Knowledge

Hilbert class field

Source 📝

801:, which is a formal product of prime ideals (including, possibly, archimedean ones). The ray class field is the maximal abelian extension unramified outside the primes dividing the modulus and satisfying a particular ramification condition at the primes dividing the modulus. The Hilbert class field is then the ray class field with respect to the trivial modulus 290: 210: 851: 427: 886: 159: 332: 236: 364: 213: 1068: 953: 798: 937: 812:
is the ray class field with respect to the modulus consisting of all infinite primes. For example, the argument above shows that
241: 1056: 974: 429:
has class number 3. Its Hilbert class field can be formed by adjoining a root of x - x - 1, which has discriminant -23.
1108: 130: 171: 815: 518: 514: 394: 35: 856: 713: 664: 17: 970: 758: 547: 510: 136: 1048: 734: 638: 295: 1092: 790: 550:. The existence of the Hilbert class field is a valuable tool in studying the structure of the 1064: 949: 611: 551: 74: 66: 975:"Allgemeiner Existenzbeweis für den Klassenkörper eines beliebigen algebraischen Zahlkörpers" 1028: 994: 986: 941: 762: 1006: 963: 432:
To see why ramification at the archimedean primes must be taken into account, consider the
1060: 1002: 998: 959: 794: 651: 574: 436: 339: 218: 466:
admits finite abelian extensions of degree greater than 1 in which all finite primes of
754: 349: 101: 1102: 539: 623: 619: 93: 54: 28: 96:(the classical ideal theoretic interpretation) but also at the infinite places of 770: 671: 600: 433: 78: 1088: 1019:
Hilbert, David (1902) , "Über die Theorie der relativ-Abel'schen Zahlkörper",
945: 38: 1087:
This article incorporates material from Existence of Hilbert class field on
534:
The existence of a (narrow) Hilbert class field for a given number field
494:
there is ramification at the archimedean places: the real embeddings of
1033: 990: 446:. This field has class number 1 and discriminant 12, but the extension 470:
are unramified. This doesn't contradict the Hilbert class field of
1044:). See the Introduction chapter of the notes, especially p. 4. 1041: 1040:
J. S. Milne, Class Field Theory (Course notes available at
458:
of discriminant 9=3 is unramified at all prime ideals in
285:{\displaystyle L=\mathbb {Q} ({\sqrt {-3}},{\sqrt {5}})} 346:
has class number 2. Hence, its Hilbert class field is
859: 818: 737:
satisfying the first, second, and fourth properties.
397: 352: 298: 244: 221: 174: 139: 1053:
Advanced topics in the arithmetic of elliptic curves
498:extend to complex (rather than real) embeddings of 880: 845: 421: 358: 326: 284: 230: 204: 153: 478:itself: every proper finite abelian extension of 1093:Creative Commons Attribution/Share-Alike License 482:must ramify at some place, and in the extension 334:and so is an everywhere unramified extension of 521:at a generator for the ring of integers (as a 442:obtained by adjoining the square root of 3 to 205:{\displaystyle K=\mathbb {Q} ({\sqrt {-15}})} 8: 88:In this context, the Hilbert class field of 1079:Class field theory: From theory to practice 904: 846:{\displaystyle \mathbb {Q} ({\sqrt {3}},i)} 422:{\displaystyle \mathbb {Q} ({\sqrt {-23}})} 1032: 916: 881:{\displaystyle \mathbb {Q} ({\sqrt {3}})} 868: 861: 860: 858: 827: 820: 819: 817: 406: 399: 398: 396: 351: 318: 297: 272: 259: 252: 251: 243: 220: 189: 182: 181: 173: 147: 146: 138: 897: 543: 112:(rather than to a complex embedding of 381:this becomes the principal ideal ((1+ 7: 14: 517:is generated by the value of the 65:is canonically isomorphic to the 716:of in the ideal class group of 686:decomposes into the product of 513:, the Hilbert class field of an 781:gives the Hilbert class field. 338:, and it is abelian. Using the 165:is its own Hilbert class field. 108:extends to a real embedding of 1091:, which is licensed under the 875: 865: 840: 824: 566:also satisfies the following: 416: 403: 315: 305: 279: 256: 199: 186: 154:{\displaystyle K=\mathbb {Q} } 92:is not just unramified at the 1: 1057:Graduate Texts in Mathematics 853:is the narrow class field of 327:{\displaystyle 225=(-15)^{2}} 1059:, vol. 151, New York: 1042:http://www.jmilne.org/math/ 749:is imaginary quadratic and 366:. A non-principal ideal of 131:unique factorization domain 125:If the ring of integers of 49:equals the class number of 1125: 946:10.1007/978-0-387-72490-4 932:Childress, Nancy (2009), 519:elliptic modular function 515:imaginary quadratic field 797:with respect to a given 562:The Hilbert class field 665:principal ideal theorem 18:algebraic number theory 1077:Gras, Georges (2005), 882: 847: 759:complex multiplication 741:Explicit constructions 654:of the ring extension 511:complex multiplication 423: 360: 328: 286: 232: 206: 155: 979:Mathematische Annalen 883: 848: 769:, then adjoining the 558:Additional properties 424: 361: 329: 287: 233: 207: 156: 1081:, New York: Springer 1049:Silverman, Joseph H. 971:Furtwängler, Philipp 857: 816: 395: 350: 342:, one can show that 296: 242: 219: 172: 137: 45:. Its degree over 573:is a finite Galois 548:Philipp Furtwängler 538:was conjectured by 231:{\displaystyle -15} 133:, in particular if 22:Hilbert class field 1109:Class field theory 1034:10.1007/BF02415486 991:10.1007/BF01448421 934:Class field theory 915:Theorem II.4.1 of 878: 843: 810:narrow class field 793:, one studies the 791:class field theory 554:of a given field. 419: 356: 324: 282: 228: 202: 151: 75:Frobenius elements 1070:978-0-387-94325-1 955:978-0-387-72489-8 873: 832: 612:ideal class group 552:ideal class group 540:David Hilbert 509:By the theory of 414: 359:{\displaystyle L} 292:has discriminant 277: 267: 197: 100:. That is, every 67:ideal class group 1116: 1082: 1073: 1037: 1036: 1021:Acta Mathematica 1015: 1014: 1013: 966: 919: 913: 907: 905:Furtwängler 1906 902: 887: 885: 884: 879: 874: 869: 864: 852: 850: 849: 844: 833: 828: 823: 763:ring of integers 699:prime ideals in 546:) and proved by 428: 426: 425: 420: 415: 407: 402: 387: 386: 376: 375: 365: 363: 362: 357: 333: 331: 330: 325: 323: 322: 291: 289: 288: 283: 278: 273: 268: 260: 255: 237: 235: 234: 229: 211: 209: 208: 203: 198: 190: 185: 160: 158: 157: 152: 150: 1124: 1123: 1119: 1118: 1117: 1115: 1114: 1113: 1099: 1098: 1076: 1071: 1061:Springer-Verlag 1047: 1018: 1011: 1009: 969: 956: 931: 928: 923: 922: 914: 910: 903: 899: 894: 855: 854: 814: 813: 795:ray class field 787: 785:Generalizations 743: 724: 707: 694: 685: 662: 652:principal ideal 649: 598: 589: 560: 532: 437:quadratic field 393: 392: 384: 382: 373: 371: 348: 347: 340:Minkowski bound 314: 294: 293: 240: 239: 217: 216: 170: 169: 135: 134: 122: 36:maximal abelian 12: 11: 5: 1122: 1120: 1112: 1111: 1101: 1100: 1084: 1083: 1074: 1069: 1045: 1038: 1016: 967: 954: 927: 924: 921: 920: 917:Silverman 1994 908: 896: 895: 893: 890: 877: 872: 867: 863: 842: 839: 836: 831: 826: 822: 786: 783: 755:elliptic curve 742: 739: 733:is the unique 727: 726: 720: 703: 690: 681: 668: 658: 645: 635: 608: 594: 585: 559: 556: 531: 528: 527: 526: 507: 430: 418: 413: 410: 405: 401: 389: 355: 321: 317: 313: 310: 307: 304: 301: 281: 276: 271: 266: 263: 258: 254: 250: 247: 227: 224: 201: 196: 193: 188: 184: 180: 177: 166: 149: 145: 142: 121: 118: 102:real embedding 13: 10: 9: 6: 4: 3: 2: 1121: 1110: 1107: 1106: 1104: 1097: 1096: 1094: 1090: 1080: 1075: 1072: 1066: 1062: 1058: 1054: 1050: 1046: 1043: 1039: 1035: 1030: 1027:(1): 99–131, 1026: 1022: 1017: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 965: 961: 957: 951: 947: 943: 939: 935: 930: 929: 925: 918: 912: 909: 906: 901: 898: 891: 889: 870: 837: 834: 829: 811: 806: 804: 800: 796: 792: 784: 782: 780: 776: 772: 768: 764: 760: 756: 752: 748: 740: 738: 736: 732: 723: 719: 715: 711: 706: 702: 698: 693: 689: 684: 680: 676: 673: 669: 666: 661: 657: 653: 650:extends to a 648: 644: 640: 636: 633: 629: 625: 621: 617: 613: 609: 606: 602: 597: 593: 588: 584: 580: 576: 572: 569: 568: 567: 565: 557: 555: 553: 549: 545: 541: 537: 529: 524: 520: 516: 512: 508: 505: 501: 497: 493: 489: 485: 481: 477: 473: 469: 465: 461: 457: 453: 449: 445: 441: 438: 435: 431: 411: 408: 390: 380: 377:)/2), and in 369: 353: 345: 341: 337: 319: 311: 308: 302: 299: 274: 269: 264: 261: 248: 245: 225: 222: 215: 194: 191: 178: 175: 167: 164: 143: 140: 132: 128: 124: 123: 119: 117: 115: 111: 107: 103: 99: 95: 94:finite places 91: 86: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 41:extension of 40: 37: 33: 30: 26: 23: 19: 1086: 1085: 1078: 1052: 1024: 1020: 1010:, retrieved 982: 978: 936:, New York: 933: 911: 900: 809: 807: 802: 788: 778: 774: 766: 750: 746: 744: 730: 728: 721: 717: 709: 704: 700: 696: 691: 687: 682: 678: 674: 659: 655: 646: 642: 631: 627: 624:Galois group 615: 604: 601:class number 595: 591: 586: 582: 578: 570: 563: 561: 535: 533: 522: 503: 499: 495: 491: 487: 483: 479: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 378: 367: 343: 335: 238:. The field 214:discriminant 162: 126: 113: 109: 105: 97: 89: 87: 82: 79:prime ideals 70: 62: 58: 55:Galois group 50: 46: 42: 31: 29:number field 24: 21: 15: 985:(1): 1–37, 771:j-invariant 672:prime ideal 1089:PlanetMath 1012:2009-08-21 999:37.0243.02 926:References 620:isomorphic 391:The field 39:unramified 729:In fact, 575:extension 525:-module). 409:− 370:is (2,(1+ 309:− 262:− 223:− 192:− 1103:Category 1051:(1994), 973:(1906), 938:Springer 708:, where 590:, where 120:Examples 53:and the 1007:1511392 964:2462595 799:modulus 761:by the 712:is the 622:to the 599:is the 581:and = 542: ( 530:History 383:√ 372:√ 161:, then 34:is the 1067:  1005:  997:  962:  952:  753:is an 670:Every 637:Every 474:being 73:using 20:, the 892:Notes 757:with 735:field 714:order 639:ideal 630:over 462:, so 388:)/2). 129:is a 61:over 27:of a 1065:ISBN 950:ISBN 808:The 610:The 544:1902 434:real 168:Let 77:for 1029:doi 995:JFM 987:doi 942:doi 789:In 777:to 773:of 765:of 745:If 677:of 641:of 626:of 618:is 614:of 603:of 577:of 374:−15 300:225 212:of 116:). 104:of 81:in 69:of 57:of 16:In 1105:: 1063:, 1055:, 1025:26 1023:, 1003:MR 1001:, 993:, 983:63 981:, 977:, 960:MR 958:, 948:, 940:, 888:. 805:. 695:/ 667:). 506:). 490:)/ 454:)/ 412:23 312:15 226:15 195:15 85:. 1095:. 1031:: 989:: 944:: 876:) 871:3 866:( 862:Q 841:) 838:i 835:, 830:3 825:( 821:Q 803:1 779:K 775:A 767:K 751:A 747:K 731:E 725:. 722:K 718:O 710:f 705:E 701:O 697:f 692:K 688:h 683:K 679:O 675:P 663:( 660:E 656:O 647:K 643:O 634:. 632:K 628:E 616:K 607:. 605:K 596:K 592:h 587:K 583:h 579:K 571:E 564:E 536:K 523:Z 504:i 502:( 500:K 496:K 492:K 488:i 486:( 484:K 480:K 476:K 472:K 468:K 464:K 460:K 456:K 452:i 450:( 448:K 444:Q 440:K 417:) 404:( 400:Q 385:5 379:L 368:K 354:L 344:K 336:K 320:2 316:) 306:( 303:= 280:) 275:5 270:, 265:3 257:( 253:Q 249:= 246:L 200:) 187:( 183:Q 179:= 176:K 163:K 148:Q 144:= 141:K 127:K 114:E 110:E 106:K 98:K 90:K 83:K 71:K 63:K 59:E 51:K 47:K 43:K 32:K 25:E

Index

algebraic number theory
number field
maximal abelian
unramified
Galois group
ideal class group
Frobenius elements
prime ideals
finite places
real embedding
unique factorization domain
discriminant
Minkowski bound
real
quadratic field
complex multiplication
imaginary quadratic field
elliptic modular function
David Hilbert
1902
Philipp Furtwängler
ideal class group
extension
class number
ideal class group
isomorphic
Galois group
ideal
principal ideal
principal ideal theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.