water. The characteristic fold of the proteins wraps the
748:
Dey, Abhishek; Jenney, Francis; Adams, Michael; Babini, Elena; Takahashi, Yasuhiro; Fukuyama, Keiichi; Hodgson, Keith; Hedman, Britt; Solomon, Edward (2007). "Solvent Tuning of Electrochemical Potentials in the Active Sites of HiPIP Versus Ferredoxin".
222:
The HiPIPs are small proteins, typically containing 63 to 85 amino acid residues. The sequences show significant variation. As shown in the following schematic representation the iron-sulfur cluster is bound by four conserved cysteine residues.
255: 645:
Breiter DR, Meyer TE, Rayment I, Holden HM (1991). "The molecular structure of the high potential iron-sulfur protein isolated from Ectothiorhodospira halophila determined at 2.5-A resolution".
550:. HiPIPs are periplasmic proteins in photosynthetic bacteria. They play a role of electron shuttles in the cyclic electron flow between the photosynthetic reaction center and the 558:. Other oxidation reactions HiPIP involved include catalyzing Fe(II) oxidation, being electron donor to reductase and electron accepter for some thiosulfate-oxidizing enzyme. 575:
Benning MM, Meyer TE, Rayment I, Holden HM (1994). "Molecular Structure of the Oxidized High-Potential Iron-Sulfur Protein Isolated from Ectothiorhodospira vacuolata".
161: 900:"Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transfer" 117: 105: 802:"Synthetic analogues of [Fe4S4(Cys)3(His)] in hydrogenases and [Fe4S4(Cys)4] in HiPIP derived from all-ferric [Fe4S4{N(SiMe3)2}4]" 551: 979: 85: 484:{\displaystyle {\ce {{\underset {(for\ HiPIP)}{^{3}+}}<=>{\underset {(resting\ state)}{^{2}+}}<=>{\underset {(for\ Fd)}{+}}}}} 860: 538:
HiPIPs take part in many oxidizing reactions in creatures, and are especially known with photosynthetic anaerobic bacteria, such as
181: 530:, and NaSH. The synthesis of HiPIP analogues can help people understand the factors that cause variety redox of HiPIP. 610:
Stephens, P. J.; Jollie, D. R.; Warshel, A. (1996). "Protein Control of Redox Potentials of Iron−Sulfur Proteins".
974: 800:
Ohki, Yasuhiro; Tanifuji, Kazuki; Yamada, Norihiro; Imada, Motosuke; Tajima, Tomoyuki; Tatsumi, Kazujuki (2011).
210: 169: 503:
HiPIP analogues can be synthesized by ligand exchange reactions of with 4 equiv of thiols (HSR) as follows:
546: 165: 911: 758: 98: 197: 782: 939: 856: 833: 774: 730: 662: 627: 592: 205: 156: 929: 919: 823: 813: 766: 720: 712: 654: 619: 584: 148: 915: 762: 828: 801: 725: 700: 110: 968: 934: 899: 90: 786: 54: 144: 122: 960: 66: 806:
Proceedings of the National Academy of Sciences of the United States of America
716: 701:"Identifying sequence determinants of reduction potentials of metalloproteins" 540: 201: 851:
Valentine, Joan; Bertini, Ivano; Gray, Harry; Stiefel, Edward (2006-10-30).
818: 770: 943: 924: 837: 778: 734: 631: 880: 666: 658: 596: 229:
C: conserved cysteine residue involved in the binding of the 4Fe-4S core.
94: 25: 956: 61: 588: 885: 78: 73: 623: 518:
The precursor cluster can be synthesized by one-pot reaction of FeCl
176: 409: 330: 226:| | | | xxxxxxxxxxxxxxxxxxxCxCxxxxxxxCxxxxxCxxxx 952: 138: 49: 680:
R. H. Holm (2004). "Electron Transfer: Iron-Sulfur Clusters".
30:
Structure of the oxidized high-potential iron-sulfur protein.
448: 435: 369: 356: 290: 277: 898:
Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K (2000).
853:
Biological Inorganic Chemistry: Structure and Reactivity
951:
This article incorporates text from the public domain
258: 699:Perrin, Bradley Scott Jr.; Ichiye, Toshiko (2013). 175: 155: 137: 132: 116: 104: 84: 72: 60: 48: 40: 35: 18: 483: 904:Proceedings of the National Academy of Sciences 8: 855:(first ed.). University Science Books. 129: 24: 933: 923: 884:- High potential iron-sulfur proteins in 827: 817: 724: 461: 455: 447: 442: 434: 429: 421: 418: 410: 404: 385: 376: 368: 363: 355: 350: 342: 339: 331: 325: 306: 297: 289: 284: 276: 271: 263: 260: 259: 257: 208:in photosynthetic bacteria as well as in 682:Comprehensive Coordination Chemistry II 567: 15: 7: 647:The Journal of Biological Chemistry 194:High potential iron-sulfur proteins 19:High potential iron-sulfur protein 14: 705:Biological Inorganic Chemistry 474: 462: 451: 422: 398: 386: 372: 343: 319: 307: 293: 264: 1: 133:Available protein structures: 980:Peripheral membrane proteins 996: 950: 717:10.1007/s00775-013-1004-6 507:+ 4RSH → + 4 HN(SiMe 128: 23: 211:Paracoccus denitrificans 819:10.1073/pnas.1106472108 771:10.1126/science.1147753 196:(HIPIP) are a class of 925:10.1073/pnas.240224997 485: 534:Biochemical reactions 486: 256: 204:that participate in 198:iron-sulfur proteins 916:2000PNAS...9713561N 910:(25): 13561–13566. 812:(31): 12635–12640. 763:2007Sci...318.1464D 757:(5855): 1464–1468. 659:10.2210/pdb2hip/pdb 653:(28): 18660–18667. 589:10.1021/bi00175a016 499:Synthetic analogues 450: 437: 415: 371: 358: 336: 292: 279: 547:Ectothiorhodospira 481: 478: 438: 425: 402: 359: 346: 323: 280: 267: 624:10.1021/cr950045w 473: 470: 467: 441: 428: 419: 416: 413: 397: 394: 391: 362: 349: 340: 337: 334: 318: 315: 312: 283: 270: 261: 206:electron transfer 191: 190: 187: 186: 182:structure summary 987: 975:Protein families 947: 937: 927: 867: 866: 848: 842: 841: 831: 821: 797: 791: 790: 745: 739: 738: 728: 696: 690: 689: 677: 671: 670: 642: 636: 635: 618:(7): 2491–2514. 612:Chemical Reviews 607: 601: 600: 583:(9): 2476–2483. 572: 490: 488: 487: 482: 480: 479: 477: 471: 468: 465: 460: 459: 454: 449: 446: 439: 436: 433: 426: 417: 414: 411: 405: 403: 401: 395: 392: 389: 384: 383: 375: 370: 367: 360: 357: 354: 347: 338: 335: 332: 326: 324: 322: 316: 313: 310: 305: 304: 296: 291: 288: 281: 278: 275: 268: 245: 244: 240: 130: 28: 16: 995: 994: 990: 989: 988: 986: 985: 984: 965: 964: 963: 897: 894: 892:Further reading 876: 871: 870: 863: 850: 849: 845: 799: 798: 794: 747: 746: 742: 698: 697: 693: 679: 678: 674: 644: 643: 639: 609: 608: 604: 574: 573: 569: 564: 555: 536: 529: 525: 521: 514: 510: 501: 420: 341: 262: 254: 253: 246: 242: 238: 236: 235: 227: 220: 106:OPM superfamily 31: 12: 11: 5: 993: 991: 983: 982: 977: 967: 966: 949: 948: 893: 890: 889: 888: 875: 874:External links 872: 869: 868: 862:978-1891389436 861: 843: 792: 740: 711:(6): 599–608. 691: 672: 637: 602: 566: 565: 563: 560: 553: 535: 532: 527: 523: 519: 516: 515: 512: 508: 500: 497: 492: 491: 476: 464: 458: 453: 445: 432: 424: 408: 400: 388: 382: 379: 374: 366: 353: 345: 329: 321: 309: 303: 300: 295: 287: 274: 266: 237:clusters": --> 234: 231: 225: 219: 216: 189: 188: 185: 184: 179: 173: 172: 159: 153: 152: 142: 135: 134: 126: 125: 120: 114: 113: 108: 102: 101: 88: 82: 81: 76: 70: 69: 64: 58: 57: 52: 46: 45: 42: 38: 37: 33: 32: 29: 21: 20: 13: 10: 9: 6: 4: 3: 2: 992: 981: 978: 976: 973: 972: 970: 962: 958: 954: 945: 941: 936: 931: 926: 921: 917: 913: 909: 905: 901: 896: 895: 891: 887: 883: 882: 878: 877: 873: 864: 858: 854: 847: 844: 839: 835: 830: 825: 820: 815: 811: 807: 803: 796: 793: 788: 784: 780: 776: 772: 768: 764: 760: 756: 752: 744: 741: 736: 732: 727: 722: 718: 714: 710: 706: 702: 695: 692: 687: 683: 676: 673: 668: 664: 660: 656: 652: 648: 641: 638: 633: 629: 625: 621: 617: 613: 606: 603: 598: 594: 590: 586: 582: 578: 571: 568: 561: 559: 557: 552:cytochrome bc 549: 548: 543: 542: 533: 531: 506: 505: 504: 498: 496: 456: 443: 430: 406: 380: 377: 364: 351: 327: 301: 298: 285: 272: 252: 251: 250: 241: 232: 230: 224: 217: 215: 213: 212: 207: 203: 199: 195: 183: 180: 178: 174: 171: 167: 163: 160: 158: 154: 150: 146: 143: 140: 136: 131: 127: 124: 121: 119: 115: 112: 109: 107: 103: 100: 96: 92: 89: 87: 83: 80: 77: 75: 71: 68: 65: 63: 59: 56: 53: 51: 47: 43: 39: 34: 27: 22: 17: 907: 903: 879: 852: 846: 809: 805: 795: 754: 750: 743: 708: 704: 694: 685: 681: 675: 650: 646: 640: 615: 611: 605: 580: 577:Biochemistry 576: 570: 545: 539: 537: 517: 502: 493: 247: 228: 221: 209: 193: 192: 202:ferredoxins 200:. They are 118:OPM protein 36:Identifiers 969:Categories 562:References 541:Chromatium 522:, NaN(SiMe 145:structures 961:IPR000170 881:PDOC00515 412:reduction 333:oxidation 218:Structure 79:PDOC00515 67:IPR000170 957:InterPro 944:11095707 838:21768339 787:33046150 779:18048692 735:23690205 688:: 61-90. 632:11848834 407:⇌ 328:⇌ 233:clusters 162:RCSB PDB 62:InterPro 912:Bibcode 886:PROSITE 829:3150945 759:Bibcode 751:Science 726:3723707 667:1917989 597:8117708 556:complex 390:resting 74:PROSITE 55:PF01355 942:  932:  859:  836:  826:  785:  777:  733:  723:  665:  630:  595:  544:, and 469:  393:  314:  177:PDBsum 151:  141:  99:SUPFAM 41:Symbol 935:17615 783:S2CID 396:state 317:HiPIP 95:SCOPe 86:SCOP2 44:HIPIP 955:and 953:Pfam 940:PMID 857:ISBN 834:PMID 775:PMID 731:PMID 663:PMID 628:PMID 593:PMID 239:edit 170:PDBj 166:PDBe 149:ECOD 139:Pfam 123:1hpi 91:1hpi 50:Pfam 930:PMC 920:doi 824:PMC 814:doi 810:108 767:doi 755:318 721:PMC 713:doi 655:doi 651:266 620:doi 585:doi 466:for 311:for 214:. 157:PDB 111:116 971:: 959:: 938:. 928:. 918:. 908:97 906:. 902:. 832:. 822:. 808:. 804:. 781:. 773:. 765:. 753:. 729:. 719:. 709:18 707:. 703:. 684:. 661:. 649:. 626:. 616:96 614:. 591:. 581:33 579:. 472:Fd 427:Fe 348:Fe 269:Fe 168:; 164:; 147:/ 97:/ 93:/ 946:. 922:: 914:: 865:. 840:. 816:: 789:. 769:: 761:: 737:. 715:: 686:8 669:. 657:: 634:. 622:: 599:. 587:: 554:1 528:2 526:) 524:3 520:3 513:2 511:) 509:3 475:) 463:( 457:+ 452:] 444:4 440:S 431:4 423:[ 399:) 387:( 381:+ 378:2 373:] 365:4 361:S 352:4 344:[ 320:) 308:( 302:+ 299:3 294:] 286:4 282:S 273:4 265:[ 243:]

Index


Pfam
PF01355
InterPro
IPR000170
PROSITE
PDOC00515
SCOP2
1hpi
SCOPe
SUPFAM
OPM superfamily
116
OPM protein
1hpi
Pfam
structures
ECOD
PDB
RCSB PDB
PDBe
PDBj
PDBsum
structure summary
iron-sulfur proteins
ferredoxins
electron transfer
Paracoccus denitrificans
Chromatium
Ectothiorhodospira

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.