Knowledge (XXG)

High-performance liquid chromatography

Source đź“ť

528:
distinct differences between displacement and elution chromatography. In elution mode, substances typically emerge from a column in narrow, Gaussian peaks. Wide separation of peaks, preferably to baseline, is desired in order to achieve maximum purification. The speed at which any component of a mixture travels down the column in elution mode depends on many factors. But for two substances to travel at different speeds, and thereby be resolved, there must be substantial differences in some interaction between the biomolecules and the chromatography matrix. Operating parameters are adjusted to maximize the effect of this difference. In many cases, baseline separation of the peaks can be achieved only with gradient elution and low column loadings. Thus, two drawbacks to elution mode chromatography, especially at the preparative scale, are operational complexity, due to gradient solvent pumping, and low throughput, due to low column loadings. Displacement chromatography has advantages over elution chromatography in that components are resolved into consecutive zones of pure substances rather than "peaks". Because the process takes advantage of the nonlinearity of the isotherms, a larger column feed can be separated on a given column with the purified components recovered at significantly higher concentration.
274:) or salts to assist in the separation of the sample components. The composition of the mobile phase may be kept constant ("isocratic elution mode") or varied ("gradient elution mode") during the chromatographic analysis. Isocratic elution is typically effective in the separation of simple mixtures. Gradient elution is required for complex mixtures, with varying interactions with the stationary and mobile phases. This is the reason why in gradient elution the composition of the mobile phase is varied typically from low to high eluting strength. The eluting strength of the mobile phase is reflected by analyte retention times, as the high eluting strength speeds up the elution (resulting in shortening of retention times). For example, a typical gradient profile in reversed phase chromatography for might start at 5% acetonitrile (in water or aqueous buffer) and progress linearly to 95% acetonitrile over 5–25 minutes. Periods of constant mobile phase composition (plateau) may be also part of a gradient profile. For example, the mobile phase composition may be kept constant at 5% acetonitrile for 1–3 min, followed by a linear change up to 95% acetonitrile. 762:
interactions with the stationary phase's surface. Under these conditions, the smaller the size of the molecule, the more it is able to penetrate inside the pore space and the movement through the column takes longer. On the other hand, the bigger the molecular size, the higher the probability the molecule will not fully penetrate the pores of the stationary phase, and even travel around them, thus, will be eluted earlier. The molecules are separated in order of decreasing molecular weight, with the largest molecules eluting from the column first and smaller molecules eluting later. Molecules larger than the pore size do not enter the pores at all, and elute together as the first peak in the chromatogram and this is called total exclusion volume which defines the exclusion limit for a particular column. Small molecules will permeate fully through the pores of the stationary phase particles and will be eluted last, marking the end of the chromatogram, and may appear as a total penetration marker.
551:
materials, the stationary phases, packed inside the columns, are consisted mainly of porous granules of silica gel in various shapes, mainly spherical, at different  diameters (1.5, 2, 3, 5, 7, 10 um), with varying pore diameters (60, 100, 150, 300, A), on whose surface are chemically bound various hydrocarbon ligands such as C3, C4, C8, C18. There are also polymeric hydrophobic particles that serve as stationary phases, when solutions at extreme pH are needed, or hybrid silica, polymerized with organic substances. The longer the hydrocarbon ligand on the stationary phase, the longer the sample components can be retained. Most of the current methods of separation of biomedical materials use C-18 type of columns, sometimes called by a trade names such as ODS (octadecylsilane) or RP-18 (Reversed Phase 18).
898:). This is a chromatographic technique which encompasses the mobile phase region between reversed-phase chromatography (RP) and organic normal phase chromatography (ONP). HILIC is used to achieve unique selectivity for hydrophilic compounds, showing normal phase elution order, using "reversed-phase solvents", i.e., relatively polar mostly non-aqueous solvents in the mobile phase. Many biological molecules, especially those found in biological fluids, are small polar compounds that do not retain well by reversed phase-HPLC. This has made hydrophilic interaction LC (HILIC) an attractive alternative and useful approach for analysis of polar molecules. Additionally, because HILIC is routinely used with traditional aqueous mixtures with polar organic solvents such as ACN and methanol, it can be easily coupled to MS. 812:) is an analytical technique for the separation and determination of ionic solutes in aqueous samples from environmental and industrial origins such as metal industry, industrial waste water, in biological systems, pharmaceutical samples, food, etc. Retention is based on the attraction between solute ions and charged sites bound to the stationary phase. Solute ions charged the same as the ions on the column are repulsed and elute without retention, while solute ions charged oppositely to the charged sites of the column are retained on it. Solute ions that are retained on the column can be eluted from it by changing the mobile phase composition, such as increasing its salt concentration and pH or increasing the column temperature, etc. 1403:
applications are the major users of HPLC, LC-MS and LC-MS/MS. This includes drug development and pharmacology, which is the scientific study of the effects of drugs and chemicals on living organisms, personalized medicine, public health and diagnostics. While urine is the most common medium for analyzing drug concentrations, blood serum is the sample collected for most medical analyses with HPLC. One of the most important roles of LC-MS and LC-MS/MS in the clinical lab is the Newborn Screening (NBS) for metabolic disorders and follow-up diagnostics. The infants' samples come in the shape of dried blood spot (DBS), which is simple to prepare and transport, enabling safe and accessible diagnostics, both locally and globally.
207:, a sampler, a column, and a detector. The solvents are prepared in advance according to the needs of the separation, they pass through the degasser to remove dissolved gasses, mixed to become the mobile phase, then flow through the sampler, which brings the sample mixture into the mobile phase stream, which then carries it into the column. The pumps deliver the desired flow and composition of the mobile phase through the stationary phase inside the column, then directly into a flow-cell inside the detector. The detector generates a signal proportional to the amount of sample component emerging from the column, hence allowing for 1146:, two neighboring bands on a chromatogram). This factor is defined in terms of a ratio of the retention factors of a pair of neighboring chromatogram peaks, and may also be corrected for by the void volume of the column. The greater the separation factor value is over 1.0, the better the separation, until about 2.0 beyond which an HPLC method is probably not needed for separation. Resolution equations relate the three factors such that high efficiency and separation factors improve the resolution of component peaks in an HPLC separation. 981: 1114:) practically measures how sharp component peaks on the chromatogram are, as ratio of the component peak's area ("retention time") relative to the width of the peaks at their widest point (at the baseline). Peaks that are tall, sharp, and relatively narrow indicate that separation method efficiently removed a component from a mixture; high efficiency. Efficiency is very dependent upon the HPLC column and the HPLC method used. Efficiency factor is synonymous with plate number, and the 'number of theoretical plates'. 351:. After the introduction of porous layer particles, there has been a steady trend to reduced particle size to improve efficiency. However, by decreasing particle size, new problems arose. The practical disadvantages stem from the excessive pressure drop needed to force mobile fluid through the column and the difficulty of preparing a uniform packing of extremely fine materials. Every time particle size is reduced significantly, another round of instrument development usually must occur to handle the pressure. 335:, Josef Huber, and others in the 1960s that LC could be operated in the high-efficiency mode by reducing the packing-particle diameter substantially below the typical LC (and GC) level of 150 ÎĽm and using pressure to increase the mobile phase velocity. These predictions underwent extensive experimentation and refinement throughout the 60s into the 70s until these very days. Early developmental research began to improve LC particles, for example the historic Zipax, a superficially porous particle. 989:
earlier-eluting components. This also improves the peak shape for tailed peaks, as the increasing concentration of the organic eluent pushes the tailing part of a peak forward. This also increases the peak height (the peak looks "sharper"), which is important in trace analysis. The gradient program may include sudden "step" increases in the percentage of the organic component, or different slopes at different times – all according to the desire for optimum separation in minimum time.
844:(with respect to the functional groups in resins) concentration reduces the retention time, as it creates a strong competition with the solute ions. A decrease in pH reduces the retention time in cation exchange while an increase in pH reduces the retention time in anion exchange. By lowering the pH of the solvent in a cation exchange column, for instance, more hydrogen ions are available to compete for positions on the anionic stationary phase, thereby eluting weakly bound cations. 365: 1251:), or about 600 atmospheres. Modern HPLC systems have been improved to work at much higher pressures, and therefore are able to use much smaller particle sizes in the columns (<2 ÎĽm). These "ultra high performance liquid chromatography" systems or UHPLCs, which could also be known as ultra high pressure chromatography systems, can work at up to 120 MPa (17,405 lbf/in), or about 1200 atmospheres. The term "UPLC" is a trademark of the 1357:
the production of bulk drug materials. According to the European pharmacopoeia, HPLC is used in only 15.5% of syntheses. However, it plays a role in 44% of syntheses in the United States pharmacopoeia. This could possibly be due to differences in monetary and time constraints, as HPLC on a large scale can be an expensive technique. An increase in specificity, precision, and accuracy that occurs with HPLC unfortunately corresponds to an increase in cost.
537: 1385:(GC-MS) circumvents the necessity for derivitizing with acetylating or alkylation agents, which can be a burdensome extra step. LC-MS has been used to detect a variety of agents like doping agents, drug metabolites, glucuronide conjugates, amphetamines, opioids, cocaine, BZDs, ketamine, LSD, cannabis, and pesticides. Performing HPLC in conjunction with mass spectrometry reduces the absolute need for standardizing HPLC experimental runs. 1163:
proportionally to the smaller or larger diameter used, both in the isocratic and in gradient modes. It determines the quantity of analyte that can be loaded onto the column. Larger diameter columns are usually seen in preparative applications, such as the purification of a drug product for later use. Low-ID columns have improved sensitivity and lower solvent consumption in the recent ultra-high performance liquid chromatography (UHPLC).
248:
physical interactions with the adsorbent, the stationary phase. The velocity of each component depends on its chemical nature, on the nature of the stationary phase (inside the column) and on the composition of the mobile phase. The time at which a specific analyte elutes (emerges from the column) is called its retention time. The retention time, measured under particular conditions, is an identifying characteristic of a given analyte.
1067: 578:
analyte with the hydrophobic stationary phase relatively stronger. Similarly, an investigator can decrease retention time by adding more organic solvent to the mobile phase. RP-HPLC is so commonly used among the biologists and life science users, therefore it is often incorrectly referred to as just "HPLC" without further specification. The pharmaceutical industry also regularly employs RP-HPLC to qualify drugs before their release.
907: 1373:. This method is much more convenient. However, convenience comes at the cost of specificity and coverage of a wide range of drugs, therefore, HPLC has been used as well as an alternative method. As HPLC is a method of determining (and possibly increasing) purity, using HPLC alone in evaluating concentrations of drugs was somewhat insufficient. Therefore, HPLC in this context is often performed in conjunction with 6324: 6025: 5669: 668:(TFA) as additive to the mobile phase is widely used for complex mixtures of biomedical samples, mostly peptides and proteins, using mostly UV based detectors. They are rarely used in mass spectrometry methods, due to residues it can leave in the detector and solvent delivery system, which interfere with the analysis and detection. However, TFA can be highly effective in improving retention of analytes such as 977:
is lengthened and results in slowly eluting peaks to be broad, leading to reduced sensitivity. A stronger mobile phase would improve issues of runtime and broadening of later peaks but results in diminished peak separation, especially for quickly eluting analytes which may have insufficient time to fully resolve. This issue is addressed through the changing mobile phase composition of gradient elution.
6049: 5693: 1099:), the retention factor (kappa prime), and the separation factor (alpha). Together the factors are variables in a resolution equation, which describes how well two components' peaks separated or overlapped each other. These parameters are mostly only used for describing HPLC reversed phase and HPLC normal phase separations, since those separations tend to be more subtle than other HPLC modes ( 1155: 1215:, reducing the particle diameter by half and keeping the size of the column the same, will double the column velocity and efficiency; but four times increase the backpressure. And the small particles HPLC also can decrease the width broadening. Larger particles are used in preparative HPLC (column diameters 5 cm up to >30 cm) and for non-HPLC applications such as 39: 31: 6061: 5705: 6037: 5681: 477:), and works effectively for separating analytes readily soluble in non-polar solvents. The analyte associates with and is retained by the polar stationary phase. Adsorption strengths increase with increased analyte polarity. The interaction strength depends not only on the functional groups present in the structure of the analyte molecule, but also on 493:, analytes interact with a solid surface rather than with the solvated layer of a ligand attached to the sorbent surface; see also reversed-phase HPLC below). Adsorption chromatography is still somewhat used for structural isomer separations in both column and thin-layer chromatography formats on activated (dried) silica or alumina supports. 741:). The separation process is based on the ability of sample molecules to permeate through the pores of gel spheres, packed inside the column, and is dependent on the relative size of analyte molecules and the respective pore size of the absorbent. The process also relies on the absence of any interactions with the packing material surface. 834:. Polystyrene resins allow cross linkage, which increases the stability of the chain. Higher cross linkage reduces swerving, which increases the equilibration time and ultimately improves selectivity. Cellulose and dextran ion exchangers possess larger pore sizes and low charge densities making them suitable for protein separation. 117:. The output of the detector is a graph, called a chromatogram. Chromatograms are graphical representations of the signal intensity versus time or volume, showing peaks, which represent components of the sample. Each sample appears in its respective time, called its retention time, having area proportional to its amount. 646:, to control the pH. Buffers serve multiple purposes: control of pH which affects the ionization state of the ionizable analytes, affect the charge upon the ionizable silica surface of the stationary phase in between the bonded phase linands, and in some cases even act as ion pairing agents to neutralize analyte charge. 200:
2.1–4.6 mm diameter, and 30–250 mm length. Also HPLC columns are made with smaller adsorbent particles (1.5–50 ÎĽm in average particle size). This gives HPLC superior resolving power (the ability to distinguish between compounds) when separating mixtures, which makes it a popular chromatographic technique.
1342:
Large numbers of samples can be automatically injected onto an HPLC system, by the use of HPLC autosamplers. In addition, HPLC autosamplers have an injection volume and technique which is exactly the same for each injection, consequently they provide a high degree of injection volume precision. It is
1227:
Many stationary phases are porous to provide greater surface area. Small pores provide greater surface area while larger pore size has better kinetics, especially for larger analytes. For example, a protein which is only slightly smaller than a pore might enter the pore but does not easily leave once
1106:
Void volume is the amount of space in a column that is occupied by solvent. It is the space within the column that is outside of the column's internal packing material. Void volume is measured on a chromatogram as the first component peak detected, which is usually the solvent that was present in the
870:
This chromatographic process relies on the capability of the bonded active substances to form stable, specific, and reversible complexes thanks to their biological recognition of certain specific sample components. The formation of these complexes involves the participation of common molecular forces
688:
As a rule, in most cases RP-HPLC columns should be flushed with clean solvent after use to remove residual acids or buffers, and stored in an appropriate composition of solvent. Some biomedical applications require non metallic environment for the optimal separation. For such sensitive cases there is
626:
in their structure) are less retained, as they are better integrated into water. The interactions with the stationary phase can also affected by steric effects, or exclusion effects, whereby a component of very large molecule may have only restricted access to the pores of the stationary phase, where
527:
is rather limited, and is mostly used for preparative chromatography. The basic principle is based on a molecule with a high affinity for the chromatography matrix (the displacer) which is used to compete effectively for binding sites, and thus displace all molecules with lesser affinities. There are
460:
Normal–phase chromatography was one of the first kinds of HPLC that chemists developed, but has decreased in use over the last decades. Also known as normal-phase HPLC (NP-HPLC), this method separates analytes based on their affinity for a polar stationary surface such as silica; hence it is based on
684:
as these will hydrolyze the underlying silica particle and dissolve it. There are selected brands of hybrid or enforced silica based particles of RP columns which can be used at extreme pH conditions. The use of extreme acidic conditions is also not recommended, as they also might hydrolyzed as well
1402:
Medical use of HPLC typically use mass spectrometer (MS) as the detector, so the technique is called LC-MS or LC-MS/MS for tandem MS, where two types of MS are operated sequentially. When the HPLC instrument is connected to more than one detector, it is called a hyphenated LC system. Pharmaceutical
1062:
in chromatography is the number of peaks that can be separated within a retention window for a specific pre-defined resolution factor, usually ~1. It could also be envisioned as the runtime measured in number of peaks' average widths. The equation is shown in the Figure of the performance criteria.
976:
In isocratic elution, peak width increases with retention time linearly according to the equation for N, the number of theoretical plates. This can be a major disadvantage when analyzing a sample that contains analytes with a wide range of retention factors. Using a weaker mobile phase, the runtime
4338:
Sundström, Mira; Pelander, Anna; Angerer, Verena; Hutter, Melanie; Kneisel, Stefan; Ojanperä, Ilkka (2013-10-01). "A high-sensitivity ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method for screening synthetic cannabinoids and other
1356:
HPLC has many applications in both laboratory and clinical science. It is a common technique used in pharmaceutical development, as it is a dependable way to obtain and ensure product purity. While HPLC can produce extremely high quality (pure) products, it is not always the primary method used in
1207:
particles (very small beads). These particles come in a variety of sizes with 5 ÎĽm beads being the most common. Smaller particles generally provide more surface area and better separations, but the pressure required for optimum linear velocity increases by the inverse of the particle diameter
1045:
The plate count N as a criterion for system efficiency was developed for isocratic conditions, i.e., a constant mobile phase composition throughout the run. In gradient conditions, where the mobile phase changes with time during the chromatographic run, it is more appropriate to use the parameter
199:
because operational pressures are significantly higher (around 50–1400 bar), while ordinary liquid chromatography typically relies on the force of gravity to pass the mobile phase through the packed column. Due to the small sample amount separated in analytical HPLC, typical column dimensions are
866:
High performance affinity chromatography (HPAC) works by passing a sample solution through a column packed with a stationary phase that contains an immobilized biologically active ligand. The ligand is in fact a substrate that has a specific binding affinity for the target molecule in the sample
774:
of purified proteins. SEC is used primarily for the analysis of large molecules such as proteins or polymers. SEC works also in a preparative way by trapping the smaller molecules in the pores of a particles. The larger molecules simply pass by the pores as they are too large to enter the pores.
630:
Retention time increases with more hydrophobic (non-polar) surface area of the molecules. For example, branched chain compounds can elute more rapidly than their corresponding linear isomers because their overall surface area is lower. Similarly organic compounds with single C–C bonds frequently
617:
Structural properties of the analyte molecule can play an important role in its retention characteristics. In theory, an analyte with a larger hydrophobic surface area (C–H, C–C, and generally non-polar atomic bonds, such as S-S and others) can be retained longer as it does not interact with the
488:
The use of more polar solvents in the mobile phase will decrease the retention time of analytes, whereas more hydrophobic solvents tend to induce slower elution (increased retention times). Very polar solvents such as traces of water in the mobile phase tend to adsorb to the solid surface of the
42:
Schematic representation of an HPLC unit (1) solvent reservoirs, (2) solvent degasser, (3) gradient valve, (4) mixing vessel for delivery of the mobile phase, (5) high-pressure pump, (6) switching valve in "inject position", (6') switching valve in "load position", (7) sample injection loop, (8)
581:
RP-HPLC operates on the principle of hydrophobic interactions, which originates from the high symmetry in the dipolar water structure and plays the most important role in all processes in life science. RP-HPLC allows the measurement of these interactive forces. The binding of the analyte to the
247:
The sample mixture to be separated and analyzed is introduced, in a discrete small volume (typically microliters), into the stream of mobile phase percolating through the column. The components of the sample move through the column, each at a different velocity, which are a function of specific
992:
In isocratic elution, the retention order does not change if the column dimensions (length and inner diameter) change – that is, the peaks elute in the same order. In gradient elution, however, the elution order may change as the dimensions or flow rate change. if they are no scaled down or up
577:
With such stationary phases, retention time is longer for lipophylic molecules, whereas polar molecules elute more readily (emerge early in the analysis). A chromatographer can increase retention times by adding more water to the mobile phase, thereby making the interactions of the hydrophobic
443:
The polar analytes diffuse into a stationary water layer associated with the polar stationary phase and are thus retained. The stronger the interactions between the polar analyte and the polar stationary phase (relative to the mobile phase) the longer the elution time. The interaction strength
1595:
Gerber, F.; Krummen, M.; Potgeter, H.; Roth, A.; Siffrin, C.; Spoendlin, C. (2004). "Practical aspects of fast reversed-phase high-performance liquid chromatography using 3ÎĽm particle packed columns and monolithic columns in pharmaceutical development and production working under current good
675:
Reversed phase columns are quite difficult to damage compared to normal silica columns, thanks to the shielding effect of the bonded hydrophobic ligands; however, most reversed phase columns consist of alkyl derivatized silica particles, and are prone to hydrolysis of the silica at extreme pH
343:
and did not require leak-free seals or check valves for steady flow and good quantitation. Hardware milestones were made at Dupont IPD (Industrial Polymers Division) such as a low-dwell-volume gradient device being utilized as well as replacing the septum injector with a loop injection valve.
1406:
Other methods of detection of molecules that are useful for clinical studies have been tested against HPLC, namely immunoassays. In one example of this, competitive protein binding assays (CPBA) and HPLC were compared for sensitivity in detection of vitamin D. Useful for diagnosing vitamin D
550:
Reversed phase HPLC (RP-HPLC) is the most widespread mode of chromatography. It has a non-polar stationary phase and an aqueous, moderately polar mobile phase. In the reversed phase methods, the substances are retained in the system the more hydrophobic they are. For the retention of organic
1393:
Similar assays can be performed for research purposes, detecting concentrations of potential clinical candidates like anti-fungal and asthma drugs. This technique is obviously useful in observing multiple species in collected samples, as well, but requires the use of standard solutions when
1162:
The internal diameter (ID) of an HPLC column is an important parameter. It can influence the detection response when reduced due to the reduced lateral diffusion of the solute band. It can also affect the separation selectivity, when flow rate and injection volumes are not scaled down or up
3851:
Nobilis, Milan; Pour, Milan; Senel, Petr; Pavlík, Jan; Kunes, Jirí; Voprsalová, Marie; Kolárová, Lenka; Holcapek, Michal (2007-06-15). "Metabolic profiling of a potential antifungal drug, 3-(4-bromophenyl)-5-acetoxymethyl-2,5-dihydrofuran-2-one, in mouse urine using high-performance liquid
761:
The separation principle in SEC is based on the fully, or partially penetrating of the high molecular weight substances of the sample into the porous stationary-phase particles during their transport through column. The mobile-phase eluent is selected in such a way that it totally prevents
154:. As mentioned, HPLC relies on pumps to pass a pressurized liquid and a sample mixture through a column filled with adsorbent, leading to the separation of the sample components. The active component of the column, the adsorbent, is typically a granular material made of solid particles ( 988:
By starting from a weaker mobile phase and strengthening it during the runtime, gradient elution decreases the retention of the later-eluting components so that they elute faster, giving narrower (and taller) peaks for most components, while also allowing for the adequate separation of
299:
The choice of mobile phase components, additives (such as salts or acids) and gradient conditions depends on the nature of the column and sample components. Often a series of trial runs is performed with the sample in order to find the HPLC method which gives adequate separation.
162:, polymers, etc.), 1.5–50 μm in size, on which various reagents can be bonded. The components of the sample mixture are separated from each other due to their different degrees of interaction with the adsorbent particles. The pressurized liquid is typically a mixture of solvents ( 281:, hydrophobic interactions in reversed-phase HPLC). Depending on their affinity for the stationary and mobile phases, analytes partition between the two during the separation process taking place in the column. This partitioning process is similar to that which occurs during a 1299:(CAD). A kind of commonly utilized detector includes refractive index detectors, which provide readings by measuring the changes in the refractive index of the eluant as it moves through the flow cell. In certain cases, it is possible to use multiple detectors, for example 211:
analysis of the sample components. The detector also marks the time of emergence, the retention time, which serves for initial identification of the component. More advanced detectors, provide also additional information, specific to the analyte's characteristics, such as
191:
The liquid chromatograph is complex and has sophisticated and delicate technology. In order to properly operate the system, there should be a minimum basis for understanding of how the device performs the data processing to avoid incorrect data and distorted results.
3505:
Gerber, Frederic (May 2004). "Practical aspects of fast reversed-phase high-performance liquid chromatography using 3 ÎĽm particle packed columns and monolithic columns in pharmaceutical development and production working under current good manufacturing practice".
4382:
Gelb, Michael H.; Basheeruddin, Khaja; Burlina, Alberto; Chen, Hsiao-Jan; Chien, Yin-Hsiu; Dizikes, George; Dorley, Christine; Giugliani, Roberto; Hietala, Amy; Hong, Xinying; Kao, Shu-Min; Khaledi, Hamid; Klug, Tracy; Kubaski, Francyne; Liao, Hsuan-Chieh (2022).
4066:
D'Ovidio, Cristian; Locatelli, Marcello; Perrucci, Miryam; Ciriolo, Luigi; Furton, Kenneth G.; Gazioglu, Isil; Kabir, Abuzar; Merone, Giuseppe Maria; de Grazia, Ugo; Ali, Imran; Catena, Antonio Maria; Treglia, Michele; Marsella, Luigi T.; Savini, Fabio (2023).
182:
play a major role in the separation process by influencing the interactions taking place between sample components and adsorbent. These interactions are physical in nature, such as hydrophobic (dispersive), dipole–dipole and ionic, most often a combination.
489:
stationary phase forming a stationary bound (water) layer which is considered to play an active role in retention. This behavior is somewhat peculiar to normal phase chromatography because it is governed almost exclusively by an adsorptive mechanism (
778:
This technique is widely used for the molecular weight determination of polysaccharides. SEC is the official technique (suggested by European pharmacopeia) for the molecular weight comparison of different commercially available low-molecular weight
431:
with water as the strong component. Partition HPLC has been used historically on unbonded silica or alumina supports. Each works effectively for separating analytes by relative polar differences. HILIC bonded phases have the advantage of separating
875:, electrostatic interaction, dipole-dipole interaction, hydrophobic interaction, and the hydrogen bond. An efficient, biospecific bond is formed by a simultaneous and concerted action of several of these forces in the complementary binding sites. 1124:) measures how long a component of the mixture stuck to the column, measured by the area under the curve of its peak in a chromatogram (since HPLC chromatograms are a function of time). Each chromatogram peak will have its own retention factor ( 1394:
information about species identity is sought out. It is used as a method to confirm results of synthesis reactions, as purity is essential in this type of research. However, mass spectrometry is still the more reliable way to identify species.
672:, in applications utilizing other detectors such as UV-VIS, as it is a fairly strong organic acid. The effects of acids and buffers vary by application but generally improve chromatographic resolution when dealing with ionizable components. 867:
solution. The target molecule binds to the ligand, while the other molecules in the sample solution pass through the column, having little or no retention. The target molecule is then eluted from the column using a suitable elution buffer.
4497:
Arunkumar, Nivethitha; Langan, Thomas J.; Stapleton, Molly; Kubaski, Francyne; Mason, Robert W.; Singh, Rajendra; Kobayashi, Hironori; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji; Orii, Tadao; Fukao, Toshiyuki; Tomatsu, Shunji (2020).
338:
The 1970s brought about many developments in hardware and instrumentation. Researchers began using pumps and injectors to make a rudimentary design of an HPLC system. Gas amplifier pumps were ideal because they operated at constant
108:
Each component in the sample interacts differently with the adsorbent material, causing different migration rates for each component. These different rates lead to separation as the species flow out of the column into a specific
3771:
Kolmonen, Marjo; Leinonen, Antti; Pelander, Anna; Ojanperä, Ilkka (2007-02-28). "A general screening method for doping agents in human urine by solid phase extraction and liquid chromatography/time-of-flight mass spectrometry".
452:(electrostatic) interactions can also increase retention. Use of more polar solvents in the mobile phase will decrease the retention time of the analytes, whereas more hydrophobic solvents tend to increase retention times. 266:, whereby the mobile phases used, include any miscible combination of water or buffers with various organic solvents (the most common are acetonitrile and methanol). Some HPLC techniques use water-free mobile phases (see 1407:
deficiencies in children, it was found that sensitivity and specificity of this CPBA reached only 40% and 60%, respectively, of the capacity of HPLC. While an expensive tool, the accuracy of HPLC is nearly unparalleled.
1169:
Analytical scale columns (4.6 mm) have been the most common type of columns, though narrower columns are rapidly gaining in popularity. They are used in traditional quantitative analysis of samples and often use a
3815:
Pelander, Anna; Ojanperä, Ilkka; Laks, Suvi; Rasanen, Ilpo; Vuori, Erkki (2003-11-01). "Toxicological screening with formula-based metabolite identification by liquid chromatography/time-of-flight mass spectrometry".
239:
and user software control the HPLC instrument and provide data analysis. Some models of mechanical pumps in an HPLC instrument can mix multiple solvents together at a ratios changing in time, generating a composition
847:
This form of chromatography is widely used in the following applications: water purification, preconcentration of trace components, ligand-exchange chromatography, ion-exchange chromatography of proteins, high-pH
1107:
sample mixture; ideally the sample solvent flows through the column without interacting with the column, but is still detectable as distinct from the HPLC solvent. The void volume is used as a correction factor.
3598:
Merone, Giuseppe M.; Tartaglia, Angela; Rossi, Sandra; Santavenere, Francesco; Bassotti, Elisa; D'Ovidio, Cristian; Bonelli, Martina; Rosato, Enrica; de Grazia, Ugo; Locatelli, Marcello; Savini, Fabio (2021).
3367: 765:
In biomedical sciences it is generally considered as a low resolution chromatography and thus it is often reserved for the final, "polishing" step of the purification. It is also useful for determining the
4620:"Competitive Protein-binding assay-based Enzyme-immunoassay Method, Compared to High-pressure Liquid Chromatography, Has a Very Lower Diagnostic Value to Detect Vitamin D Deficiency in 9–12 Years Children" 2231: 2339:
Hung, L. B.; Parcher, J. F.; Shores, J. C.; Ward, E. H. (1988). "Theoretical and experimental foundation for surface-coverage programming in gas–solid chromatography with an adsorbable carrier gas".
411:. Partition chromatography uses a retained solvent, on the surface or within the grains or fibers of an "inert" solid supporting matrix as with paper chromatography; or takes advantage of some 4728: 3728:
Weinmann, W.; Renz, M.; Vogt, S.; Pollak, S. (2000-01-01). "Automated solid-phase extraction and two-step derivatisation for simultaneous analysis of basic illicit drugs in serum by GC/MS".
1095:
separation, but describes how well HPLC separates a mixture into two or more components that are detected as peaks (bands) on a chromatogram. The HPLC parameters are the: efficiency factor(
910:
At the ARS Natural Products Utilization Research Unit in Oxford, MS., a support scientist (r) extracts plant pigments that will be analyzed by a plant physiologist (l) using an HPLC system.
6241: 1020:
tests, as can be seen in the USP Pharmacopaeia, which are a set of quantitative criteria, which test the suitability of the HPLC system to the required analysis at any step of it.
255:, and surface chemistry. The use of smaller particle size packing materials requires the use of higher operational pressure ("backpressure") and typically improves chromatographic 3207:
Horváth, Cs.; Preiss B.A.; Lipsky S.R. (1967). "Fast liquid chromatography. Investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers".
1812:"Temperature and eluent composition effects on enantiomer separation of carvedilol by high-performance liquid chromatography on immobilized amylose-based chiral stationary phases" 582:
stationary phase is proportional to the contact surface area around the non-polar segment of the analyte molecule upon association with the ligand on the stationary phase. This
1038:
The ratio between the retention factors, k', of every two adjacent peaks in the chromatogram is used in the evaluation of the degree of separation between them, and is called
933:
The mobile phase composition does not have to remain constant. A separation in which the mobile phase composition is changed during the separation process is described as a
1939: 1530: 3689:"Screening and confirmation of 62 drugs of abuse and metabolites in urine by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry" 3364: 4764: 1534: 97:, which flows through the system, collecting the sample mixture on the way, delivering it into a cylinder, called the column, filled with solid particles, made of 5743: 1016:
The theory of high performance liquid chromatography-HPLC is, at its core, the same as general chromatography theory. This theory has been used as the basis for
606:
10 J/cm) and to the hydrophobic surface of the analyte and the ligand respectively. The retention can be decreased by adding a less polar solvent (methanol,
308:
Prior to HPLC, scientists used benchtop column liquid chromatographic techniques. Liquid chromatographic systems were largely inefficient due to the flow rate of
2246: 328:
and thermally unstable at the high temperatures of GC. As a result, alternative methods were hypothesized which would soon result in the development of HPLC.
4865: 984:
A schematic of gradient elution. Increasing mobile phase strength sequentially elutes analytes having varying interaction strength with the stationary phase.
6236: 1378: 1300: 5972: 4870: 751:—separation of synthetic polymers (aqueous or organic soluble). GPC is a powerful technique for polymer characterization using primarily organic solvents. 277:
The chosen composition of the mobile phase depends on the intensity of interactions between various sample components ("analytes") and stationary phase (
2986: 500:
HPLC because of poor reproducibility of retention times due to the presence of a water or protic organic solvent layer on the surface of the silica or
259:(the degree of peak separation between consecutive analytes emerging from the column). Sorbent particles may be ionic, hydrophobic or polar in nature. 6231: 3047: 1382: 775:
Larger molecules therefore flow through the column quicker than smaller molecules: that is, the smaller the molecule, the longer the retention time.
6099: 4618:
Zahedi Rad, Maliheh; Neyestani, Tirang Reza; Nikooyeh, Bahareh; Shariatzadeh, Nastaran; Kalayi, Ali; Khalaji, Niloufar; Gharavi, Azam (2015-01-01).
2567:
Zhang, Chenhua; Rodriguez, Elliott; Bi, Cong; Zheng, Xiwei; Suresh, Doddavenkatana; Suh, Kyungah; Li, Zhao; Elsebaei, Fawzi; Hage, David S. (2018).
2369: 244:
in the mobile phase. Most HPLC instruments also have a column oven that allows for adjusting the temperature at which the separation is performed.
4848: 1182: 757:—separation of water-soluble biopolymers. GFC uses primarily aqueous solvents (typically for aqueous soluble biopolymers, such as proteins, etc.). 423:(HILIC; a sub-technique within HPLC), this method separates analytes based on differences in their polarity. HILIC most often uses a bonded polar 1027:, or retention parameter, which is the experimental measurement of the capacity ratio, as shown in the Figure of Performance Criteria as well. t 6185: 5995: 4044: 614:
uses this effect by automatically reducing the polarity and the surface tension of the aqueous mobile phase during the course of the analysis.
3656:
Pesce, Amadeo; Rosenthal, Murray; West, Robert; West, Cameron; Crews, Bridgit; Mikel, Charles; Almazan, Perla; Latyshev, Sergey (2010-06-01).
2931: 1084:. Of course, they can be put in practice through analysis of HPLC chromatograms, although rate theory is considered the more accurate theory. 3658:"An evaluation of the diagnostic accuracy of liquid chromatography-tandem mass spectrometry versus immunoassay drug testing in pain patients" 2551: 2448: 2406: 2201: 2010: 1985: 1732: 1469: 4843: 4187:"A review of high performance liquid chromatographic-mass spectrometric urinary methods for anticancer drug exposure of health care workers" 3908:"A review on bioanalytical method development and validation of anticancer drugs by using lc/ms/ms and its applications on routine analysis" 1280: 631:
elute later than those with a C=C or even triple bond, as the double or triple bond makes the molecule more compact than a single C–C bond.
213: 4904: 2115:
Solid-Core or Fully Porous Columns in Ultra High-Performance Liquid Chromatography—Which Way to Go for Better Efficiency of the Separation?
1431: 927: 618:
water structure. On the other hand, analytes with higher polar surface area (as a result of the presence of polar groups, such as -OH, -NH
515:
bonded phases which demonstrate improved reproducibility, and due to a better understanding of the range of usefulness of the technique.
4757: 2078: 1755:"Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides" 5736: 2840: 1035:
is the time it takes for a non-retained substance to elute through the system without any retention, thus it is called the Void Time.
941:
in water, and end at 90% methanol in water after 20 minutes. The two components of the mobile phase are typically termed "A" and "B";
6065: 5709: 3093: 3412: 2810: 2471:"USP compendial methods for analysis of heparin: chromatographic determination of molecular weight distributions for heparin sodium" 2122: 1640: 404: 1177:
Narrow-bore columns (1–2 mm) are used for applications when more sensitivity is desired either with special UV-vis detectors,
4671:
L. R. Snyder, J.J. Kirkland, and J. W. Dolan, Introduction to Modern Liquid Chromatography, John Wiley & Sons, New York, 2009.
2569:"High performance affinity chromatography and related separation methods for the analysis of biological and pharmaceutical agents" 375:
Partition chromatography was one of the first kinds of chromatography that chemists developed, and is barely used these days. The
2469:
Mulloy, Barbara; Heath, Alan; Shriver, Zachary; Jameison, Fabian; Al Hakim, Ali; Morris, Tina S.; Szajek, Anita Y. (2014-08-01).
419:
interaction with the stationary phase. Analyte molecules partition between a liquid stationary phase and the eluent. Just as in
6175: 1421: 1334:
range. Other methods to detect neurotransmitters include liquid chromatography-mass spectrometry, ELISA, or radioimmunoassays.
324:
was impossible. GC was ineffective for many life science and health applications for biomolecules, because they are mostly non-
6358: 6215: 6041: 6002: 5768: 5588: 4750: 4733: 3330:
Xiang, Yanqiao; Liu, Yansheng; Lee, Milton L. (2006). "Ultrahigh pressure liquid chromatography using elevated temperature".
3070: 1441: 1263:
HPLC detectors fall into two main categories: universal or selective. Universal detectors typically measure a bulk property (
627:
the interactions with surface ligands (alkyl chains) take place. Such surface hindrance typically results in less retention.
132:, separating the components of a complex biological sample, or of similar synthetic chemicals from each other), and medical ( 3888: 2858:"Isocratic and gradient elution chromatography: A comparison in terms of speed, retention reproducibility and quantitation" 2744:"Isocratic and gradient elution chromatography: A comparison in terms of speed, retention reproducibility and quantitation" 1166:
Larger ID columns (over 10 mm) are used to purify usable amounts of material because of their large loading capacity.
6348: 6205: 6200: 6029: 5729: 5031: 4785: 2272:"Separation of the higher monoamino-acids by counter-current liquid-liquid extraction: the amino-acid composition of wool" 950: 849: 721: 545: 497: 392: 263: 4553:
Skogvold, Hanne Bendiksen; Rootwelt, Helge; Reubsaet, Léon; Elgstøen, Katja Benedikte Prestø; Wilson, Steven Ray (2023).
3159: 282: 6092: 4677:
L. R. Snyder, J.J. Kirkland, and J. L. Glajch, Practical HPLC Method Development, John Wiley & Sons, New York, 1997.
996:
The driving force in reversed phase chromatography originates in the high order of the water structure. The role of the
424: 4554: 347:
While instrumentation developments were important, the history of HPLC is primarily about the history and evolution of
6308: 6301: 6155: 5773: 5308: 4795: 3657: 792: 524: 256: 3385: 2987:
https://www.usp.org/sites/default/files/usp/document/harmonization/gen-chapter/harmonization-november-2021-m99380.pdf
1239:
vary in pressure capacity, but their performance is measured on their ability to yield a consistent and reproducible
650:
is commonly added in mass spectrometry to improve detection of certain analytes by the formation of analyte-ammonium
4128:"Applications of liquid chromatography-mass spectrometry based metabolomics in predictive and personalized medicine" 6145: 5946: 5234: 5205: 5185: 5138: 6294: 6210: 6124: 5849: 5839: 4823: 1416: 1070:
The quantitative parameters and equations which determine the extent of performance of the chromatographic system
872: 400: 384: 325: 3293:"The van Deemter equation: Assumptions, limits, and adjustment to modern high performance liquid chromatography" 1135:
for the retention factor of the first peak). This factor may be corrected for by the void volume of the column.
5920: 5880: 5578: 5494: 5133: 1296: 1075: 980: 3687:
Tsai, I.-Lin; Weng, Te-I.; Tseng, Yufeng J.; Tan, Happy Kuy-Lok; Sun, Hsiao-Ju; Kuo, Ching-Hua (2013-12-01).
3436: 6353: 6327: 6140: 6119: 6085: 6009: 5890: 5798: 5516: 5427: 5390: 5274: 5200: 5021: 5004: 4947: 1292: 861: 554:
The most common RP stationary phases are based on a silica support, which is surface-modified by bonding RMe
225: 4702: 3601:"Fast Quantitative LC-MS/MS Determination of Illicit Substances in Solid and Liquid Unknown Seized Samples" 3172:
Xiang, Y.; Liu Y.; Lee M.L. (2006). "Ultrahigh pressure liquid chromatography using elevated temperature".
1275:
between the mobile phase and mobile phase with solute while selective detectors measure a solute property (
1187:
Capillary columns (under 0.3 mm) are used almost exclusively with alternative detection means such as
638:
since it can change the hydrophobic character of the ionizable analyte. For this reason most methods use a
220:, which can provide insight on its structural features. These detectors are in common use, such as UV/Vis, 6267: 5988: 5434: 5422: 5313: 5178: 4952: 4818: 4555:"Dried blood spot analysis with liquid chromatography and mass spectrometry: Trends in clinical chemistry" 1330:
and others in neurochemical analysis research applications. The HPLC-ECD detects neurotransmitters to the
1216: 203:
The schematic of an HPLC instrument typically includes solvents' reservoirs, one or more pumps, a solvent-
66:
used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from
4444:"Clinical Application of LC–MS/MS in the Follow-Up for Treatment of Children with Methylmalonic Aciduria" 320:(LC), however, it was obvious that gas phase separation and analysis of very polar high molecular weight 6257: 6160: 6150: 5788: 5583: 5480: 5465: 5395: 5318: 5150: 5100: 5009: 4934: 4833: 4683:
S. Ahuja and M.W. Dong (ed), Handbook of Pharmaceutical Analysis by HPLC, Elsevier/Academic Press, 2005.
2365: 1426: 1248: 1203:
Most traditional HPLC is performed with the stationary phase attached to the outside of small spherical
376: 317: 151: 5685: 3952: 4243: 3000: 2857: 2790: 1892: 1714: 444:
depends on the functional groups part of the analyte molecular structure, with more polarized groups (
17: 6277: 6195: 5844: 5808: 5760: 5752: 5573: 5528: 5303: 5123: 5053: 4810: 4790: 4680:
S. Ahuja and H. T. Rasmussen (ed), HPLC Method Development for Pharmaceuticals, Academic Press, 2007.
3983: 3781: 2580: 2153:"Rapid liquid-chromatographic separation of steroids on columns heavily loaded with stationary phase" 2038: 1891:
Kadlecová, Zuzana; Kalíková, Květa; Folprechtová, Denisa; Tesařová, Eva; Gilar, Martin (2020-08-16).
1366: 1240: 1092: 1080: 1074:
The parameters are largely derived from two sets of chromatographic theory: plate theory (as part of
771: 665: 380: 271: 63: 3971: 2005:. RSC chromatography monographs. Royal Society of Chemistry. Cambridge: Royal Society of Chemistry. 469:
type of interactions) with the sorbent surface. NP-HPLC uses a non-polar, non-aqueous mobile phase (
6262: 5885: 5596: 5550: 5475: 5448: 5346: 5328: 5281: 5219: 5115: 5095: 4964: 4959: 4860: 1940:"Ten Common-Sense Corollaries in Pharmaceutical Analysis by High Performance Liquid Chromatography" 662:, is often added to the mobile phase if mass spectrometry is used to analyze the column effluents. 504:
chromatographic media. This layer changes with any changes in the composition of the mobile phase (
348: 270:
below). The aqueous component of the mobile phase may contain acids (such as formic, phosphoric or
83: 6048: 5692: 2117:. Advances in Chromatography. Vol. 55 (1 ed.). Boca Raton: CRC Press. pp. 185–203. 481:. The effect of steric hindrance on interaction strength allows this method to resolve (separate) 364: 6272: 6180: 6165: 5915: 5910: 5905: 5778: 5673: 5639: 5501: 5470: 5351: 5293: 4991: 4974: 4969: 4924: 4887: 4877: 4838: 4600: 4535: 4479: 4364: 4320: 4025: 3933: 3753: 3292: 2893: 2833:
High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model
2771: 2743: 2533: 2514: 1695: 1577: 1436: 1252: 1142:) is a relative comparison on how well two neighboring components of the mixture were separated ( 767: 332: 313: 71: 2637:"Understanding and manipulating the separation in hydrophilic interaction liquid chromatography" 2428: 2386: 251:
Many different types of columns are available, filled with adsorbents varying in particle size,
3907: 3160:
Fast and Ultrafast HPLC on sub-2 μm Porous Particles — Where Do We Go From Here? – LC-GC Europe
5981: 5956: 5951: 5941: 5854: 5813: 5793: 5654: 5619: 5602: 5540: 5458: 5453: 5381: 5366: 5336: 5257: 5224: 5195: 5190: 5165: 5155: 5075: 5063: 4942: 4855: 4651: 4592: 4584: 4527: 4519: 4471: 4463: 4424: 4406: 4356: 4312: 4304: 4263: 4224: 4206: 4167: 4149: 4108: 4090: 4017: 4009: 3925: 3869: 3833: 3797: 3745: 3710: 3669: 3638: 3620: 3523: 3487: 3418: 3408: 3347: 3312: 3273: 3265: 3224: 3189: 3141: 3028: 3020: 2969: 2951: 2885: 2877: 2836: 2806: 2797:, 75 years of Chromatography a Historical Dialogue, vol. 17, Elsevier, pp. 151–158, 2763: 2724: 2706: 2664: 2656: 2614: 2596: 2547: 2506: 2498: 2444: 2427:
Kazakevich, Yuri; LoBrutto, Rosario (2007-01-22), Kazakevich, Yuri; LoBrutto, Rosario (eds.),
2402: 2385:
LoBrutto, Rosario; Kazakevich, Yuri (2007-01-22), Kazakevich, Yuri; LoBrutto, Rosario (eds.),
2328: 2301: 2197: 2174: 2118: 2006: 1981: 1920: 1912: 1849: 1831: 1792: 1774: 1728: 1687: 1679: 1636: 1613: 1569: 1524: 1465: 1374: 1307: 1288: 1284: 1272: 1188: 1171: 590:-chain versus the complex of both. The energy released in this process is proportional to the 482: 229: 2075: 1549: 586:
effect is dominated by the force of water for "cavity-reduction" around the analyte and the C
6053: 5961: 5697: 5614: 5269: 5128: 5105: 5058: 4999: 4641: 4631: 4574: 4566: 4511: 4455: 4414: 4396: 4348: 4294: 4255: 4214: 4198: 4157: 4139: 4098: 4080: 3999: 3991: 3915: 3861: 3825: 3789: 3737: 3700: 3628: 3612: 3554: 3515: 3477: 3467: 3339: 3304: 3255: 3216: 3181: 3131: 3012: 2959: 2943: 2869: 2798: 2755: 2714: 2698: 2648: 2604: 2588: 2539: 2490: 2482: 2436: 2394: 2348: 2291: 2283: 2164: 2046: 1904: 1867: 1839: 1823: 1782: 1766: 1720: 1669: 1605: 1561: 1343:
possible to enable sample stirring within the sampling-chamber, thus promoting homogeneity.
1268: 1117: 1088: 1063:
In this equation tg is the gradient time and w(ave) is the average peaks width at the base.
681: 669: 647: 643: 611: 462: 437: 1066: 536: 5555: 5511: 5506: 5400: 5376: 5210: 5173: 5026: 5016: 4899: 4723: 3456:"Automated device for continuous stirring while sampling in liquid chromatography systems" 3371: 2373: 2082: 1204: 1158:
Tubing on a nano-liquid chromatography (nano-LC) system, used for very low flow capacities
966: 837:
In general, ion exchangers favor the binding of ions of higher charge and smaller radius.
639: 591: 167: 75: 4069:"LC-MS/MS Application in Pharmacotoxicological Field: Current State and New Applications" 312:
being dependent on gravity. Separations took many hours, and sometimes days to complete.
288:
In the example using a water/acetonitrile gradient, the more hydrophobic components will
93:
It relies on high pressure pumps, which deliver mixtures of various solvents, called the
4686:
Y. V. Kazakevich and R. LoBrutto (ed.), HPLC for Pharmaceutical Scientists, Wiley, 2007.
4103: 4068: 3987: 3785: 2584: 2042: 906: 6108: 5834: 5439: 5417: 5412: 5407: 5362: 5358: 5341: 5298: 5229: 5090: 5085: 5070: 4882: 4800: 4646: 4619: 4419: 4384: 4219: 4186: 4162: 4127: 3633: 3600: 3482: 3455: 2964: 2719: 2687:"Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique" 2609: 2568: 2296: 2271: 1844: 1811: 1810:
Panella, Cristina; Ferretti, Rosella; Casulli, Adriano; Cirilli, Roberto (2019-10-01).
1787: 1754: 1488: 1311: 478: 416: 236: 196: 139: 102: 4689:
U. D. Neue, HPLC Columns: Theory, Technology, and Practice, Wiley-VCH, New York, 1997.
4299: 4282: 2802: 1724: 1674: 1657: 1295:
can be used. A universal detector that complements UV-Vis absorbance detection is the
292:(come off the column) later, then, once the mobile phase gets richer in acetonitrile ( 6342: 5900: 5644: 5533: 5489: 5214: 5048: 5043: 5036: 4914: 4718: 4604: 4483: 4324: 4029: 3937: 2321: 1699: 1327: 738: 466: 217: 143: 4539: 4499: 4368: 3757: 3244:"Fast analysis in liquid chromatography using small particle size and high pressure" 2897: 2775: 1581: 511:
Recently, partition chromatography has become popular again with the development of
5936: 5859: 5521: 5371: 5286: 5262: 5252: 5244: 5145: 5080: 4979: 4828: 1212: 1192: 1178: 962: 915: 701:
the metal, the shape of the peak for the 2,2'-bipy will be distorted (tailed) when
607: 428: 171: 124:, during the production process of pharmaceutical and biological products), legal ( 114: 4385:"Liquid Chromatography–Tandem Mass Spectrometry in Newborn Screening Laboratories" 4202: 3865: 2518: 1306:
When used with an electrochemical detector (ECD) the HPLC-ECD selectively detects
3616: 3559: 3542: 3519: 3343: 3308: 3185: 2873: 2759: 2652: 1908: 1609: 540:
A chromatogram of complex mixture (perfume water) obtained by reversed phase HPLC
5829: 4919: 2169: 2152: 1513: 1370: 1195:
capillaries, rather than the stainless steel tubing that larger columns employ.
1023:
This relation is also represented as a normalized unit-less factor known as the
970: 841: 816: 734: 659: 655: 583: 408: 396: 321: 179: 87: 4459: 4259: 4144: 3472: 3136: 3119: 3016: 1827: 1719:, Journal of Chromatography Library, vol. 16, Elsevier, pp. 169–186, 407:
for their development of the technique, which was used for their separation of
331:
Following on the seminal work of Martin and Synge in 1941, it was predicted by
296:, in a mobile phase becomes higher eluting solution), their elution speeds up. 5895: 5803: 5545: 4515: 4352: 4085: 3793: 2702: 2486: 2440: 2398: 1331: 831: 694: 496:
Partition- and NP-HPLC fell out of favor in the 1970s with the development of
474: 221: 147: 98: 30: 4636: 4588: 4523: 4467: 4443: 4410: 4308: 4267: 4210: 4153: 4094: 4013: 3929: 3624: 3422: 3269: 3145: 3024: 2955: 2881: 2710: 2660: 2600: 2502: 1916: 1835: 1778: 1683: 1573: 949:
is the "strong" solvent which rapidly elutes the solutes from the column. In
448:, hydroxyl-) and groups capable of hydrogen bonding inducing more retention. 5864: 5607: 4909: 4774: 4289:. Advancement and Applications of Mass Spectrometry in Laboratory Medicine. 3242:
Nguyen, Dao T.-T.; Guillarme, Davy; Rudaz, Serge; Veuthey, Jean-Luc (2006).
2686: 2636: 2470: 1664:. Advancement and Applications of Mass Spectrometry in Laboratory Medicine. 1512:
Chaitali Dattatray Harde1, Dr. Amol Navnath Khedkar, Vaishnavi Sanjay Sake.
1323: 1319: 823: 449: 412: 388: 38: 4655: 4596: 4570: 4531: 4475: 4428: 4360: 4316: 4242:
Hernández, Félix; Sancho, Juan V.; Ibáñez, María; Guerrero, Carlos (2007).
4228: 4171: 4112: 4021: 3873: 3852:
chromatography with UV photodiode-array and mass spectrometric detection".
3837: 3801: 3749: 3714: 3673: 3642: 3527: 3491: 3351: 3316: 3277: 3260: 3243: 3193: 3048:"The Impact of Column Hardware on Efficiency in Liquid Chromatography (LC)" 3032: 2973: 2911:
Dolan, John W. (2014). "LC Method Scaling, Part II: Gradient Separations".
2889: 2767: 2728: 2668: 2618: 2510: 2305: 1924: 1853: 1796: 1716:
Chapter 5 Silica columns–packing procedures and performance characteristics
1691: 1617: 1154: 3741: 3228: 3001:"Peak capacity in gradient ultra performance liquid chromatography (UPLC)" 2543: 2178: 1565: 945:
is the "weak" solvent which allows the solute to elute only slowly, while
689:
a test for the metal content of a column is to inject a sample which is a
5629: 4004: 3920: 3705: 3688: 2494: 1369:
in various samples. The most common method of drug detection has been an
1315: 1255:, but is sometimes used to refer to the more general technique of UHPLC. 1244: 938: 685:
as corrode the inside walls of the metallic parts of the HPLC equipment.
340: 309: 252: 241: 208: 204: 175: 4742: 4579: 4401: 3220: 2352: 5721: 5649: 4500:"Newborn screening of mucopolysaccharidoses: past, present, and future" 4283:"After another decade: LC–MS/MS became routine in clinical diagnostics" 3995: 2592: 1658:"After another decade: LC–MS/MS became routine in clinical diagnostics" 827: 780: 737:
based on differences in their molecular size (actually by a particle's
698: 690: 651: 501: 289: 94: 79: 3829: 2947: 2332: 2287: 1893:"Method for evaluation of ionic interactions in liquid chromatography" 1770: 1753:
Xu, Yan; Cao, Qing; Svec, Frantisek; Fréchet, Jean M.J. (2010-04-15).
4737: 2232:"Milestones in Chromatography: The Birth of Partition Chromatography" 2050: 709: 599: 433: 159: 110: 3407:. Haddad, P. R., Jackson, P. E. Amsterdam: Elsevier/Academic Press. 4244:"Antibiotic residue determination in environmental waters by LC-MS" 3454:
Markovitch, Omer; Ottelé, Jim; Veldman, Obe; Otto, Sijbren (2020).
47:, IR, UV), (11) data acquisition, (12) waste or fraction collector. 4185:
Mathias, Patricia I.; Connor, Thomas H.; B'Hymer, Clayton (2017).
3541:
Siddiqui, Masoom Raza; AlOthman, Zeid A.; Rahman, Nafisur (2013).
1211:
According to the equations of the column velocity, efficiency and
1153: 905: 819: 702: 512: 420: 368: 37: 29: 6077: 3906:
Tallam, Anil Kumar; Alapati, Sahithi; Nuli, Mohana Vamsi (2023).
1961:
Snyder, Lloyd R.; Kirkland, Joseph J.; Glajch, Joseph L. (2012).
43:
pre-column (guard column), (9) analytical column, (10) detector (
5624: 2029:
Karger, Barry L. (1997). "HPLC: Early and Recent Perspectives".
1236: 918:
composition remains constant throughout the procedure is termed
676:
conditions in the mobile phase. Most types of RP columns should
610:) into the mobile phase to reduce the surface tension of water. 67: 6081: 5725: 4746: 2113:
Levin, Shulamit (2017). Grinberg, Nelu; Carr, Peter W. (eds.).
1633:
Forensic Applications of High Performance Liquid Chromatography
128:, detecting performance enhancement drugs in urine), research ( 5634: 4674:
M.W. Dong, Modern HPLC for practicing scientists. Wiley, 2006.
705: 178:) and is referred to as a "mobile phase". Its composition and 4043:
Gu, Chunang (Christine); Russell, David; Yehl, Peter (2016).
2864:. 19th International Symposium on MicroScale Bioseparations. 1550:"Reversed Phase Stationary Phases in Pharmaceutical Sciences" 4692:
M. C. McMaster, HPLC, a practical user's guide, Wiley, 2007.
3543:"Analytical techniques in pharmaceutical analysis: A review" 3094:"Using Volumetric Flow to Scaleup Chromatographic Processes" 3972:"Current developments in LC-MS for pharmaceutical analysis" 1554:
Journal of Liquid Chromatography & Related Technologies
830:
ion exchangers (gels), and controlled-pore glass or porous
635: 1058:
as a measure for the system efficiency. The definition of
3405:
Principles and practice of modern chromatographic methods
3120:"Recent innovations in UHPLC columns and instrumentation" 2989:, CHROMATOGRAPH, Stage 4 Harmonization (December 1, 2022) 2218:
Dynamics of Chromatography, Part I. Principles and Theory
461:
analyte ability to engage in polar interactions (such as
90:, etc., which have been dissolved into liquid solutions. 4045:"Application of LCMS in small-molecule drug development" 3588:, 2004. 27th ed. The USP Convention Inc., Rockville, MD. 2932:"A new form of chromatogram employing two liquid phases" 195:
HPLC is distinguished from traditional ("low pressure")
4709: 1002:
reduce the retarding strength of the aqueous component.
558:
SiCl, where R is a straight chain alkyl group such as C
136:, detecting vitamin D levels in blood serum) purposes. 2085:. Chromatography Online. Avanstar Communications Inc. 1031:
is the retention time of the specific component and t
440:
and neutral solutes in a single chromatographic run.
508:, moisture level) causing drifting retention times. 6286: 6250: 6224: 6133: 5970: 5929: 5873: 5822: 5759: 5566: 5327: 5243: 5164: 5114: 4990: 4933: 4809: 3046:Zelenyánszki, DĂłra; Felinger, Attila (2020-10-01). 1303:normally combines UV-Vis with a mass spectrometer. 961:is an organic solvent miscible with water, such as 852:of carbohydrates and oligosaccharides, and others. 3576:, 2002. fourth ed., Council of Europe, Strasbourg. 3071:"LC Method Scaling, Part II: Gradient Separations" 2532:Fritz, James S.; Gjerde, Douglas T. (2000-04-25). 2320: 1514:"Review on High Performance Liquid Chromatography" 1460:Kazakevich, Yuri; LoBrutto, Rosario, eds. (2007). 3092:Jensen, Ole Elvang; Kidal, Steffen (2006-03-01). 3005:Journal of Pharmaceutical and Biomedical Analysis 2097:Dynamics of Chromatography: Principles and Theory 1980:(2nd ed.). Hoboken, NJ: Wiley-Interscience. 1042:, α, as shown in the Performance Criteria graph. 262:The most common mode of liquid chromatography is 2930:Martin, A. J. P.; Synge, R. L. M. (1941-12-01). 1868:"Molecular Interaction of HPLC Stationary Phase" 1656:Seger, Christoph; Salzmann, Linda (2020-08-01). 267: 3118:Walter, Thomas H.; Andrews, Richard W. (2014). 1181:detection or with other detection methods like 6242:Pyrolysis–gas chromatography–mass spectrometry 3887:Gu, Jatin; Patel, Kumar; Shah, Dhiren (2016). 3437:"Electrochemical Detection (ECD) Fundamentals" 2194:HPLC columns: theory, technology, and practice 6093: 5737: 4758: 2856:Schellinger, Adam P.; Carr, Peter W. (2006). 2742:Schellinger, Adam P.; Carr, Peter W. (2006). 1365:This technique is also used for detection of 892:hydrophilic interaction liquid chromatography 634:Another important factor is the mobile phase 8: 4624:International Journal of Preventive Medicine 1529:: CS1 maint: multiple names: authors list ( 1247:may reach as high as 60 MPa (6000  532:Reversed-phase liquid chromatography (RP-LC) 4442:Wang, Yanyun; Sun, Yun; Jiang, Tao (2019). 4389:International Journal of Neonatal Screening 3970:Beccaria, Marco; Cabooter, Deirdre (2020). 3291:Gritti, Fabrice; Guiochon, Georges (2013). 1078:), and the rate theory of chromatography / 957:is often water or an aqueous buffer, while 937:. For example, a gradient can start at 10% 6100: 6086: 6078: 5744: 5730: 5722: 4765: 4751: 4743: 4281:Seger, Christoph; Salzmann, Linda (2020). 2685:Buszewski, BogusĹ‚aw; Noga, Sylwia (2012). 2680: 2678: 1533:) CS1 maint: numeric names: authors list ( 1283:) by simply responding to the physical or 4645: 4635: 4578: 4418: 4400: 4298: 4218: 4161: 4143: 4102: 4084: 4003: 3919: 3704: 3632: 3558: 3481: 3471: 3259: 3135: 2963: 2831:Snyder, Lloyd R.; Dolan, John W. (2006). 2718: 2608: 2295: 2168: 2024: 2022: 1843: 1786: 1673: 1631:Bayne, Shirley; Carlin, Michelle (2017). 1287:of the solute. HPLC most commonly uses a 1087:They are analogous to the calculation of 4727:) is being considered for deletion. See 2789:Ettre, L. S.; Zlatkis, A., eds. (1979), 2220:. Marcel Dekker, Inc., New York. p. 281. 2070: 2068: 2066: 2064: 2062: 2060: 1065: 979: 535: 363: 316:(GC) at the time was more powerful than 6237:Liquid chromatography–mass spectrometry 3730:International Journal of Legal Medicine 3162:. Lcgceurope.com. Retrieved 2011-06-07. 2435:(1 ed.), Wiley, pp. 263–279, 2393:(1 ed.), Wiley, pp. 139–239, 2368:. Sacheminc.com. Retrieved 2011-06-07. 1452: 1379:liquid chromatography-mass spectrometry 1183:liquid chromatography-mass spectrometry 120:HPLC is widely used for manufacturing ( 6186:Micellar electrokinetic chromatography 6171:High-performance liquid chromatography 5996:Analytical and Bioanalytical Chemistry 4341:Analytical and Bioanalytical Chemistry 2691:Analytical and Bioanalytical Chemistry 2475:Analytical and Bioanalytical Chemistry 2323:High performance liquid chromatography 1965:(2nd ed.). John Wiley & Sons. 1522: 1000:is to reduce this high order and thus 421:hydrophilic interaction chromatography 52:High-performance liquid chromatography 18:High performance liquid chromatography 5784:High-performance liquid chromatograph 3953:"HPLC in Pharmaceutical Applications" 3113: 3111: 3100:. BioPharm International-03-01-2006. 2630: 2628: 2108: 2106: 998:organic component of the mobile phase 930:who was one of the pioneers of HPLC. 744:Two types of SEC are usually termed: 427:and a mobile phase made primarily of 7: 6232:Gas chromatography–mass spectrometry 6036: 5680: 2270:Martin, A J P; Synge, R L M (1941). 2151:Karger, B. L.; Berry, L. V. (1971). 2074:Henry, Richard A. (1 February 2009) 2001:Hanai, Toshihiko; Hanai, T. (1999). 1483: 1481: 1383:gas chromatography-mass spectrometry 1103:, ion exchange and size exclusion). 6060: 5704: 4250:. Pharmaceutical-residue analysis. 4248:TrAC Trends in Analytical Chemistry 4126:Zhou, Juntuo; Zhong, Lijun (2022). 1464:. Hoboken, NJ: Wiley-Interscience. 884:Aqueous normal-phase chromatography 879:Aqueous normal-phase chromatography 755:Gel filtration chromatography (GFC) 749:Gel permeation chromatography (GPC) 60:high-pressure liquid chromatography 4132:Frontiers in Molecular Biosciences 2999:Wren, Stephen A. C. (2005-06-15). 2433:HPLC for Pharmaceutical Scientists 2391:HPLC for Pharmaceutical Scientists 2141:. John Wiley & Sons. New York. 2076:"The Early Days of HPLC at Dupont" 1816:Journal of Pharmaceutical Analysis 1462:HPLC for pharmaceutical scientists 733:) separates polymer molecules and 708:are present on the surface of the 654:. A volatile organic acid such as 285:but is continuous, not step-wise. 25: 4731:to help reach a consensus. â€ş 4300:10.1016/j.clinbiochem.2020.03.004 3077:. LCGC North America-03-01-2014. 2795:Journal of Chromatography Library 2635:McCalley, David V. (2017-11-10). 1963:Practical HPLC Method Development 1675:10.1016/j.clinbiochem.2020.03.004 1291:; however, a wide range of other 1271:) by measuring a difference of a 405:Richard Laurence Millington Synge 27:Technique in analytical chemistry 6323: 6322: 6059: 6047: 6035: 6024: 6023: 5703: 5691: 5679: 5668: 5667: 3693:Journal of Analytical Toxicology 3158:Majors, Ronald E.. (2010-09-07) 2319:Lindsay, S.; Kealey, D. (1987). 1713:Unger, K. K., ed. (1979-01-01), 1548:Levin, Shulamit (January 2004). 815:Types of ion exchangers include 371:partition technique useful range 6176:Capillary electrochromatography 2429:"Size-Exclusion Chromatography" 1422:Capillary electrochromatography 6216:Two-dimensional chromatography 5769:Atomic absorption spectrometer 4049:European Pharmaceutical Review 3124:Trends in Analytical Chemistry 1978:HPLC: a practical user's guide 1442:Micellar liquid chromatography 902:Isocratic and gradient elution 379:principle has been applied in 1: 6206:Size-exclusion chromatography 6201:Reversed-phase chromatography 5032:Interface and colloid science 4786:Glossary of chemical formulae 4704:HPLC Chromatography Principle 4559:Journal of Separation Science 4203:10.1016/j.jchromb.2017.06.028 3866:10.1016/j.jchromb.2007.02.045 3365:1290 Infinity Quaternary Pump 3248:Journal of Separation Science 2803:10.1016/s0301-4770(08)60645-4 2031:Journal of Chemical Education 1725:10.1016/S0301-4770(08)60809-X 1191:. They are usually made from 951:reversed-phase chromatography 850:anion-exchange chromatography 727:Size-exclusion chromatography 722:Size-exclusion chromatography 716:Size-exclusion chromatography 546:Reversed-phase chromatography 3912:Journal of Integral Sciences 3617:10.1021/acs.analchem.1c03310 3560:10.1016/j.arabjc.2013.04.016 3547:Arabian Journal of Chemistry 3520:10.1016/j.chroma.2004.02.056 3344:10.1016/j.chroma.2005.11.118 3309:10.1016/j.chroma.2013.06.032 3186:10.1016/j.chroma.2005.11.118 2874:10.1016/j.chroma.2006.01.047 2760:10.1016/j.chroma.2006.01.047 2653:10.1016/j.chroma.2017.06.026 2245:(5): 506–512. Archived from 1976:McMaster, Marvin C. (2007). 1909:10.1016/j.chroma.2020.461301 1610:10.1016/j.chroma.2004.02.056 697:. Because the 2,2'-bipy can 34:A modern self-contained HPLC 6309:Journal of Chromatography B 6302:Journal of Chromatography A 6191:Normal-phase chromatography 6156:Displacement chromatography 5774:Flame emission spectrometer 5309:Bioorganometallic chemistry 4796:List of inorganic compounds 4191:Journal of Chromatography B 3854:Journal of Chromatography B 3586:United States Pharmacopoeia 3332:Journal of Chromatography A 3297:Journal of Chromatography A 3174:Journal of Chromatography A 2862:Journal of Chromatography A 2748:Journal of Chromatography A 2641:Journal of Chromatography A 2372:September 15, 2008, at the 2366:Displacement Chromatography 2216:Giddings, J. Calvin (1965) 2196:. New York, NY: Wiley VCH. 1897:Journal of Chromatography A 1635:(1st ed.). CRC Press. 1598:Journal of Chromatography A 1398:Medical and health sciences 798:Ion-exchange chromatography 793:Ion-exchange chromatography 787:Ion-exchange chromatography 525:displacement chromatography 519:Displacement chromatography 456:Normal–phase chromatography 399:in chemistry was earned by 268:normal-phase chromatography 58:), formerly referred to as 6375: 6146:Argentation chromatography 5235:Dynamic covalent chemistry 5206:Enantioselective synthesis 5186:Physical organic chemistry 5139:Organolanthanide chemistry 4460:10.1007/s12325-019-00955-0 4339:drugs of abuse in urine". 4260:10.1016/j.trac.2007.01.012 4145:10.3389/fmolb.2022.1049016 3951:O'Driscoll, Aimee (2021). 3574:The European Pharmacopoeia 3473:10.1038/s42004-020-00427-5 3386:"Trademarks : Waters" 3137:10.1016/j.trac.2014.07.016 3054:. LCGC Europe-10-01-2020. 3017:10.1016/j.jpba.2004.12.028 1946:. LCGC Europe-08-01-2018. 1828:10.1016/j.jpha.2019.04.002 1289:UV-Vis absorbance detector 1172:UV-Vis absorbance detector 926:). The word was coined by 914:A separation in which the 859: 856:Bioaffinity chromatography 790: 719: 543: 6318: 6295:Biomedical Chromatography 6211:Thin-layer chromatography 6115: 6019: 5850:Ion mobility spectrometry 5840:Electroanalytical methods 5663: 4824:Electroanalytical methods 4781: 4516:10.1038/s10038-020-0744-8 4504:Journal of Human Genetics 4353:10.1007/s00216-013-7272-8 4086:10.3390/molecules28052127 3794:10.1016/j.aca.2006.12.028 3508:Journal of Chromatography 2703:10.1007/s00216-011-5308-5 2487:10.1007/s00216-014-7940-3 2441:10.1002/9780470087954.ch6 2399:10.1002/9780470087954.ch4 2170:10.1093/clinchem/17.8.757 2095:Giddings, Calvin (1965). 1596:manufacturing practice". 1417:History of chromatography 873:Van der Waals interaction 594:of the eluent (water: 7.3 401:Archer John Porter Martin 385:thin layer chromatography 5579:Nobel Prize in Chemistry 5495:Supramolecular chemistry 5134:Organometallic chemistry 4729:templates for discussion 4637:10.4103/2008-7802.161069 3460:Communications Chemistry 1297:charged aerosol detector 1293:chromatography detectors 1076:partition chromatography 993:according to the change 393:liquid–liquid separation 360:Partition chromatography 283:liquid–liquid extraction 6141:Affinity chromatography 6010:Analytical Biochemistry 5799:Melting point apparatus 5517:Combinatorial chemistry 5428:Food physical chemistry 5391:Environmental chemistry 5275:Bioorthogonal chemistry 5201:Retrosynthetic analysis 5022:Chemical thermodynamics 5005:Spectroelectrochemistry 4948:Computational chemistry 2139:The Chemistry of Silica 2003:HPLC: a practical guide 862:Affinity chromatography 395:applications. The 1952 304:History and development 6287:Prominent publications 6268:Kovats retention index 5989:Analytica Chimica Acta 5589:of element discoveries 5435:Agricultural chemistry 5423:Carbohydrate chemistry 5314:Bioinorganic chemistry 5179:Alkane stereochemistry 5124:Coordination chemistry 4953:Mathematical chemistry 4819:Instrumental chemistry 4706:, Application – 2020. 4571:10.1002/jssc.202300210 3889:"APPLICATION OF LC-MS" 3774:Analytica Chimica Acta 3261:10.1002/jssc.200600189 3098:BioPharm International 2835:. Wiley Interscience. 1938:Dong, Michael (2018). 1217:solid-phase extraction 1159: 1071: 985: 911: 541: 372: 142:can be described as a 48: 35: 6359:Scientific techniques 6258:Distribution constant 6161:Electrochromatography 6151:Column chromatography 5881:Coning and quartering 5789:Infrared spectrometer 5584:Timeline of chemistry 5481:Post-mortem chemistry 5466:Clandestine chemistry 5396:Atmospheric chemistry 5319:Biophysical chemistry 5151:Solid-state chemistry 5101:Equilibrium chemistry 5010:Photoelectrochemistry 4734:Liquid Chromatography 4287:Clinical Biochemistry 3742:10.1007/s004149900098 2544:10.1002/9783527613243 2538:(1 ed.). Wiley. 2387:"Reversed-Phase HPLC" 2192:Neue, Uwe D. (1997). 1662:Clinical Biochemistry 1566:10.1081/JLC-120030606 1427:Column chromatography 1157: 1069: 983: 909: 860:Further information: 791:Further information: 720:Further information: 680:be used with aqueous 544:Further information: 539: 377:partition coefficient 367: 318:liquid chromatography 197:liquid chromatography 41: 33: 6349:Hungarian inventions 6278:Van Deemter equation 6196:Paper chromatography 6003:Analytical Chemistry 5845:Gravimetric analysis 5809:Optical spectrometer 5753:Analytical chemistry 5574:History of chemistry 5529:Chemical engineering 5304:Bioorganic chemistry 5054:Structural chemistry 4791:List of biomolecules 3921:10.37022/jis.v6i1.51 3818:Analytical Chemistry 3605:Analytical Chemistry 3403:K., Robards (1994). 3209:Analytical Chemistry 3069:Dolan, John (2014). 1759:Analytical Chemistry 1241:volumetric flow rate 1093:paper chromatography 1081:Van Deemter equation 924:constant composition 772:quaternary structure 666:Trifluoroacetic acid 381:paper chromatography 272:trifluoroacetic acid 226:diode array detector 64:analytical chemistry 62:, is a technique in 6263:Freundlich equation 5597:The central science 5551:Ceramic engineering 5476:Forensic toxicology 5449:Chemistry education 5347:Radiation chemistry 5329:Interdisciplinarity 5282:Medicinal chemistry 5220:Fullerene chemistry 5096:Microwave chemistry 4965:Molecular mechanics 4960:Molecular modelling 4448:Advances in Therapy 4402:10.3390/ijns8040062 3988:2020Ana...145.1129B 3786:2007AcAC..585...94K 3611:(49): 16308–16313. 3221:10.1021/ac60256a003 2936:Biochemical Journal 2585:2018Ana...143..374Z 2353:10.1021/ac00162a003 2276:Biochemical Journal 2043:1997JChEd..74...45K 1381:(LC-MS) instead of 1138:Separation factor ( 1110:Efficiency factor ( 658:, or most commonly 349:particle technology 6225:Hyphenated methods 6181:Ion chromatography 6166:Gas chromatography 5916:Separation process 5911:Sample preparation 5640:Chemical substance 5502:Chemical synthesis 5471:Forensic chemistry 5352:Actinide chemistry 5294:Clinical chemistry 4975:Molecular geometry 4970:Molecular dynamics 4925:Elemental analysis 4878:Separation process 3996:10.1039/C9AN02145K 3706:10.1093/jat/bkt083 3370:2015-11-20 at the 3075:LCGC North America 2913:LCGC North America 2593:10.1039/C7AN01469D 2535:Ion Chromatography 2230:Ettre, C. (2001). 2137:Iler, R.K. (1979) 2081:2020-08-01 at the 1560:(7–9): 1353–1376. 1437:Ion chromatography 1253:Waters Corporation 1160: 1072: 1040:selectivity factor 1018:system-suitability 986: 912: 806:ion chromatography 768:tertiary structure 693:of 2,2'- and 4,4'- 602:/cm, methanol: 2.2 542: 483:structural isomers 373: 314:Gas chromatography 146:process involving 99:adsorbent material 49: 36: 6336: 6335: 6075: 6074: 5957:Standard addition 5952:Internal standard 5942:Calibration curve 5855:Mass spectrometry 5814:Spectrophotometer 5794:Mass spectrometer 5779:Gas chromatograph 5719: 5718: 5655:Quantum mechanics 5620:Chemical compound 5603:Chemical reaction 5541:Materials science 5459:General chemistry 5454:Amateur chemistry 5382:Photogeochemistry 5367:Stellar chemistry 5337:Nuclear chemistry 5258:Molecular biology 5225:Polymer chemistry 5196:Organic synthesis 5191:Organic reactions 5156:Ceramic chemistry 5146:Cluster chemistry 5076:Chemical kinetics 5064:Molecular physics 4943:Quantum chemistry 4856:Mass spectrometry 4347:(26): 8463–8474. 3830:10.1021/ac030162o 3824:(21): 5710–5718. 3254:(12): 1836–1848. 3215:(12): 1422–1428. 2948:10.1042/bj0351358 2942:(12): 1358–1368. 2553:978-3-527-29914-0 2481:(20): 4815–4823. 2450:978-0-471-68162-5 2408:978-0-471-68162-5 2347:(11): 1090–1096. 2288:10.1042/bj0350091 2203:978-0-471-19037-0 2012:978-0-85404-515-0 1987:978-0-471-75401-5 1771:10.1021/ac1002646 1734:978-0-444-41683-4 1471:978-0-471-68162-5 1375:mass spectrometry 1308:neurotransmitters 1285:chemical property 1281:UV-Vis absorbance 1273:physical property 1189:mass spectrometry 1150:Internal diameter 1134: 890:) is also called 230:mass spectrometry 16:(Redirected from 6366: 6326: 6325: 6273:Retention factor 6102: 6095: 6088: 6079: 6063: 6062: 6051: 6039: 6038: 6027: 6026: 5962:Isotope dilution 5746: 5739: 5732: 5723: 5707: 5706: 5695: 5683: 5682: 5671: 5670: 5615:Chemical element 5270:Chemical biology 5129:Magnetochemistry 5106:Mechanochemistry 5059:Chemical physics 5000:Electrochemistry 4905:Characterization 4767: 4760: 4753: 4744: 4660: 4659: 4649: 4639: 4615: 4609: 4608: 4582: 4565:(15): e2300210. 4550: 4544: 4543: 4494: 4488: 4487: 4454:(6): 1304–1313. 4439: 4433: 4432: 4422: 4404: 4379: 4373: 4372: 4335: 4329: 4328: 4302: 4278: 4272: 4271: 4239: 4233: 4232: 4222: 4182: 4176: 4175: 4165: 4147: 4123: 4117: 4116: 4106: 4088: 4063: 4057: 4056: 4040: 4034: 4033: 4007: 3982:(4): 1129–1157. 3967: 3961: 3960: 3948: 3942: 3941: 3923: 3903: 3897: 3896: 3884: 3878: 3877: 3848: 3842: 3841: 3812: 3806: 3805: 3768: 3762: 3761: 3725: 3719: 3718: 3708: 3684: 3678: 3677: 3653: 3647: 3646: 3636: 3595: 3589: 3583: 3577: 3571: 3565: 3564: 3562: 3538: 3532: 3531: 3502: 3496: 3495: 3485: 3475: 3451: 3445: 3444: 3433: 3427: 3426: 3400: 3394: 3393: 3381: 3375: 3362: 3356: 3355: 3338:(1–2): 198–202. 3327: 3321: 3320: 3288: 3282: 3281: 3263: 3239: 3233: 3232: 3204: 3198: 3197: 3180:(1–2): 198–202. 3169: 3163: 3156: 3150: 3149: 3139: 3115: 3106: 3105: 3089: 3083: 3082: 3066: 3060: 3059: 3043: 3037: 3036: 2996: 2990: 2984: 2978: 2977: 2967: 2927: 2921: 2920: 2908: 2902: 2901: 2853: 2847: 2846: 2828: 2822: 2821: 2820: 2819: 2786: 2780: 2779: 2739: 2733: 2732: 2722: 2682: 2673: 2672: 2632: 2623: 2622: 2612: 2564: 2558: 2557: 2529: 2523: 2522: 2466: 2460: 2459: 2458: 2457: 2424: 2418: 2417: 2416: 2415: 2382: 2376: 2363: 2357: 2356: 2341:J. Am. Chem. Soc 2336: 2326: 2316: 2310: 2309: 2299: 2267: 2261: 2260: 2258: 2257: 2251: 2236: 2227: 2221: 2214: 2208: 2207: 2189: 2183: 2182: 2172: 2148: 2142: 2135: 2129: 2128: 2110: 2101: 2100: 2099:. Marcel Dekker. 2092: 2086: 2072: 2055: 2054: 2051:10.1021/ed074p45 2026: 2017: 2016: 1998: 1992: 1991: 1973: 1967: 1966: 1958: 1952: 1951: 1935: 1929: 1928: 1888: 1882: 1881: 1879: 1878: 1864: 1858: 1857: 1847: 1807: 1801: 1800: 1790: 1765:(8): 3352–3358. 1750: 1744: 1743: 1742: 1741: 1710: 1704: 1703: 1677: 1653: 1647: 1646: 1628: 1622: 1621: 1592: 1586: 1585: 1545: 1539: 1538: 1528: 1520: 1518: 1509: 1503: 1502: 1500: 1499: 1489:"Chromatography" 1485: 1476: 1475: 1457: 1269:refractive index 1132: 1118:Retention factor 1089:retention factor 1025:retention factor 935:gradient elution 670:carboxylic acids 648:Ammonium formate 644:sodium phosphate 612:Gradient elution 605: 597: 463:hydrogen-bonding 425:stationary phase 103:stationary phase 21: 6374: 6373: 6369: 6368: 6367: 6365: 6364: 6363: 6339: 6338: 6337: 6332: 6314: 6282: 6246: 6220: 6129: 6111: 6106: 6076: 6071: 6015: 5966: 5925: 5869: 5818: 5761:Instrumentation 5755: 5750: 5720: 5715: 5659: 5562: 5556:Polymer science 5512:Click chemistry 5507:Green chemistry 5401:Ocean chemistry 5377:Biogeochemistry 5323: 5239: 5211:Total synthesis 5174:Stereochemistry 5160: 5110: 5027:Surface science 5017:Thermochemistry 4986: 4929: 4900:Crystallography 4805: 4777: 4771: 4732: 4699: 4668: 4666:Further reading 4663: 4617: 4616: 4612: 4552: 4551: 4547: 4496: 4495: 4491: 4441: 4440: 4436: 4381: 4380: 4376: 4337: 4336: 4332: 4280: 4279: 4275: 4241: 4240: 4236: 4184: 4183: 4179: 4125: 4124: 4120: 4065: 4064: 4060: 4042: 4041: 4037: 3969: 3968: 3964: 3950: 3949: 3945: 3905: 3904: 3900: 3886: 3885: 3881: 3850: 3849: 3845: 3814: 3813: 3809: 3770: 3769: 3765: 3727: 3726: 3722: 3686: 3685: 3681: 3655: 3654: 3650: 3597: 3596: 3592: 3584: 3580: 3572: 3568: 3553:: S1409–S1421. 3540: 3539: 3535: 3504: 3503: 3499: 3453: 3452: 3448: 3435: 3434: 3430: 3415: 3402: 3401: 3397: 3383: 3382: 3378: 3372:Wayback Machine 3363: 3359: 3329: 3328: 3324: 3290: 3289: 3285: 3241: 3240: 3236: 3206: 3205: 3201: 3171: 3170: 3166: 3157: 3153: 3117: 3116: 3109: 3091: 3090: 3086: 3068: 3067: 3063: 3045: 3044: 3040: 2998: 2997: 2993: 2985: 2981: 2929: 2928: 2924: 2910: 2909: 2905: 2855: 2854: 2850: 2843: 2830: 2829: 2825: 2817: 2815: 2813: 2791:"Csaba Horváth" 2788: 2787: 2783: 2741: 2740: 2736: 2684: 2683: 2676: 2634: 2633: 2626: 2566: 2565: 2561: 2554: 2531: 2530: 2526: 2468: 2467: 2463: 2455: 2453: 2451: 2426: 2425: 2421: 2413: 2411: 2409: 2384: 2383: 2379: 2374:Wayback Machine 2364: 2360: 2338: 2318: 2317: 2313: 2282:(1–2): 91–121. 2269: 2268: 2264: 2255: 2253: 2249: 2234: 2229: 2228: 2224: 2215: 2211: 2204: 2191: 2190: 2186: 2150: 2149: 2145: 2136: 2132: 2125: 2112: 2111: 2104: 2094: 2093: 2089: 2083:Wayback Machine 2073: 2058: 2028: 2027: 2020: 2013: 2000: 1999: 1995: 1988: 1975: 1974: 1970: 1960: 1959: 1955: 1937: 1936: 1932: 1890: 1889: 1885: 1876: 1874: 1866: 1865: 1861: 1809: 1808: 1804: 1752: 1751: 1747: 1739: 1737: 1735: 1712: 1711: 1707: 1655: 1654: 1650: 1643: 1630: 1629: 1625: 1594: 1593: 1589: 1547: 1546: 1542: 1521: 1516: 1511: 1510: 1506: 1497: 1495: 1487: 1486: 1479: 1472: 1459: 1458: 1454: 1450: 1413: 1400: 1391: 1363: 1354: 1349: 1340: 1261: 1234: 1225: 1201: 1152: 1056: 1034: 1030: 1014: 1009: 904: 881: 864: 858: 840:An increase in 795: 789: 724: 718: 640:buffering agent 625: 621: 603: 595: 592:surface tension 589: 573: 569: 565: 561: 557: 548: 534: 521: 458: 362: 357: 333:Calvin Giddings 306: 189: 76:pharmaceuticals 28: 23: 22: 15: 12: 11: 5: 6372: 6370: 6362: 6361: 6356: 6354:Chromatography 6351: 6341: 6340: 6334: 6333: 6331: 6330: 6319: 6316: 6315: 6313: 6312: 6305: 6298: 6290: 6288: 6284: 6283: 6281: 6280: 6275: 6270: 6265: 6260: 6254: 6252: 6248: 6247: 6245: 6244: 6239: 6234: 6228: 6226: 6222: 6221: 6219: 6218: 6213: 6208: 6203: 6198: 6193: 6188: 6183: 6178: 6173: 6168: 6163: 6158: 6153: 6148: 6143: 6137: 6135: 6131: 6130: 6128: 6127: 6122: 6116: 6113: 6112: 6109:Chromatography 6107: 6105: 6104: 6097: 6090: 6082: 6073: 6072: 6070: 6069: 6057: 6045: 6033: 6020: 6017: 6016: 6014: 6013: 6006: 5999: 5992: 5985: 5977: 5975: 5968: 5967: 5965: 5964: 5959: 5954: 5949: 5944: 5939: 5933: 5931: 5927: 5926: 5924: 5923: 5918: 5913: 5908: 5903: 5898: 5893: 5888: 5883: 5877: 5875: 5871: 5870: 5868: 5867: 5862: 5857: 5852: 5847: 5842: 5837: 5835:Chromatography 5832: 5826: 5824: 5820: 5819: 5817: 5816: 5811: 5806: 5801: 5796: 5791: 5786: 5781: 5776: 5771: 5765: 5763: 5757: 5756: 5751: 5749: 5748: 5741: 5734: 5726: 5717: 5716: 5714: 5713: 5701: 5689: 5677: 5664: 5661: 5660: 5658: 5657: 5652: 5647: 5642: 5637: 5632: 5627: 5622: 5617: 5612: 5611: 5610: 5600: 5593: 5592: 5591: 5581: 5576: 5570: 5568: 5564: 5563: 5561: 5560: 5559: 5558: 5553: 5548: 5538: 5537: 5536: 5526: 5525: 5524: 5519: 5514: 5509: 5499: 5498: 5497: 5486: 5485: 5484: 5483: 5478: 5468: 5463: 5462: 5461: 5456: 5445: 5444: 5443: 5442: 5440:Soil chemistry 5432: 5431: 5430: 5425: 5418:Food chemistry 5415: 5413:Carbochemistry 5410: 5408:Clay chemistry 5405: 5404: 5403: 5398: 5387: 5386: 5385: 5384: 5379: 5369: 5363:Astrochemistry 5359:Cosmochemistry 5356: 5355: 5354: 5349: 5344: 5342:Radiochemistry 5333: 5331: 5325: 5324: 5322: 5321: 5316: 5311: 5306: 5301: 5299:Neurochemistry 5296: 5291: 5290: 5289: 5279: 5278: 5277: 5267: 5266: 5265: 5260: 5249: 5247: 5241: 5240: 5238: 5237: 5232: 5230:Petrochemistry 5227: 5222: 5217: 5208: 5203: 5198: 5193: 5188: 5183: 5182: 5181: 5170: 5168: 5162: 5161: 5159: 5158: 5153: 5148: 5143: 5142: 5141: 5131: 5126: 5120: 5118: 5112: 5111: 5109: 5108: 5103: 5098: 5093: 5091:Spin chemistry 5088: 5086:Photochemistry 5083: 5078: 5073: 5071:Femtochemistry 5068: 5067: 5066: 5056: 5051: 5046: 5041: 5040: 5039: 5029: 5024: 5019: 5014: 5013: 5012: 5007: 4996: 4994: 4988: 4987: 4985: 4984: 4983: 4982: 4972: 4967: 4962: 4957: 4956: 4955: 4945: 4939: 4937: 4931: 4930: 4928: 4927: 4922: 4917: 4912: 4907: 4902: 4897: 4896: 4895: 4890: 4883:Chromatography 4880: 4875: 4874: 4873: 4868: 4863: 4853: 4852: 4851: 4846: 4841: 4836: 4826: 4821: 4815: 4813: 4807: 4806: 4804: 4803: 4801:Periodic table 4798: 4793: 4788: 4782: 4779: 4778: 4772: 4770: 4769: 4762: 4755: 4747: 4741: 4740: 4716: 4714: 4712: 4698: 4697:External links 4695: 4694: 4693: 4690: 4687: 4684: 4681: 4678: 4675: 4672: 4667: 4664: 4662: 4661: 4610: 4545: 4510:(7): 557–567. 4489: 4434: 4374: 4330: 4273: 4254:(6): 466–485. 4234: 4177: 4118: 4058: 4035: 3962: 3943: 3898: 3879: 3860:(1–2): 10–19. 3843: 3807: 3763: 3736:(4): 229–235. 3720: 3699:(9): 642–651. 3679: 3668:(3): 273–281. 3662:Pain Physician 3648: 3590: 3578: 3566: 3533: 3497: 3446: 3428: 3413: 3395: 3390:www.waters.com 3376: 3357: 3322: 3283: 3234: 3199: 3164: 3151: 3107: 3084: 3061: 3058:(10): 498–504. 3038: 3011:(2): 337–343. 2991: 2979: 2922: 2903: 2868:(2): 253–266. 2848: 2842:978-0470055519 2841: 2823: 2811: 2781: 2754:(2): 253–266. 2734: 2697:(1): 231–247. 2674: 2624: 2579:(2): 374–391. 2559: 2552: 2524: 2461: 2449: 2419: 2407: 2377: 2358: 2311: 2262: 2222: 2209: 2202: 2184: 2143: 2130: 2123: 2102: 2087: 2056: 2018: 2011: 1993: 1986: 1968: 1953: 1930: 1883: 1872:www.imtakt.com 1859: 1822:(5): 324–331. 1802: 1745: 1733: 1705: 1648: 1641: 1623: 1604:(2): 127–133. 1587: 1540: 1504: 1477: 1470: 1451: 1449: 1446: 1445: 1444: 1439: 1434: 1429: 1424: 1419: 1412: 1409: 1399: 1396: 1390: 1387: 1362: 1359: 1353: 1350: 1348: 1345: 1339: 1336: 1312:norepinephrine 1260: 1257: 1233: 1230: 1224: 1221: 1200: 1197: 1151: 1148: 1054: 1032: 1028: 1013: 1010: 1008: 1005: 903: 900: 880: 877: 857: 854: 788: 785: 759: 758: 752: 717: 714: 623: 619: 587: 571: 567: 563: 559: 555: 533: 530: 520: 517: 498:reversed-phase 479:steric factors 457: 454: 417:hydrogen donor 361: 358: 356: 353: 305: 302: 264:reversed phase 237:microprocessor 224:array (PDA) / 188: 185: 140:Chromatography 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6371: 6360: 6357: 6355: 6352: 6350: 6347: 6346: 6344: 6329: 6321: 6320: 6317: 6311: 6310: 6306: 6304: 6303: 6299: 6297: 6296: 6292: 6291: 6289: 6285: 6279: 6276: 6274: 6271: 6269: 6266: 6264: 6261: 6259: 6256: 6255: 6253: 6249: 6243: 6240: 6238: 6235: 6233: 6230: 6229: 6227: 6223: 6217: 6214: 6212: 6209: 6207: 6204: 6202: 6199: 6197: 6194: 6192: 6189: 6187: 6184: 6182: 6179: 6177: 6174: 6172: 6169: 6167: 6164: 6162: 6159: 6157: 6154: 6152: 6149: 6147: 6144: 6142: 6139: 6138: 6136: 6132: 6126: 6123: 6121: 6118: 6117: 6114: 6110: 6103: 6098: 6096: 6091: 6089: 6084: 6083: 6080: 6068: 6067: 6058: 6056: 6055: 6050: 6046: 6044: 6043: 6034: 6032: 6031: 6022: 6021: 6018: 6012: 6011: 6007: 6005: 6004: 6000: 5998: 5997: 5993: 5991: 5990: 5986: 5984: 5983: 5979: 5978: 5976: 5974: 5969: 5963: 5960: 5958: 5955: 5953: 5950: 5948: 5947:Matrix effect 5945: 5943: 5940: 5938: 5935: 5934: 5932: 5928: 5922: 5919: 5917: 5914: 5912: 5909: 5907: 5906:Pulverization 5904: 5902: 5899: 5897: 5894: 5892: 5889: 5887: 5884: 5882: 5879: 5878: 5876: 5872: 5866: 5863: 5861: 5858: 5856: 5853: 5851: 5848: 5846: 5843: 5841: 5838: 5836: 5833: 5831: 5828: 5827: 5825: 5821: 5815: 5812: 5810: 5807: 5805: 5802: 5800: 5797: 5795: 5792: 5790: 5787: 5785: 5782: 5780: 5777: 5775: 5772: 5770: 5767: 5766: 5764: 5762: 5758: 5754: 5747: 5742: 5740: 5735: 5733: 5728: 5727: 5724: 5712: 5711: 5702: 5700: 5699: 5694: 5690: 5688: 5687: 5678: 5676: 5675: 5666: 5665: 5662: 5656: 5653: 5651: 5648: 5646: 5645:Chemical bond 5643: 5641: 5638: 5636: 5633: 5631: 5628: 5626: 5623: 5621: 5618: 5616: 5613: 5609: 5606: 5605: 5604: 5601: 5598: 5594: 5590: 5587: 5586: 5585: 5582: 5580: 5577: 5575: 5572: 5571: 5569: 5565: 5557: 5554: 5552: 5549: 5547: 5544: 5543: 5542: 5539: 5535: 5534:Stoichiometry 5532: 5531: 5530: 5527: 5523: 5520: 5518: 5515: 5513: 5510: 5508: 5505: 5504: 5503: 5500: 5496: 5493: 5492: 5491: 5490:Nanochemistry 5488: 5487: 5482: 5479: 5477: 5474: 5473: 5472: 5469: 5467: 5464: 5460: 5457: 5455: 5452: 5451: 5450: 5447: 5446: 5441: 5438: 5437: 5436: 5433: 5429: 5426: 5424: 5421: 5420: 5419: 5416: 5414: 5411: 5409: 5406: 5402: 5399: 5397: 5394: 5393: 5392: 5389: 5388: 5383: 5380: 5378: 5375: 5374: 5373: 5370: 5368: 5364: 5360: 5357: 5353: 5350: 5348: 5345: 5343: 5340: 5339: 5338: 5335: 5334: 5332: 5330: 5326: 5320: 5317: 5315: 5312: 5310: 5307: 5305: 5302: 5300: 5297: 5295: 5292: 5288: 5285: 5284: 5283: 5280: 5276: 5273: 5272: 5271: 5268: 5264: 5261: 5259: 5256: 5255: 5254: 5251: 5250: 5248: 5246: 5242: 5236: 5233: 5231: 5228: 5226: 5223: 5221: 5218: 5216: 5215:Semisynthesis 5212: 5209: 5207: 5204: 5202: 5199: 5197: 5194: 5192: 5189: 5187: 5184: 5180: 5177: 5176: 5175: 5172: 5171: 5169: 5167: 5163: 5157: 5154: 5152: 5149: 5147: 5144: 5140: 5137: 5136: 5135: 5132: 5130: 5127: 5125: 5122: 5121: 5119: 5117: 5113: 5107: 5104: 5102: 5099: 5097: 5094: 5092: 5089: 5087: 5084: 5082: 5079: 5077: 5074: 5072: 5069: 5065: 5062: 5061: 5060: 5057: 5055: 5052: 5050: 5049:Sonochemistry 5047: 5045: 5044:Cryochemistry 5042: 5038: 5037:Micromeritics 5035: 5034: 5033: 5030: 5028: 5025: 5023: 5020: 5018: 5015: 5011: 5008: 5006: 5003: 5002: 5001: 4998: 4997: 4995: 4993: 4989: 4981: 4978: 4977: 4976: 4973: 4971: 4968: 4966: 4963: 4961: 4958: 4954: 4951: 4950: 4949: 4946: 4944: 4941: 4940: 4938: 4936: 4932: 4926: 4923: 4921: 4918: 4916: 4915:Wet chemistry 4913: 4911: 4908: 4906: 4903: 4901: 4898: 4894: 4891: 4889: 4886: 4885: 4884: 4881: 4879: 4876: 4872: 4869: 4867: 4864: 4862: 4859: 4858: 4857: 4854: 4850: 4847: 4845: 4842: 4840: 4837: 4835: 4832: 4831: 4830: 4827: 4825: 4822: 4820: 4817: 4816: 4814: 4812: 4808: 4802: 4799: 4797: 4794: 4792: 4789: 4787: 4784: 4783: 4780: 4776: 4768: 4763: 4761: 4756: 4754: 4749: 4748: 4745: 4739: 4735: 4730: 4726: 4725: 4720: 4715: 4713: 4711: 4707: 4705: 4701: 4700: 4696: 4691: 4688: 4685: 4682: 4679: 4676: 4673: 4670: 4669: 4665: 4657: 4653: 4648: 4643: 4638: 4633: 4629: 4625: 4621: 4614: 4611: 4606: 4602: 4598: 4594: 4590: 4586: 4581: 4576: 4572: 4568: 4564: 4560: 4556: 4549: 4546: 4541: 4537: 4533: 4529: 4525: 4521: 4517: 4513: 4509: 4505: 4501: 4493: 4490: 4485: 4481: 4477: 4473: 4469: 4465: 4461: 4457: 4453: 4449: 4445: 4438: 4435: 4430: 4426: 4421: 4416: 4412: 4408: 4403: 4398: 4394: 4390: 4386: 4378: 4375: 4370: 4366: 4362: 4358: 4354: 4350: 4346: 4342: 4334: 4331: 4326: 4322: 4318: 4314: 4310: 4306: 4301: 4296: 4292: 4288: 4284: 4277: 4274: 4269: 4265: 4261: 4257: 4253: 4249: 4245: 4238: 4235: 4230: 4226: 4221: 4216: 4212: 4208: 4204: 4200: 4196: 4192: 4188: 4181: 4178: 4173: 4169: 4164: 4159: 4155: 4151: 4146: 4141: 4137: 4133: 4129: 4122: 4119: 4114: 4110: 4105: 4100: 4096: 4092: 4087: 4082: 4078: 4074: 4070: 4062: 4059: 4054: 4050: 4046: 4039: 4036: 4031: 4027: 4023: 4019: 4015: 4011: 4006: 4005:11392/2479221 4001: 3997: 3993: 3989: 3985: 3981: 3977: 3973: 3966: 3963: 3958: 3954: 3947: 3944: 3939: 3935: 3931: 3927: 3922: 3917: 3913: 3909: 3902: 3899: 3894: 3890: 3883: 3880: 3875: 3871: 3867: 3863: 3859: 3855: 3847: 3844: 3839: 3835: 3831: 3827: 3823: 3819: 3811: 3808: 3803: 3799: 3795: 3791: 3787: 3783: 3780:(1): 94–102. 3779: 3775: 3767: 3764: 3759: 3755: 3751: 3747: 3743: 3739: 3735: 3731: 3724: 3721: 3716: 3712: 3707: 3702: 3698: 3694: 3690: 3683: 3680: 3675: 3671: 3667: 3663: 3659: 3652: 3649: 3644: 3640: 3635: 3630: 3626: 3622: 3618: 3614: 3610: 3606: 3602: 3594: 3591: 3587: 3582: 3579: 3575: 3570: 3567: 3561: 3556: 3552: 3548: 3544: 3537: 3534: 3529: 3525: 3521: 3517: 3514:(2): 127–33. 3513: 3509: 3501: 3498: 3493: 3489: 3484: 3479: 3474: 3469: 3465: 3461: 3457: 3450: 3447: 3442: 3438: 3432: 3429: 3424: 3420: 3416: 3414:9780080571782 3410: 3406: 3399: 3396: 3391: 3387: 3380: 3377: 3373: 3369: 3366: 3361: 3358: 3353: 3349: 3345: 3341: 3337: 3333: 3326: 3323: 3318: 3314: 3310: 3306: 3302: 3298: 3294: 3287: 3284: 3279: 3275: 3271: 3267: 3262: 3257: 3253: 3249: 3245: 3238: 3235: 3230: 3226: 3222: 3218: 3214: 3210: 3203: 3200: 3195: 3191: 3187: 3183: 3179: 3175: 3168: 3165: 3161: 3155: 3152: 3147: 3143: 3138: 3133: 3129: 3125: 3121: 3114: 3112: 3108: 3103: 3099: 3095: 3088: 3085: 3081:(3): 188–193. 3080: 3076: 3072: 3065: 3062: 3057: 3053: 3049: 3042: 3039: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 3002: 2995: 2992: 2988: 2983: 2980: 2975: 2971: 2966: 2961: 2957: 2953: 2949: 2945: 2941: 2937: 2933: 2926: 2923: 2919:(3): 188–193. 2918: 2914: 2907: 2904: 2899: 2895: 2891: 2887: 2883: 2879: 2875: 2871: 2867: 2863: 2859: 2852: 2849: 2844: 2838: 2834: 2827: 2824: 2814: 2812:9780444417541 2808: 2804: 2800: 2796: 2792: 2785: 2782: 2777: 2773: 2769: 2765: 2761: 2757: 2753: 2749: 2745: 2738: 2735: 2730: 2726: 2721: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2681: 2679: 2675: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2642: 2638: 2631: 2629: 2625: 2620: 2616: 2611: 2606: 2602: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2563: 2560: 2555: 2549: 2545: 2541: 2537: 2536: 2528: 2525: 2520: 2516: 2512: 2508: 2504: 2500: 2496: 2495:1721.1/104914 2492: 2488: 2484: 2480: 2476: 2472: 2465: 2462: 2452: 2446: 2442: 2438: 2434: 2430: 2423: 2420: 2410: 2404: 2400: 2396: 2392: 2388: 2381: 2378: 2375: 2371: 2367: 2362: 2359: 2354: 2350: 2346: 2342: 2334: 2330: 2325: 2324: 2315: 2312: 2307: 2303: 2298: 2293: 2289: 2285: 2281: 2277: 2273: 2266: 2263: 2252:on 2016-03-04 2248: 2244: 2240: 2233: 2226: 2223: 2219: 2213: 2210: 2205: 2199: 2195: 2188: 2185: 2180: 2176: 2171: 2166: 2163:(8): 757–64. 2162: 2158: 2154: 2147: 2144: 2140: 2134: 2131: 2126: 2124:9781315158075 2120: 2116: 2109: 2107: 2103: 2098: 2091: 2088: 2084: 2080: 2077: 2071: 2069: 2067: 2065: 2063: 2061: 2057: 2052: 2048: 2044: 2040: 2036: 2032: 2025: 2023: 2019: 2014: 2008: 2004: 1997: 1994: 1989: 1983: 1979: 1972: 1969: 1964: 1957: 1954: 1950:(8): 432–436. 1949: 1945: 1941: 1934: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1887: 1884: 1873: 1869: 1863: 1860: 1855: 1851: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1806: 1803: 1798: 1794: 1789: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1749: 1746: 1736: 1730: 1726: 1722: 1718: 1717: 1709: 1706: 1701: 1697: 1693: 1689: 1685: 1681: 1676: 1671: 1667: 1663: 1659: 1652: 1649: 1644: 1642:9780429251962 1638: 1634: 1627: 1624: 1619: 1615: 1611: 1607: 1603: 1599: 1591: 1588: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1544: 1541: 1536: 1532: 1526: 1515: 1508: 1505: 1494: 1490: 1484: 1482: 1478: 1473: 1467: 1463: 1456: 1453: 1447: 1443: 1440: 1438: 1435: 1433: 1432:Csaba Horváth 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1414: 1410: 1408: 1404: 1397: 1395: 1388: 1386: 1384: 1380: 1376: 1372: 1368: 1367:illicit drugs 1360: 1358: 1352:Manufacturing 1351: 1346: 1344: 1337: 1335: 1333: 1329: 1328:acetylcholine 1325: 1321: 1317: 1313: 1309: 1304: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1258: 1256: 1254: 1250: 1246: 1242: 1238: 1232:Pump pressure 1231: 1229: 1222: 1220: 1218: 1214: 1209: 1206: 1199:Particle size 1198: 1196: 1194: 1190: 1185: 1184: 1180: 1175: 1173: 1167: 1164: 1156: 1149: 1147: 1145: 1141: 1136: 1131: 1127: 1123: 1119: 1115: 1113: 1108: 1104: 1102: 1098: 1094: 1090: 1085: 1083: 1082: 1077: 1068: 1064: 1061: 1060:peak capacity 1057: 1053: 1050: 1049:peak capacity 1043: 1041: 1036: 1026: 1021: 1019: 1011: 1006: 1004: 1003: 999: 994: 990: 982: 978: 974: 972: 968: 964: 960: 956: 952: 948: 944: 940: 936: 931: 929: 928:Csaba Horvath 925: 921: 917: 908: 901: 899: 897: 893: 889: 885: 878: 876: 874: 868: 863: 855: 853: 851: 845: 843: 838: 835: 833: 829: 825: 821: 818: 813: 811: 807: 803: 799: 794: 786: 784: 782: 776: 773: 769: 763: 756: 753: 750: 747: 746: 745: 742: 740: 739:Stokes radius 736: 732: 728: 723: 715: 713: 711: 707: 704: 700: 696: 692: 686: 683: 679: 673: 671: 667: 663: 661: 657: 653: 649: 645: 641: 637: 632: 628: 615: 613: 609: 601: 593: 585: 579: 575: 552: 547: 538: 531: 529: 526: 518: 516: 514: 509: 507: 503: 499: 494: 492: 486: 484: 480: 476: 472: 468: 467:dipole-dipole 464: 455: 453: 451: 447: 441: 439: 435: 430: 426: 422: 418: 414: 410: 406: 402: 398: 394: 390: 386: 382: 378: 370: 366: 359: 354: 352: 350: 345: 342: 336: 334: 329: 327: 323: 319: 315: 311: 303: 301: 297: 295: 291: 286: 284: 280: 275: 273: 269: 265: 260: 258: 254: 249: 245: 243: 238: 233: 231: 227: 223: 219: 218:mass spectrum 215: 210: 206: 201: 198: 193: 186: 184: 181: 177: 173: 169: 165: 161: 157: 153: 149: 145: 144:mass transfer 141: 137: 135: 131: 127: 123: 118: 116: 112: 106: 104: 101:, called the 100: 96: 91: 89: 85: 84:environmental 81: 77: 73: 69: 65: 61: 57: 53: 46: 40: 32: 19: 6307: 6300: 6293: 6190: 6170: 6064: 6052: 6040: 6028: 6008: 6001: 5994: 5987: 5980: 5973:publications 5937:Chemometrics 5921:Sub-sampling 5860:Spectroscopy 5783: 5708: 5696: 5684: 5672: 5522:Biosynthesis 5372:Geochemistry 5287:Pharmacology 5263:Cell biology 5253:Biochemistry 5081:Spectroscopy 4980:VSEPR theory 4892: 4829:Spectroscopy 4773:Branches of 4722: 4703: 4627: 4623: 4613: 4580:10852/105845 4562: 4558: 4548: 4507: 4503: 4492: 4451: 4447: 4437: 4392: 4388: 4377: 4344: 4340: 4333: 4290: 4286: 4276: 4251: 4247: 4237: 4194: 4190: 4180: 4135: 4131: 4121: 4076: 4072: 4061: 4052: 4048: 4038: 3979: 3975: 3965: 3956: 3946: 3911: 3901: 3892: 3882: 3857: 3853: 3846: 3821: 3817: 3810: 3777: 3773: 3766: 3733: 3729: 3723: 3696: 3692: 3682: 3665: 3661: 3651: 3608: 3604: 3593: 3585: 3581: 3573: 3569: 3550: 3546: 3536: 3511: 3507: 3500: 3463: 3459: 3449: 3440: 3431: 3404: 3398: 3389: 3379: 3360: 3335: 3331: 3325: 3300: 3296: 3286: 3251: 3247: 3237: 3212: 3208: 3202: 3177: 3173: 3167: 3154: 3127: 3123: 3101: 3097: 3087: 3078: 3074: 3064: 3055: 3051: 3041: 3008: 3004: 2994: 2982: 2939: 2935: 2925: 2916: 2912: 2906: 2865: 2861: 2851: 2832: 2826: 2816:, retrieved 2794: 2784: 2751: 2747: 2737: 2694: 2690: 2644: 2640: 2576: 2572: 2562: 2534: 2527: 2478: 2474: 2464: 2454:, retrieved 2432: 2422: 2412:, retrieved 2390: 2380: 2361: 2344: 2340: 2337:from review 2322: 2314: 2279: 2275: 2265: 2254:. Retrieved 2247:the original 2242: 2238: 2225: 2217: 2212: 2193: 2187: 2160: 2156: 2146: 2138: 2133: 2114: 2096: 2090: 2034: 2030: 2002: 1996: 1977: 1971: 1962: 1956: 1947: 1943: 1933: 1900: 1896: 1886: 1875:. Retrieved 1871: 1862: 1819: 1815: 1805: 1762: 1758: 1748: 1738:, retrieved 1715: 1708: 1665: 1661: 1651: 1632: 1626: 1601: 1597: 1590: 1557: 1553: 1543: 1507: 1496:. Retrieved 1493:web.njit.edu 1492: 1461: 1455: 1405: 1401: 1392: 1364: 1355: 1347:Applications 1341: 1338:Autosamplers 1305: 1276: 1264: 1262: 1235: 1226: 1213:backpressure 1210: 1202: 1193:fused silica 1186: 1179:fluorescence 1176: 1168: 1165: 1161: 1143: 1139: 1137: 1129: 1125: 1121: 1116: 1111: 1109: 1105: 1100: 1096: 1086: 1079: 1073: 1059: 1051: 1048: 1047: 1044: 1039: 1037: 1024: 1022: 1017: 1015: 1001: 997: 995: 991: 987: 975: 965:, methanol, 963:acetonitrile 958: 954: 946: 942: 934: 932: 923: 919: 916:mobile phase 913: 895: 891: 887: 883: 882: 871:such as the 869: 865: 846: 839: 836: 814: 809: 805: 801: 797: 796: 777: 764: 760: 754: 748: 743: 735:biomolecules 730: 726: 725: 687: 677: 674: 664: 633: 629: 622:, COO or -NH 616: 608:acetonitrile 580: 576: 553: 549: 522: 510: 505: 495: 490: 487: 470: 459: 445: 442: 429:acetonitrile 374: 346: 337: 330: 307: 298: 293: 287: 278: 276: 261: 250: 246: 234: 216:spectrum or 209:quantitative 202: 194: 190: 172:acetonitrile 163: 155: 138: 133: 129: 125: 121: 119: 115:UV detectors 107: 95:mobile phase 92: 59: 55: 51: 50: 44: 6066:WikiProject 5930:Calibration 5891:Dissolution 5830:Calorimetry 5710:WikiProject 4935:Theoretical 4920:Calorimetry 4717:‹ The 4710:Rxlalit.com 4197:: 316–324. 4079:(5): 2127. 4055:(4): 54–57. 3957:Lab Manager 3893:PharmaTutor 3052:LCGC Europe 1944:LCGC Europe 1371:immunoassay 1122:kappa prime 1012:Theoretical 971:isopropanol 842:counter ion 817:polystyrene 660:formic acid 656:acetic acid 584:solvophobic 523:The use of 409:amino acids 397:Nobel Prize 322:biopolymers 180:temperature 88:agriculture 6343:Categories 6134:Techniques 5971:Prominent 5896:Filtration 5823:Techniques 5804:Microscope 5546:Metallurgy 5245:Biological 4811:Analytical 3466:(1): 180. 2818:2023-10-15 2456:2023-10-10 2414:2023-10-10 2256:2016-02-26 2157:Clin. Chem 1903:: 461301. 1877:2024-08-08 1740:2024-08-05 1498:2024-08-05 1448:References 1332:femtomolar 1007:Parameters 953:, solvent 832:silica gel 695:bipyridine 642:, such as 475:chloroform 257:resolution 235:A digital 232:detector. 222:photodiode 148:adsorption 80:biological 5865:Titration 5608:Catalysis 5116:Inorganic 4910:Titration 4775:chemistry 4605:259047202 4589:1615-9306 4524:1435-232X 4484:143432183 4468:1865-8652 4411:2409-515X 4395:(4): 62. 4325:213186669 4309:0009-9120 4268:0165-9936 4211:1570-0232 4154:2296-889X 4095:1420-3049 4073:Molecules 4030:210866236 4014:1364-5528 3938:257295079 3930:2581-5679 3625:0003-2700 3441:Amuza Inc 3423:815471219 3374:. Agilent 3270:1615-9306 3146:0165-9936 3130:: 14–20. 3025:0731-7085 2956:0306-3283 2882:0021-9673 2711:1618-2650 2661:1873-3778 2647:: 49–71. 2601:1364-5528 2503:1618-2650 2327:. Wiley. 2037:(1): 45. 1917:0021-9673 1836:2095-1779 1779:0003-2700 1700:213186669 1684:0009-9120 1574:1082-6076 1324:glutamate 1320:serotonin 1310:such as: 1259:Detectors 1223:Pore size 1208:squared. 922:(meaning 920:isocratic 824:cellulose 450:Coulombic 413:coulombic 389:gas phase 187:Operation 166:, water, 152:partition 72:chemicals 6328:Category 6120:software 6030:Category 5886:Dilution 5874:Sampling 5674:Category 5630:Molecule 5567:See also 4992:Physical 4719:template 4656:26330983 4597:37269205 4540:92042115 4532:32277174 4476:31049874 4429:36547379 4369:25743579 4361:23954996 4317:32188572 4293:: 2–11. 4229:28654869 4172:36406271 4113:36903374 4104:10004468 4022:31971527 3914:: 4–19. 3874:17400036 3838:14588010 3802:17386652 3758:20451772 3750:10929239 3715:24084874 3674:20495592 3643:34843645 3528:15146913 3492:36703458 3384:waters. 3368:Archived 3352:16376355 3317:23838304 3303:: 1–13. 3278:16970187 3194:16376355 3033:15925228 2974:16747422 2898:26072994 2890:16460742 2776:26072994 2768:16460742 2729:21879300 2669:28668366 2619:29200216 2511:24958344 2370:Archived 2306:16747393 2079:Archived 1925:32709344 1854:31929941 1797:20302345 1692:32188572 1668:: 2–11. 1618:15146913 1582:97490509 1525:cite web 1411:See also 1389:Research 1377:. Using 1326:, GABA, 1316:dopamine 1245:Pressure 1228:inside. 939:methanol 781:heparins 598:10  341:pressure 326:volatile 310:solvents 253:porosity 242:gradient 205:degasser 176:methanol 113:such as 111:detector 6125:history 6042:Commons 5982:Analyst 5901:Masking 5686:Commons 5650:Alchemy 5166:Organic 4721:below ( 4647:4542329 4420:9781967 4220:5585056 4163:9669074 3984:Bibcode 3976:Analyst 3782:Bibcode 3634:8674870 3483:9814086 3229:6073805 2965:1265645 2720:3249561 2610:5768458 2581:Bibcode 2573:Analyst 2333:7013902 2297:1265473 2179:4254537 2039:Bibcode 1845:6951491 1788:2875083 828:dextran 699:chelate 691:mixture 652:adducts 502:alumina 415:and/or 174:and/or 168:buffers 150:and/or 6251:Theory 6054:Portal 5698:Portal 4844:UV-Vis 4738:Curlie 4724:Curlie 4654:  4644:  4630:: 67. 4603:  4595:  4587:  4538:  4530:  4522:  4482:  4474:  4466:  4427:  4417:  4409:  4367:  4359:  4323:  4315:  4307:  4266:  4227:  4217:  4209:  4170:  4160:  4152:  4111:  4101:  4093:  4028:  4020:  4012:  3936:  3928:  3872:  3836:  3800:  3756:  3748:  3713:  3672:  3641:  3631:  3623:  3526:  3490:  3480:  3421:  3411:  3350:  3315:  3276:  3268:  3227:  3192:  3144:  3031:  3023:  2972:  2962:  2954:  2896:  2888:  2880:  2839:  2809:  2774:  2766:  2727:  2717:  2709:  2667:  2659:  2617:  2607:  2599:  2550:  2519:492085 2517:  2509:  2501:  2447:  2405:  2331:  2304:  2294:  2200:  2177:  2121:  2009:  1984:  1923:  1915:  1852:  1842:  1834:  1795:  1785:  1777:  1731:  1698:  1690:  1682:  1639:  1616:  1580:  1572:  1468:  1249:lbf/in 1205:silica 1091:for a 820:resins 710:silica 434:acidic 214:UV-VIS 160:silica 4871:MALDI 4839:Raman 4601:S2CID 4536:S2CID 4480:S2CID 4365:S2CID 4321:S2CID 4026:S2CID 3934:S2CID 3754:S2CID 2894:S2CID 2772:S2CID 2515:S2CID 2250:(PDF) 2235:(PDF) 1696:S2CID 1578:S2CID 1517:(PDF) 1361:Legal 1237:Pumps 1140:alpha 1130:kappa 969:, or 896:HILIC 804:) or 703:metal 682:bases 513:Hilic 438:basic 369:HILIC 355:Types 290:elute 5625:Atom 4893:HPLC 4652:PMID 4593:PMID 4585:ISSN 4528:PMID 4520:ISSN 4472:PMID 4464:ISSN 4425:PMID 4407:ISSN 4357:PMID 4313:PMID 4305:ISSN 4264:ISSN 4225:PMID 4207:ISSN 4195:1060 4168:PMID 4150:ISSN 4109:PMID 4091:ISSN 4018:PMID 4010:ISSN 3926:ISSN 3870:PMID 3834:PMID 3798:PMID 3746:PMID 3711:PMID 3670:PMID 3639:PMID 3621:ISSN 3524:PMID 3512:1036 3488:PMID 3419:OCLC 3409:ISBN 3348:PMID 3336:1104 3313:PMID 3301:1302 3274:PMID 3266:ISSN 3225:PMID 3190:PMID 3178:1104 3142:ISSN 3104:(3). 3029:PMID 3021:ISSN 2970:PMID 2952:ISSN 2886:PMID 2878:ISSN 2866:1109 2837:ISBN 2807:ISBN 2764:PMID 2752:1109 2725:PMID 2707:ISSN 2665:PMID 2657:ISSN 2645:1523 2615:PMID 2597:ISSN 2548:ISBN 2507:PMID 2499:ISSN 2445:ISBN 2403:ISBN 2329:OSTI 2302:PMID 2239:LCGC 2198:ISBN 2175:PMID 2119:ISBN 2007:ISBN 1982:ISBN 1921:PMID 1913:ISSN 1901:1625 1850:PMID 1832:ISSN 1793:PMID 1775:ISSN 1729:ISBN 1688:PMID 1680:ISSN 1637:ISBN 1614:PMID 1602:1036 1570:ISSN 1535:link 1531:link 1466:ISBN 1301:LCMS 1277:e.g. 1265:e.g. 1144:i.e. 1126:e.g. 1101:e.g. 826:and 770:and 712:... 706:ions 566:or C 506:e.g. 491:i.e. 471:e.g. 446:e.g. 403:and 391:and 294:i.e. 279:e.g. 228:and 164:e.g. 156:e.g. 134:e.g. 130:e.g. 126:e.g. 122:e.g. 86:and 68:food 56:HPLC 45:i.e. 5635:Ion 4866:ICP 4849:NMR 4736:at 4708:at 4642:PMC 4632:doi 4575:hdl 4567:doi 4512:doi 4456:doi 4415:PMC 4397:doi 4349:doi 4345:405 4295:doi 4256:doi 4215:PMC 4199:doi 4158:PMC 4140:doi 4099:PMC 4081:doi 4000:hdl 3992:doi 3980:145 3916:doi 3862:doi 3858:853 3826:doi 3790:doi 3778:585 3738:doi 3734:113 3701:doi 3629:PMC 3613:doi 3555:doi 3516:doi 3478:PMC 3468:doi 3340:doi 3305:doi 3256:doi 3217:doi 3182:doi 3132:doi 3013:doi 2960:PMC 2944:doi 2870:doi 2799:doi 2756:doi 2715:PMC 2699:doi 2695:402 2649:doi 2605:PMC 2589:doi 2577:143 2540:doi 2491:hdl 2483:doi 2479:406 2437:doi 2395:doi 2349:doi 2345:110 2292:PMC 2284:doi 2165:doi 2047:doi 1905:doi 1840:PMC 1824:doi 1783:PMC 1767:doi 1721:doi 1670:doi 1606:doi 1562:doi 967:THF 888:ANP 802:IEC 731:SEC 678:not 465:or 6345:: 5365:/ 5361:/ 5213:/ 4888:GC 4861:EI 4834:IR 4650:. 4640:. 4626:. 4622:. 4599:. 4591:. 4583:. 4573:. 4563:46 4561:. 4557:. 4534:. 4526:. 4518:. 4508:65 4506:. 4502:. 4478:. 4470:. 4462:. 4452:36 4450:. 4446:. 4423:. 4413:. 4405:. 4391:. 4387:. 4363:. 4355:. 4343:. 4319:. 4311:. 4303:. 4291:82 4285:. 4262:. 4252:26 4246:. 4223:. 4213:. 4205:. 4193:. 4189:. 4166:. 4156:. 4148:. 4138:. 4134:. 4130:. 4107:. 4097:. 4089:. 4077:28 4075:. 4071:. 4053:21 4051:. 4047:. 4024:. 4016:. 4008:. 3998:. 3990:. 3978:. 3974:. 3955:. 3932:. 3924:. 3910:. 3891:. 3868:. 3856:. 3832:. 3822:75 3820:. 3796:. 3788:. 3776:. 3752:. 3744:. 3732:. 3709:. 3697:37 3695:. 3691:. 3666:13 3664:. 3660:. 3637:. 3627:. 3619:. 3609:93 3607:. 3603:. 3551:10 3549:. 3545:. 3522:. 3510:. 3486:. 3476:. 3462:. 3458:. 3439:. 3417:. 3388:. 3346:. 3334:. 3311:. 3299:. 3295:. 3272:. 3264:. 3252:29 3250:. 3246:. 3223:. 3213:39 3211:. 3188:. 3176:. 3140:. 3128:63 3126:. 3122:. 3110:^ 3102:19 3096:. 3079:32 3073:. 3056:33 3050:. 3027:. 3019:. 3009:38 3007:. 3003:. 2968:. 2958:. 2950:. 2940:35 2938:. 2934:. 2917:32 2915:. 2892:. 2884:. 2876:. 2860:. 2805:, 2793:, 2770:. 2762:. 2750:. 2746:. 2723:. 2713:. 2705:. 2693:. 2689:. 2677:^ 2663:. 2655:. 2643:. 2639:. 2627:^ 2613:. 2603:. 2595:. 2587:. 2575:. 2571:. 2546:. 2513:. 2505:. 2497:. 2489:. 2477:. 2473:. 2443:, 2431:, 2401:, 2389:, 2343:. 2300:. 2290:. 2280:35 2278:. 2274:. 2243:19 2241:. 2237:. 2173:. 2161:17 2159:. 2155:. 2105:^ 2059:^ 2045:. 2035:74 2033:. 2021:^ 1948:31 1942:. 1919:. 1911:. 1899:. 1895:. 1870:. 1848:. 1838:. 1830:. 1818:. 1814:. 1791:. 1781:. 1773:. 1763:82 1761:. 1757:. 1727:, 1694:. 1686:. 1678:. 1666:82 1660:. 1612:. 1600:. 1576:. 1568:. 1558:27 1556:. 1552:. 1527:}} 1523:{{ 1491:. 1480:^ 1322:, 1318:, 1314:, 1279:, 1267:, 1243:. 1219:. 1174:. 1128:, 973:. 822:, 810:IC 783:. 636:pH 588:18 574:. 572:17 564:37 560:18 485:. 473:, 436:, 387:, 383:, 170:, 158:, 105:. 82:, 78:, 74:, 70:, 6101:e 6094:t 6087:v 5745:e 5738:t 5731:v 5599:" 5595:" 4766:e 4759:t 4752:v 4658:. 4634:: 4628:6 4607:. 4577:: 4569:: 4542:. 4514:: 4486:. 4458:: 4431:. 4399:: 4393:8 4371:. 4351:: 4327:. 4297:: 4270:. 4258:: 4231:. 4201:: 4174:. 4142:: 4136:9 4115:. 4083:: 4032:. 4002:: 3994:: 3986:: 3959:. 3940:. 3918:: 3895:. 3876:. 3864:: 3840:. 3828:: 3804:. 3792:: 3784:: 3760:. 3740:: 3717:. 3703:: 3676:. 3645:. 3615:: 3563:. 3557:: 3530:. 3518:: 3494:. 3470:: 3464:3 3443:. 3425:. 3392:. 3354:. 3342:: 3319:. 3307:: 3280:. 3258:: 3231:. 3219:: 3196:. 3184:: 3148:. 3134:: 3035:. 3015:: 2976:. 2946:: 2900:. 2872:: 2845:. 2801:: 2778:. 2758:: 2731:. 2701:: 2671:. 2651:: 2621:. 2591:: 2583:: 2556:. 2542:: 2521:. 2493:: 2485:: 2439:: 2397:: 2355:. 2351:: 2335:. 2308:. 2286:: 2259:. 2206:. 2181:. 2167:: 2127:. 2053:. 2049:: 2041:: 2015:. 1990:. 1927:. 1907:: 1880:. 1856:. 1826:: 1820:9 1799:. 1769:: 1723:: 1702:. 1672:: 1645:. 1620:. 1608:: 1584:. 1564:: 1537:) 1519:. 1501:. 1474:. 1133:1 1120:( 1112:N 1097:N 1055:c 1052:P 1033:0 1029:R 959:B 955:A 947:B 943:A 894:( 886:( 808:( 800:( 729:( 624:3 620:2 604:Ă— 600:J 596:Ă— 570:H 568:8 562:H 556:2 54:( 20:)

Index

High performance liquid chromatography


analytical chemistry
food
chemicals
pharmaceuticals
biological
environmental
agriculture
mobile phase
adsorbent material
stationary phase
detector
UV detectors
Chromatography
mass transfer
adsorption
partition
silica
buffers
acetonitrile
methanol
temperature
liquid chromatography
degasser
quantitative
UV-VIS
mass spectrum
photodiode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑