Knowledge (XXG)

Hilbert series and Hilbert polynomial

Source 📝

7762: 7461: 4149: 7757:{\displaystyle 0\to {\mathcal {O}}_{\mathbb {P} ^{n}}(-d_{1}-d_{2}){\xrightarrow {\begin{bmatrix}f_{2}\\-f_{1}\end{bmatrix}}}{\mathcal {O}}_{\mathbb {P} ^{n}}(-d_{1})\oplus {\mathcal {O}}_{\mathbb {P} ^{n}}(-d_{2}){\xrightarrow {\begin{bmatrix}f_{1}&f_{2}\end{bmatrix}}}{\mathcal {O}}_{\mathbb {P} ^{n}}\to {\mathcal {O}}_{X}\to 0} 6205: 3932: 5186: 4861: 5808: 2195:
Thus, the graded algebras generated by elements of degree 1 are exactly, up to an isomorphism, the quotients of polynomial rings by homogeneous ideals. Therefore, the remainder of this article will be restricted to the quotients of polynomial rings by ideals.
5942: 1136: 980: 4364: 1785: 121:, as they are the easiest known way for computing the dimension and the degree of an algebraic variety defined by explicit polynomial equations. In addition, they provide useful invariants for families of algebraic varieties because a flat family 2643: 7040:
of the whole computation depends mainly on the regularity, which is the degree of the numerator of the Hilbert series. In fact the Gröbner basis may be computed by linear algebra over the polynomials of degree bounded by the regularity.
3154: 4144:{\displaystyle 0\longrightarrow \left(R/\langle h_{0},\ldots ,h_{k-1}\rangle \right)^{}{\stackrel {h_{k}}{\longrightarrow }}R/\langle h_{1},\ldots ,h_{k-1}\rangle \longrightarrow R/\langle h_{1},\ldots ,h_{k}\rangle \longrightarrow 0,} 7035:
Thus the computation of the Hilbert series is reduced, through the computation of a Gröbner basis, to the same problem for an ideal generated by monomials, which is usually much easier than the computation of the Gröbner basis. The
6875: 2266: 7388:
is equivalent to the category of graded-modules modulo a finite number of graded-pieces, we can use the results in the previous section to construct Hilbert polynomials of coherent sheaves. For example, a complete intersection
684: 1455: 6880:
These formulas may be viewed as a way for computing Hilbert series. This is rarely the case, as, with the known algorithms, the computation of the Hilbert series and the computation of a free resolution start from the same
5299: 5931: 6485: 7210: 501: 4482: 5682: 792: 6321: 2983: 4978: 2552: 5104: 4701: 3540: 367: 6754: 5606: 4772: 2801: 1257: 3430: 6200:{\displaystyle HS_{R_{k}}(t)={\frac {(1-t^{\delta _{1}})\cdots (1-t^{\delta _{k}})}{(1-t)^{n}}}={\frac {(1+t+\cdots +t^{\delta _{1}})\cdots (1+t+\cdots +t^{\delta _{k}})}{(1-t)^{n-k}}}\,.} 5690: 263: 7321: 3811:
In this section, one does not need irreducibility of algebraic sets nor primality of ideals. Also, as Hilbert series are not changed by extending the field of coefficients, the field
991: 6693: 2405: 2334: 5490: 3917: 1861: 1586: 840: 562: 3625: 1499: 7251: 4201: 1916: 1680: 7138: 7106: 4193: 3233: 1175: 7453: 7358: 151: 3729: 6618: 1664: 1625: 1533: 1326: 5388: 4569: 2563: 5333: 5092: 4734: 2876: 2184: 2133: 821: 299: 6579: 4764: 4603: 177: 6351: 5015: 4630: 4536: 4509: 3802: 3184: 2994: 1287: 4396: 2691: 6967: 6549: 5557: 7407: 7386: 5361: 5072: 3860: 2896: 6762: 3159:
The proof that the Hilbert series has this simple form is obtained by applying recursively the previous formula for the quotient by a non zero divisor (here
2219: 6901:). This section describes how the Hilbert series may be computed in the case of a quotient of a polynomial ring, filtered or graded by the total degree. 570: 1334: 5197: 7928: 7850: 5819: 7773: 6370: 7880: 7143: 408: 4408: 7842: 5611: 3319:
of degree one which is not a zero divisor (in fact almost all elements of degree one have this property). The Krull dimension of
710: 7037: 6259: 396: 107: 3636: 2904: 5181:{\displaystyle 0\longrightarrow R^{}{\stackrel {f}{\longrightarrow }}R\longrightarrow R/\langle f\rangle \longrightarrow 0,} 4872: 2452: 43:
are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.
5033: 4856:{\displaystyle 0\longrightarrow R_{1}{\stackrel {h_{d}-1}{\longrightarrow }}R_{1}\longrightarrow R_{0}\longrightarrow 0,} 4639: 3461: 7987: 310: 95: 7992: 6710: 5562: 2714: 1992: 6250: 5803:{\displaystyle 0\;\rightarrow \;R_{i-1}^{}\;{\xrightarrow {f_{i}}}\;R_{i-1}\;\rightarrow \;R_{i}\;\rightarrow \;0\,.} 3926:
homogeneous polynomials of degree one. The definition of a regular sequence implies the existence of exact sequences
1186: 3341: 7910: 7832: 7324: 7258: 219: 7271: 1131:{\displaystyle {\binom {n+\delta -1}{\delta -1}}={\frac {(n+\delta -1)(n+\delta -2)\cdots (n+1)}{(\delta -1)!}}} 6886: 3647: 3252:
zero if the maximal homogeneous ideal, that is the ideal generated by the homogeneous elements of degree 1, is
7950: 7045: 6623: 5047:. In fact, the multiplicity of a point is the number of occurrences of the corresponding maximal ideal in a 975:{\displaystyle HS_{S}(t)=P(t)\left(1+\delta t+\cdots +{\binom {n+\delta -1}{\delta -1}}t^{n}+\cdots \right)} 74: 4987:, and the fact that the Hilbert series of a graded algebra is also its Hilbert series as filtered algebra. 2345: 7914: 2277: 5449: 4359:{\displaystyle HS_{R/\langle h_{0},\ldots ,h_{d-1}\rangle }(t)=(1-t)^{d}\,HS_{R}(t)={\frac {P(t)}{1-t}},} 3876: 3640: 1802: 1780:{\displaystyle HP_{S}(n)={\frac {P(1)}{(\delta -1)!}}n^{\delta -1}+{\text{ terms of lower degree in }}n.} 1538: 521: 5436: 5405: 3587: 1463: 7223: 5420:
The usual BĂ©zout's theorem is easily deduced by starting from a hypersurface, and intersecting it with
2009:
Polynomial rings and their quotients by homogeneous ideals are typical graded algebras. Conversely, if
3639:
as the value at 1 of the numerator of the Hilbert series. This provides also a rather simple proof of
1883: 7217: 4633: 1922: 1142: 51: 7119: 7087: 4157: 3189: 1148: 7919: 7412: 205: 111: 70: 40: 20: 7334: 7945: 7073: 6981:
be the homogeneous ideal generated by the homogeneous parts of highest degree of the elements of
5048: 2638:{\displaystyle 0\;\rightarrow \;A^{}\;{\xrightarrow {f}}\;A\;\rightarrow \;A/f\rightarrow \;0\,,} 1977: 124: 118: 7807: 3660: 6584: 1925:, since the dimensions are integers, but the polynomial almost never has integer coefficients ( 1630: 1591: 1512: 1292: 7924: 7876: 7846: 7081: 7077: 7010: 6358: 5370: 4541: 3655: 3149:{\displaystyle HP_{R_{n}}(k)={{k+n-1} \choose {n-1}}={\frac {(k+1)\cdots (k+n-1)}{(n-1)!}}\,.} 59: 5318: 5077: 4706: 2813: 2154: 2070: 806: 271: 7955: 7868: 7053: 7049: 7002: 6882: 6554: 5440: 4739: 4578: 4484:
has Krull dimension one, and is the ring of regular functions of a projective algebraic set
3871: 3863: 3805: 2142: 1970: 704:
is generated by elements of degree 1 then the sum of the Hilbert series may be rewritten as
156: 55: 47: 7969: 7938: 7890: 6329: 4993: 4608: 4514: 4487: 3738: 3162: 1265: 7965: 7934: 7886: 6246: 4372: 3827: 3253: 3249: 2663: 824: 83:
The quotient by an ideal of a multivariate polynomial ring, filtered by the total degree.
77: 7030:
the filtered algebra R/I and the graded algebras R/H and R/G have the same Hilbert series
6911: 6493: 5501: 4538:
belongs to a regular sequence, none of these points belong to the hyperplane of equation
4511:
of dimension 0 consisting of a finite number of points, which may be multiple points. As
3578:
This formula for the Hilbert series implies that the degree of the Hilbert polynomial is
6889:
which is not higher than that the complexity of the computation of the free resolution.
6222:, and that its degree is the product of the degrees of the polynomials in the sequence. 5304:
Looking on the numerators this proves the following generalization of BĂ©zout's theorem:
7860: 7778: 7392: 7371: 7109: 6870:{\displaystyle HS_{L}(t)={\frac {t^{\delta _{1}}+\cdots +t^{\delta _{h}}}{(1-t)^{n}}}.} 5346: 5057: 3845: 2881: 2210: 196: 180: 36: 7981: 7960: 5018: 2261:{\displaystyle 0\;\rightarrow \;A\;\rightarrow \;B\;\rightarrow \;C\;\rightarrow \;0} 1933: 400: 103: 91: 2410:
This follows immediately from the same property for the dimension of vector spaces.
7014: 6237: 4572: 3438:, we get eventually an algebra of dimension 0 whose Hilbert series is a polynomial 2443: 679:{\displaystyle HS_{S}(t)={\frac {Q(t)}{\prod _{i=1}^{h}\left(1-t^{d_{i}}\right)}},} 1450:{\displaystyle HF_{S}(n)=\sum _{i=0}^{d}a_{i}{\binom {n-i+\delta -1}{\delta -1}}.} 7836: 7898: 7783: 7254: 7044:
The computation of Hilbert series and Hilbert polynomials are available in most
6551:
is a polynomial ring, and if one knows the degrees of the basis elements of the
6354: 5294:{\displaystyle HS_{R/\langle f\rangle }(t)=\left(1-t^{\delta }\right)HS_{R}(t).} 184: 7360:
the associated coherent sheaf the two definitions of Hilbert polynomial agree.
213:, which is finitely generated by elements of positive degree. This means that 7872: 7803: 7021:
the (homogeneous) ideal generated by the leading monomials of the elements of
1954:
is the minimal degree of the generators of the module, which may be negative.
87: 7906: 7867:, Graduate Texts in Mathematics, vol. 150, New York: Springer-Verlag, 7084:
while finitely generated graded modules correspond to coherent sheaves. If
6210:
This shows that the complete intersection defined by a regular sequence of
5443:. In this case, there is a simple explicit formula for the Hilbert series. 3838:
is the number of points of intersection, counted with multiplicities, of
117:
The Hilbert polynomial and Hilbert series are important in computational
6897:
The Hilbert polynomial is easily deducible from the Hilbert series (see
65:
The typical situations where these notions are used are the following:
3815:
is supposed, without loss of generality, to be algebraically closed.
7668: 7531: 7257:. The Euler characteristic in this case is a well-defined number by 5742: 2597: 5926:{\displaystyle HS_{R_{i}}(t)=(1-t^{\delta _{i}})HS_{R_{i-1}}(t)\,.} 3432:. Iterating this a number of times equal to the Krull dimension of 2271:
is an exact sequence of graded or filtered modules, then we have
6480:{\displaystyle HS_{M}(t)=\sum _{i=1}^{k}(-1)^{i-1}HS_{L_{i}}(t).} 2209:
Hilbert series and Hilbert polynomial are additive relatively to
7028:
The computation of the Hilbert series is based on the fact that
6885:, from which the Hilbert series may be directly computed with a 7368:
Since the category of coherent sheaves on a projective variety
834:
In this case the series expansion of this rational fraction is
7205:{\displaystyle p_{\mathcal {F}}(m)=\chi (X,{\mathcal {F}}(m))} 496:{\displaystyle HS_{S}(t)=\sum _{n=0}^{\infty }HF_{S}(n)t^{n}.} 4477:{\displaystyle R_{1}=R/\langle h_{0},\ldots ,h_{d-1}\rangle } 1932:
All these definitions may be extended to finitely generated
7737: 7711: 7624: 7579: 7474: 7296: 7229: 7185: 7153: 7125: 7093: 6695:
In fact, these formulas imply that, if a graded free module
5677:{\displaystyle R_{i}=R/\langle f_{1},\ldots ,f_{i}\rangle ,} 5054:
For proving BĂ©zout's theorem, one may proceed similarly. If
3650:
and the Hilbert series, consider a projective algebraic set
564:, then the sum of the Hilbert series is a rational fraction 399:
in the more general setting of graded vector spaces, is the
6581:
then the formulas of the preceding sections allow deducing
7865:
Commutative algebra. With a view toward algebraic geometry
2806:
Hilbert series and Hilbert polynomial of a polynomial ring
2151:
and this defines an isomorphism of graded algebra between
787:{\displaystyle HS_{S}(t)={\frac {P(t)}{(1-t)^{\delta }}},} 106:
series of an algebra or a module is a special case of the
7076:, graded rings generated by elements of degree 1 produce 6316:{\displaystyle 0\to L_{k}\to \cdots \to L_{1}\to M\to 0,} 4703:
as its ring of regular functions. The linear polynomial
2978:{\displaystyle HS_{R_{n}}(t)={\frac {1}{(1-t)^{n}}}\,.} 7673: 7536: 4973:{\displaystyle HS_{R_{0}}(t)=(1-t)HS_{R_{1}}(t)=P(t).} 2557:
It follows from the additivity on the exact sequence
153:
has the same Hilbert polynomial over any closed point
7464: 7415: 7395: 7374: 7337: 7274: 7226: 7146: 7122: 7090: 6914: 6765: 6713: 6626: 6587: 6557: 6496: 6373: 6332: 6262: 5945: 5822: 5693: 5614: 5565: 5504: 5452: 5373: 5349: 5321: 5200: 5107: 5080: 5060: 4996: 4875: 4775: 4742: 4709: 4642: 4611: 4581: 4544: 4517: 4490: 4411: 4375: 4204: 4160: 3935: 3879: 3848: 3741: 3663: 3646:
For showing the relationship between the degree of a
3590: 3464: 3344: 3192: 3165: 2997: 2907: 2884: 2816: 2717: 2666: 2566: 2547:{\displaystyle HS_{A/(f)}(t)=(1-t^{d})\,HS_{A}(t)\,.} 2455: 2348: 2280: 2222: 2157: 2073: 1886: 1805: 1683: 1633: 1594: 1541: 1515: 1466: 1337: 1295: 1268: 1189: 1151: 994: 843: 809: 713: 573: 524: 411: 313: 274: 222: 159: 127: 6898: 6893:
Computation of Hilbert series and Hilbert polynomial
94:. In this case the Hilbert polynomial is called the 4696:{\displaystyle R_{0}=R_{1}/\langle h_{d}-1\rangle } 3631:
Degree of a projective variety and BĂ©zout's theorem
3535:{\displaystyle HS_{A}(t)={\frac {P(t)}{(1-t)^{d}}}} 7756: 7447: 7401: 7380: 7352: 7315: 7245: 7204: 7132: 7100: 6961: 6869: 6748: 6687: 6612: 6573: 6543: 6479: 6345: 6315: 6199: 5925: 5802: 5676: 5600: 5551: 5484: 5393:In a more geometrical form, this may restated as: 5382: 5355: 5327: 5293: 5180: 5086: 5066: 5009: 4972: 4855: 4758: 4728: 4695: 4624: 4597: 4563: 4530: 4503: 4476: 4390: 4358: 4187: 4143: 3911: 3854: 3796: 3723: 3619: 3534: 3424: 3268:-vector space is finite and the Hilbert series of 3248:generated by homogeneous elements of degree 1 has 3227: 3178: 3148: 2977: 2890: 2870: 2795: 2685: 2637: 2546: 2399: 2328: 2260: 2178: 2127: 1910: 1855: 1779: 1658: 1619: 1580: 1527: 1493: 1449: 1320: 1281: 1251: 1169: 1130: 974: 815: 786: 678: 556: 495: 362:{\displaystyle HF_{S}:n\longmapsto \dim _{K}S_{n}} 361: 293: 257: 171: 145: 3068: 3033: 1588:This shows that there exists a unique polynomial 1438: 1397: 1033: 998: 945: 910: 7948:(1978), "Hilbert functions of graded algebras", 7264:This function is indeed a polynomial. For large 6749:{\displaystyle \delta _{1},\ldots ,\delta _{h},} 5601:{\displaystyle \delta _{1},\ldots ,\delta _{k}.} 2796:{\displaystyle HS_{A^{}}(t)=t^{d}\,HS_{A}(t)\,.} 5813:The additivity of Hilbert series implies thus 1252:{\displaystyle P(t)=\sum _{i=0}^{d}a_{i}t^{i},} 803:is a polynomial with integer coefficients, and 6364:The additivity of Hilbert series implies that 3425:{\displaystyle HS_{A/(f)}(t)=(1-t)\,HS_{A}(t)} 2067:defines an homomorphism of graded rings from 2015:is a graded algebra generated over the field 1627:with rational coefficients which is equal to 8: 7954:, vol. 28, no. 1, pp. 57–83, 5668: 5636: 5223: 5217: 5166: 5160: 4690: 4671: 4471: 4433: 4259: 4221: 4129: 4097: 4083: 4045: 3994: 3956: 3635:The Hilbert series allows us to compute the 3338:The additivity of Hilbert series shows that 3313:is positive, there is a homogeneous element 2693:is the graded module which is obtained from 1991:is defined as the Hilbert polynomial of the 1973:are those of the associated graded algebra. 5412:, then the degree of their intersection is 2988:It follows that the Hilbert polynomial is 695:is a polynomial with integer coefficients. 258:{\displaystyle S=\bigoplus _{i\geq 0}S_{i}} 7331:is a finitely generated graded module and 7316:{\displaystyle H^{0}(X,{\mathcal {F}}(m))} 5792: 5788: 5777: 5773: 5756: 5736: 5701: 5697: 5427:other hypersurfaces, one after the other. 4398:is the numerator of the Hilbert series of 2810:The Hilbert series of the polynomial ring 2627: 2612: 2608: 2604: 2591: 2574: 2570: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 179:. This is used in the construction of the 7959: 7918: 7742: 7736: 7735: 7723: 7719: 7718: 7716: 7710: 7709: 7692: 7680: 7663: 7654: 7636: 7632: 7631: 7629: 7623: 7622: 7609: 7591: 7587: 7586: 7584: 7578: 7577: 7560: 7543: 7526: 7517: 7504: 7486: 7482: 7481: 7479: 7473: 7472: 7463: 7436: 7423: 7414: 7394: 7373: 7339: 7338: 7336: 7295: 7294: 7279: 7273: 7228: 7227: 7225: 7184: 7183: 7152: 7151: 7145: 7124: 7123: 7121: 7092: 7091: 7089: 6950: 6931: 6913: 6855: 6829: 6824: 6803: 6798: 6791: 6773: 6764: 6737: 6718: 6712: 6676: 6655: 6634: 6625: 6595: 6586: 6562: 6556: 6532: 6513: 6495: 6457: 6452: 6433: 6414: 6403: 6381: 6372: 6337: 6331: 6292: 6273: 6261: 6253:, meaning there exists an exact sequence 6193: 6178: 6149: 6144: 6105: 6100: 6072: 6060: 6031: 6026: 5999: 5994: 5978: 5958: 5953: 5944: 5919: 5896: 5891: 5873: 5868: 5835: 5830: 5821: 5796: 5782: 5761: 5747: 5737: 5725: 5717: 5706: 5692: 5662: 5643: 5631: 5619: 5613: 5589: 5570: 5564: 5540: 5521: 5503: 5476: 5457: 5451: 5400:- If a projective hypersurface of degree 5372: 5348: 5339:, then the degree of the intersection of 5320: 5273: 5255: 5212: 5208: 5199: 5155: 5138: 5133: 5131: 5130: 5118: 5106: 5079: 5059: 5001: 4995: 4935: 4930: 4888: 4883: 4874: 4838: 4825: 4805: 4800: 4795: 4793: 4792: 4786: 4774: 4747: 4741: 4714: 4708: 4678: 4666: 4660: 4647: 4641: 4616: 4610: 4586: 4580: 4549: 4543: 4522: 4516: 4495: 4489: 4459: 4440: 4428: 4416: 4410: 4374: 4324: 4306: 4298: 4292: 4247: 4228: 4216: 4212: 4203: 4159: 4123: 4104: 4092: 4071: 4052: 4040: 4027: 4022: 4017: 4015: 4014: 4002: 3982: 3963: 3951: 3934: 3903: 3884: 3878: 3847: 3786: 3777: 3758: 3740: 3712: 3693: 3680: 3662: 3591: 3589: 3523: 3490: 3472: 3463: 3407: 3399: 3356: 3352: 3343: 3238:Shape of the Hilbert series and dimension 3221: 3200: 3191: 3170: 3164: 3142: 3077: 3067: 3055: 3038: 3032: 3030: 3010: 3005: 2996: 2971: 2962: 2940: 2920: 2915: 2906: 2883: 2859: 2840: 2821: 2815: 2789: 2774: 2766: 2760: 2730: 2725: 2716: 2671: 2665: 2631: 2616: 2592: 2579: 2565: 2540: 2525: 2517: 2508: 2467: 2463: 2454: 2388: 2372: 2356: 2347: 2320: 2304: 2288: 2279: 2221: 2168: 2162: 2156: 2116: 2097: 2078: 2072: 1942:, with the only difference that a factor 1885: 1838: 1813: 1804: 1766: 1751: 1709: 1691: 1682: 1641: 1632: 1602: 1593: 1552: 1546: 1540: 1514: 1465: 1437: 1396: 1394: 1388: 1378: 1367: 1345: 1336: 1303: 1294: 1273: 1267: 1240: 1230: 1220: 1209: 1188: 1150: 1042: 1032: 997: 995: 993: 955: 944: 909: 907: 851: 842: 808: 772: 739: 721: 712: 657: 652: 631: 620: 599: 581: 572: 548: 529: 523: 518:homogeneous elements of positive degrees 484: 465: 452: 441: 419: 410: 353: 340: 321: 312: 279: 273: 249: 233: 221: 158: 126: 5439:if its defining ideal is generated by a 4571:The complement of this hyperplane is an 7795: 5684:one has the following exact sequences 3654:, defined as the set of the zeros of a 3449:. This show that the Hilbert series of 1926: 7116:, we define the Hilbert polynomial of 6688:{\displaystyle HS_{R}(t)=1/(1-t)^{n}.} 5315:is a homogeneous polynomial of degree 5074:is a homogeneous polynomial of degree 3584:, and that its leading coefficient is 2705:, in order that the multiplication by 2045:of degree 1, then the map which sends 395:. The Hilbert series, which is called 3256:. This implies that the dimension of 2400:{\displaystyle HP_{B}=HP_{A}+HP_{C}.} 1948:appears in the Hilbert series, where 1670:large enough. This polynomial is the 16:Tool in mathematical dimension theory 7: 2329:{\displaystyle HS_{B}=HS_{A}+HS_{C}} 1768: terms of lower degree in  46:These notions have been extended to 5485:{\displaystyle f_{1},\ldots ,f_{k}} 5043:is the degree of the algebraic set 4985:Hilbert series of filtered algebras 4766:and one has thus an exact sequence 3912:{\displaystyle h_{0},\ldots ,h_{d}} 2005:Graded algebra and polynomial rings 1856:{\displaystyle HP_{S}(n)=HF_{S}(n)} 1581:{\displaystyle a_{i}/(\delta -1)!.} 557:{\displaystyle d_{1},\ldots ,d_{h}} 54:over these algebras, as well as to 7838:Algebraic Geometry, A First Course 7068:Generalization to coherent sheaves 3620:{\displaystyle {\frac {P(1)}{d!}}} 3037: 1494:{\displaystyle n\geq i-\delta +1,} 1401: 1002: 914: 453: 14: 7809:Foundations of Algebraic Geometry 7259:Grothendieck's finiteness theorem 7246:{\displaystyle {\mathcal {F}}(m)} 6216:polynomials has a codimension of 5343:with the hypersurface defined by 5335:, which is not a zero divisor in 5094:, which is not a zero divisor in 3866:. This implies the existence, in 7903:Computational Algebraic Geometry 6707:homogeneous elements of degrees 5435:A projective algebraic set is a 5363:is the product of the degree of 2711:has degree 0. This implies that 2430:a homogeneous element of degree 1911:{\displaystyle \deg P-\delta +1} 1505:in this sum is a polynomial in 191:Definitions and main properties 7774:Castelnuovo–Mumford regularity 7748: 7731: 7660: 7644: 7615: 7599: 7523: 7494: 7468: 7442: 7416: 7344: 7310: 7307: 7301: 7285: 7240: 7234: 7199: 7196: 7190: 7174: 7165: 7159: 7133:{\displaystyle {\mathcal {F}}} 7101:{\displaystyle {\mathcal {F}}} 6956: 6924: 6852: 6839: 6785: 6779: 6673: 6660: 6646: 6640: 6607: 6601: 6538: 6506: 6471: 6465: 6430: 6420: 6393: 6387: 6304: 6298: 6285: 6279: 6266: 6226:Relation with free resolutions 6175: 6162: 6157: 6119: 6113: 6075: 6057: 6044: 6039: 6013: 6007: 5981: 5972: 5966: 5916: 5910: 5881: 5855: 5849: 5843: 5789: 5774: 5731: 5718: 5698: 5546: 5514: 5408:of an algebraic set of degree 5285: 5279: 5234: 5228: 5169: 5149: 5134: 5125: 5119: 5111: 4964: 4958: 4949: 4943: 4920: 4908: 4902: 4896: 4844: 4831: 4796: 4779: 4385: 4379: 4336: 4330: 4318: 4312: 4289: 4276: 4270: 4264: 4188:{\displaystyle k=0,\ldots ,d.} 4132: 4086: 4018: 4009: 4003: 3939: 3783: 3751: 3718: 3673: 3637:degree of an algebraic variety 3603: 3597: 3520: 3507: 3502: 3496: 3484: 3478: 3419: 3413: 3396: 3384: 3378: 3372: 3367: 3361: 3228:{\displaystyle HS_{K}(t)=1\,.} 3212: 3206: 3133: 3121: 3116: 3098: 3092: 3080: 3024: 3018: 2959: 2946: 2934: 2928: 2865: 2833: 2786: 2780: 2750: 2744: 2737: 2731: 2678: 2672: 2624: 2609: 2586: 2580: 2571: 2537: 2531: 2514: 2495: 2489: 2483: 2478: 2472: 2414:Quotient by a non-zero divisor 2251: 2243: 2235: 2227: 2122: 2090: 1850: 1844: 1825: 1819: 1738: 1726: 1721: 1715: 1703: 1697: 1653: 1647: 1614: 1608: 1569: 1557: 1357: 1351: 1315: 1309: 1199: 1193: 1170:{\displaystyle n>-\delta ,} 1119: 1107: 1102: 1090: 1084: 1066: 1063: 1045: 878: 872: 863: 857: 769: 756: 751: 745: 733: 727: 611: 605: 593: 587: 477: 471: 431: 425: 333: 195:Consider a finitely generated 137: 69:The quotient by a homogeneous 1: 7448:{\displaystyle (d_{1},d_{2})} 5036:may be used for proving that 4984: 3292:is equal to the dimension of 80:, graded by the total degree. 7961:10.1016/0001-8708(78)90045-2 7353:{\displaystyle {\tilde {M}}} 6756:then its Hilbert series is 2200:Properties of Hilbert series 1976:The Hilbert polynomial of a 1921:The Hilbert polynomial is a 5498:homogeneous polynomials in 5025:-vector space of dimension 2699:by shifting the degrees by 1993:homogeneous coordinate ring 146:{\displaystyle \pi :X\to S} 8009: 7911:Cambridge University Press 7056:these functions are named 5936:A simple recursion gives 3724:{\displaystyle I\subset k} 3569:is the Krull dimension of 3329:is the Krull dimension of 3307:If the Krull dimension of 197:graded commutative algebra 39:finitely generated over a 37:graded commutative algebra 7873:10.1007/978-1-4612-5350-1 7325:Serre's vanishing theorem 7112:over a projective scheme 6969:be a polynomial ring and 6613:{\displaystyle HS_{M}(t)} 4736:is not a zero divisor in 3842:with the intersection of 2654:is the multiplication by 1659:{\displaystyle HF_{S}(n)} 1620:{\displaystyle HP_{S}(n)} 1535:with leading coefficient 1528:{\displaystyle \delta -1} 1321:{\displaystyle HS_{S}(t)} 96:Hilbert–Samuel polynomial 50:, and graded or filtered 7046:computer algebra systems 7038:computational complexity 6887:computational complexity 5559:, of respective degrees 5383:{\displaystyle \delta .} 4564:{\displaystyle h_{d}=0.} 3648:projective algebraic set 2648:where the arrow labeled 2424:be a graded algebra and 378:to the dimension of the 7951:Advances in Mathematics 7364:Graded free resolutions 7220:of coherent sheaf, and 5328:{\displaystyle \delta } 5087:{\displaystyle \delta } 4729:{\displaystyle h_{d}-1} 3630: 2871:{\displaystyle R_{n}=K} 2179:{\displaystyle R_{n}/I} 2145:is a homogeneous ideal 2128:{\displaystyle R_{n}=K} 1880:. It may be lower than 816:{\displaystyle \delta } 397:Hilbert–PoincarĂ© series 294:{\displaystyle S_{0}=K} 108:Hilbert–PoincarĂ© series 75:multivariate polynomial 7758: 7449: 7403: 7382: 7354: 7317: 7247: 7206: 7134: 7102: 7048:. For example in both 6963: 6871: 6750: 6689: 6614: 6575: 6574:{\displaystyle L_{i},} 6545: 6481: 6419: 6347: 6317: 6251:Hilbert syzygy theorem 6201: 5927: 5804: 5678: 5602: 5553: 5486: 5384: 5357: 5329: 5295: 5182: 5098:, the exact sequence 5088: 5068: 5011: 4974: 4857: 4760: 4759:{\displaystyle R_{1},} 4730: 4697: 4626: 4599: 4598:{\displaystyle V_{0}.} 4565: 4532: 4505: 4478: 4392: 4360: 4189: 4145: 3913: 3856: 3808:on the algebraic set. 3798: 3725: 3621: 3536: 3426: 3229: 3180: 3150: 2979: 2892: 2872: 2797: 2687: 2639: 2548: 2401: 2330: 2262: 2213:. More precisely, if 2180: 2129: 1912: 1857: 1781: 1660: 1621: 1582: 1529: 1495: 1451: 1383: 1322: 1283: 1253: 1225: 1171: 1132: 976: 817: 788: 680: 636: 558: 497: 457: 363: 295: 259: 173: 172:{\displaystyle s\in S} 147: 7759: 7450: 7404: 7383: 7355: 7318: 7248: 7207: 7135: 7103: 7017:partial ordering and 6989:is homogeneous, then 6964: 6872: 6751: 6690: 6615: 6576: 6546: 6482: 6399: 6357:, and the arrows are 6348: 6346:{\displaystyle L_{i}} 6318: 6202: 5928: 5805: 5679: 5603: 5554: 5487: 5437:complete intersection 5431:Complete intersection 5406:irreducible component 5404:does not contain any 5385: 5358: 5330: 5296: 5183: 5089: 5069: 5034:Jordan–Hölder theorem 5012: 5010:{\displaystyle R_{0}} 4975: 4858: 4761: 4731: 4698: 4627: 4625:{\displaystyle V_{0}} 4600: 4566: 4533: 4531:{\displaystyle h_{d}} 4506: 4504:{\displaystyle V_{0}} 4479: 4393: 4361: 4190: 4146: 3914: 3857: 3799: 3797:{\displaystyle R=k/I} 3726: 3622: 3545:where the polynomial 3537: 3427: 3230: 3186:) and remarking that 3181: 3179:{\displaystyle x_{n}} 3151: 2980: 2893: 2873: 2798: 2688: 2640: 2549: 2402: 2331: 2263: 2181: 2130: 2027:homogeneous elements 1913: 1858: 1782: 1661: 1622: 1583: 1530: 1496: 1452: 1363: 1323: 1284: 1282:{\displaystyle t^{n}} 1254: 1205: 1172: 1133: 977: 818: 789: 681: 616: 559: 498: 437: 364: 304:The Hilbert function 296: 260: 174: 148: 90:by the powers of its 7462: 7413: 7393: 7372: 7335: 7272: 7224: 7218:Euler characteristic 7144: 7120: 7088: 6912: 6763: 6711: 6624: 6585: 6555: 6494: 6371: 6330: 6260: 6230:Every graded module 5943: 5820: 5691: 5612: 5563: 5502: 5450: 5371: 5347: 5319: 5198: 5105: 5078: 5058: 4994: 4873: 4866:which implies that 4773: 4740: 4707: 4640: 4634:affine algebraic set 4609: 4579: 4542: 4515: 4488: 4409: 4391:{\displaystyle P(t)} 4373: 4202: 4158: 3933: 3877: 3846: 3834:, and the degree of 3739: 3735:is a field, and let 3661: 3588: 3462: 3342: 3190: 3163: 2995: 2905: 2882: 2814: 2715: 2686:{\displaystyle A^{}} 2664: 2564: 2453: 2346: 2278: 2220: 2155: 2071: 1923:numerical polynomial 1884: 1803: 1681: 1631: 1592: 1539: 1513: 1464: 1335: 1293: 1266: 1187: 1177:and is 0 otherwise. 1149: 1143:binomial coefficient 992: 841: 807: 711: 571: 522: 409: 311: 272: 220: 157: 125: 86:The filtration of a 7988:Commutative algebra 7705: 7573: 7455:has the resolution 7268:it agrees with dim 6962:{\displaystyle R=K} 6544:{\displaystyle R=k} 5753: 5735: 5552:{\displaystyle R=K} 4195:This implies that 3804:be the ring of the 2898:indeterminates is 2601: 1674:, and has the form 1262:the coefficient of 112:graded vector space 21:commutative algebra 7993:Algebraic geometry 7754: 7700: 7568: 7445: 7399: 7378: 7350: 7313: 7243: 7202: 7130: 7098: 7078:projective schemes 7074:algebraic geometry 6959: 6867: 6746: 6685: 6610: 6571: 6541: 6477: 6359:graded linear maps 6343: 6313: 6197: 5923: 5800: 5702: 5674: 5598: 5549: 5482: 5380: 5353: 5325: 5291: 5178: 5084: 5064: 5049:composition series 5007: 4983:Here we are using 4970: 4853: 4756: 4726: 4693: 4622: 4595: 4561: 4528: 4501: 4474: 4388: 4356: 4185: 4141: 3909: 3852: 3794: 3721: 3617: 3532: 3422: 3225: 3176: 3146: 2975: 2888: 2868: 2793: 2683: 2635: 2544: 2397: 2326: 2258: 2176: 2125: 1978:projective variety 1967:Hilbert polynomial 1908: 1878:Hilbert regularity 1853: 1777: 1672:Hilbert polynomial 1656: 1617: 1578: 1525: 1501:the term of index 1491: 1447: 1318: 1279: 1249: 1167: 1128: 972: 813: 784: 676: 554: 493: 359: 291: 255: 244: 169: 143: 119:algebraic geometry 60:projective schemes 29:Hilbert polynomial 7930:978-0-521-53650-9 7852:978-0-387-97716-4 7706: 7574: 7402:{\displaystyle X} 7381:{\displaystyle X} 7347: 7082:Proj construction 7062:HilbertPolynomial 7011:monomial ordering 6862: 6191: 6067: 5754: 5356:{\displaystyle f} 5143: 5067:{\displaystyle f} 4818: 4351: 4034: 3855:{\displaystyle d} 3806:regular functions 3656:homogeneous ideal 3615: 3530: 3242:A graded algebra 3140: 3066: 2969: 2891:{\displaystyle n} 2602: 1769: 1745: 1436: 1126: 1031: 943: 779: 671: 372:maps the integer 229: 48:filtered algebras 8000: 7972: 7963: 7946:Stanley, Richard 7941: 7922: 7893: 7856: 7843:Springer Science 7818: 7817:, Theorem 18.6.1 7816: 7814: 7800: 7763: 7761: 7760: 7755: 7747: 7746: 7741: 7740: 7730: 7729: 7728: 7727: 7722: 7715: 7714: 7707: 7704: 7697: 7696: 7685: 7684: 7664: 7659: 7658: 7643: 7642: 7641: 7640: 7635: 7628: 7627: 7614: 7613: 7598: 7597: 7596: 7595: 7590: 7583: 7582: 7575: 7572: 7565: 7564: 7548: 7547: 7527: 7522: 7521: 7509: 7508: 7493: 7492: 7491: 7490: 7485: 7478: 7477: 7454: 7452: 7451: 7446: 7441: 7440: 7428: 7427: 7409:of multi-degree 7408: 7406: 7405: 7400: 7387: 7385: 7384: 7379: 7359: 7357: 7356: 7351: 7349: 7348: 7340: 7322: 7320: 7319: 7314: 7300: 7299: 7284: 7283: 7252: 7250: 7249: 7244: 7233: 7232: 7211: 7209: 7208: 7203: 7189: 7188: 7158: 7157: 7156: 7139: 7137: 7136: 7131: 7129: 7128: 7107: 7105: 7104: 7099: 7097: 7096: 6968: 6966: 6965: 6960: 6955: 6954: 6936: 6935: 6876: 6874: 6873: 6868: 6863: 6861: 6860: 6859: 6837: 6836: 6835: 6834: 6833: 6810: 6809: 6808: 6807: 6792: 6778: 6777: 6755: 6753: 6752: 6747: 6742: 6741: 6723: 6722: 6706: 6700: 6694: 6692: 6691: 6686: 6681: 6680: 6659: 6639: 6638: 6619: 6617: 6616: 6611: 6600: 6599: 6580: 6578: 6577: 6572: 6567: 6566: 6550: 6548: 6547: 6542: 6537: 6536: 6518: 6517: 6486: 6484: 6483: 6478: 6464: 6463: 6462: 6461: 6444: 6443: 6418: 6413: 6386: 6385: 6361:of degree zero. 6352: 6350: 6349: 6344: 6342: 6341: 6322: 6320: 6319: 6314: 6297: 6296: 6278: 6277: 6244: 6235: 6221: 6215: 6206: 6204: 6203: 6198: 6192: 6190: 6189: 6188: 6160: 6156: 6155: 6154: 6153: 6112: 6111: 6110: 6109: 6073: 6068: 6066: 6065: 6064: 6042: 6038: 6037: 6036: 6035: 6006: 6005: 6004: 6003: 5979: 5965: 5964: 5963: 5962: 5932: 5930: 5929: 5924: 5909: 5908: 5907: 5906: 5880: 5879: 5878: 5877: 5842: 5841: 5840: 5839: 5809: 5807: 5806: 5801: 5787: 5786: 5772: 5771: 5755: 5752: 5751: 5738: 5734: 5730: 5729: 5716: 5683: 5681: 5680: 5675: 5667: 5666: 5648: 5647: 5635: 5624: 5623: 5607: 5605: 5604: 5599: 5594: 5593: 5575: 5574: 5558: 5556: 5555: 5550: 5545: 5544: 5526: 5525: 5497: 5491: 5489: 5488: 5483: 5481: 5480: 5462: 5461: 5441:regular sequence 5426: 5415: 5411: 5403: 5389: 5387: 5386: 5381: 5366: 5362: 5360: 5359: 5354: 5342: 5338: 5334: 5332: 5331: 5326: 5314: 5300: 5298: 5297: 5292: 5278: 5277: 5265: 5261: 5260: 5259: 5227: 5226: 5216: 5187: 5185: 5184: 5179: 5159: 5145: 5144: 5142: 5137: 5132: 5129: 5128: 5097: 5093: 5091: 5090: 5085: 5073: 5071: 5070: 5065: 5046: 5042: 5031: 5024: 5016: 5014: 5013: 5008: 5006: 5005: 4979: 4977: 4976: 4971: 4942: 4941: 4940: 4939: 4895: 4894: 4893: 4892: 4862: 4860: 4859: 4854: 4843: 4842: 4830: 4829: 4820: 4819: 4817: 4810: 4809: 4799: 4794: 4791: 4790: 4765: 4763: 4762: 4757: 4752: 4751: 4735: 4733: 4732: 4727: 4719: 4718: 4702: 4700: 4699: 4694: 4683: 4682: 4670: 4665: 4664: 4652: 4651: 4631: 4629: 4628: 4623: 4621: 4620: 4604: 4602: 4601: 4596: 4591: 4590: 4570: 4568: 4567: 4562: 4554: 4553: 4537: 4535: 4534: 4529: 4527: 4526: 4510: 4508: 4507: 4502: 4500: 4499: 4483: 4481: 4480: 4475: 4470: 4469: 4445: 4444: 4432: 4421: 4420: 4401: 4397: 4395: 4394: 4389: 4365: 4363: 4362: 4357: 4352: 4350: 4339: 4325: 4311: 4310: 4297: 4296: 4263: 4262: 4258: 4257: 4233: 4232: 4220: 4194: 4192: 4191: 4186: 4150: 4148: 4147: 4142: 4128: 4127: 4109: 4108: 4096: 4082: 4081: 4057: 4056: 4044: 4036: 4035: 4033: 4032: 4031: 4021: 4016: 4013: 4012: 4001: 3997: 3993: 3992: 3968: 3967: 3955: 3925: 3918: 3916: 3915: 3910: 3908: 3907: 3889: 3888: 3872:regular sequence 3869: 3864:general position 3861: 3859: 3858: 3853: 3841: 3837: 3833: 3826:is equal to the 3825: 3821: 3814: 3803: 3801: 3800: 3795: 3790: 3782: 3781: 3763: 3762: 3734: 3730: 3728: 3727: 3722: 3717: 3716: 3698: 3697: 3685: 3684: 3653: 3641:BĂ©zout's theorem 3626: 3624: 3623: 3618: 3616: 3614: 3606: 3592: 3583: 3574: 3568: 3562: 3555: 3541: 3539: 3538: 3533: 3531: 3529: 3528: 3527: 3505: 3491: 3477: 3476: 3454: 3448: 3437: 3431: 3429: 3428: 3423: 3412: 3411: 3371: 3370: 3360: 3334: 3328: 3318: 3312: 3303: 3297: 3291: 3284: 3274:is a polynomial 3273: 3267: 3261: 3247: 3234: 3232: 3231: 3226: 3205: 3204: 3185: 3183: 3182: 3177: 3175: 3174: 3155: 3153: 3152: 3147: 3141: 3139: 3119: 3078: 3073: 3072: 3071: 3065: 3054: 3036: 3017: 3016: 3015: 3014: 2984: 2982: 2981: 2976: 2970: 2968: 2967: 2966: 2941: 2927: 2926: 2925: 2924: 2897: 2895: 2894: 2889: 2877: 2875: 2874: 2869: 2864: 2863: 2845: 2844: 2826: 2825: 2802: 2800: 2799: 2794: 2779: 2778: 2765: 2764: 2743: 2742: 2741: 2740: 2710: 2704: 2698: 2692: 2690: 2689: 2684: 2682: 2681: 2659: 2653: 2644: 2642: 2641: 2636: 2620: 2603: 2593: 2590: 2589: 2553: 2551: 2550: 2545: 2530: 2529: 2513: 2512: 2482: 2481: 2471: 2446:. Then we have 2441: 2435: 2429: 2423: 2406: 2404: 2403: 2398: 2393: 2392: 2377: 2376: 2361: 2360: 2335: 2333: 2332: 2327: 2325: 2324: 2309: 2308: 2293: 2292: 2267: 2265: 2264: 2259: 2191: 2185: 2183: 2182: 2177: 2172: 2167: 2166: 2150: 2140: 2134: 2132: 2131: 2126: 2121: 2120: 2102: 2101: 2083: 2082: 2066: 2055: 2044: 2026: 2020: 2014: 2000: 1990: 1984: 1971:filtered algebra 1959:Hilbert function 1953: 1947: 1941: 1929:, pp. 41). 1917: 1915: 1914: 1909: 1875: 1862: 1860: 1859: 1854: 1843: 1842: 1818: 1817: 1798: 1786: 1784: 1783: 1778: 1770: 1767: 1762: 1761: 1746: 1744: 1724: 1710: 1696: 1695: 1669: 1665: 1663: 1662: 1657: 1646: 1645: 1626: 1624: 1623: 1618: 1607: 1606: 1587: 1585: 1584: 1579: 1556: 1551: 1550: 1534: 1532: 1531: 1526: 1508: 1504: 1500: 1498: 1497: 1492: 1456: 1454: 1453: 1448: 1443: 1442: 1441: 1435: 1424: 1400: 1393: 1392: 1382: 1377: 1350: 1349: 1327: 1325: 1324: 1319: 1308: 1307: 1288: 1286: 1285: 1280: 1278: 1277: 1258: 1256: 1255: 1250: 1245: 1244: 1235: 1234: 1224: 1219: 1176: 1174: 1173: 1168: 1137: 1135: 1134: 1129: 1127: 1125: 1105: 1043: 1038: 1037: 1036: 1030: 1019: 1001: 981: 979: 978: 973: 971: 967: 960: 959: 950: 949: 948: 942: 931: 913: 856: 855: 830: 822: 820: 819: 814: 802: 793: 791: 790: 785: 780: 778: 777: 776: 754: 740: 726: 725: 703: 694: 685: 683: 682: 677: 672: 670: 669: 665: 664: 663: 662: 661: 635: 630: 614: 600: 586: 585: 563: 561: 560: 555: 553: 552: 534: 533: 517: 512:is generated by 511: 502: 500: 499: 494: 489: 488: 470: 469: 456: 451: 424: 423: 394: 383: 377: 368: 366: 365: 360: 358: 357: 345: 344: 326: 325: 300: 298: 297: 292: 284: 283: 264: 262: 261: 256: 254: 253: 243: 212: 203: 178: 176: 175: 170: 152: 150: 149: 144: 56:coherent sheaves 25:Hilbert function 8008: 8007: 8003: 8002: 8001: 7999: 7998: 7997: 7978: 7977: 7976: 7944: 7931: 7897: 7883: 7861:Eisenbud, David 7859: 7853: 7831: 7827: 7822: 7821: 7812: 7802: 7801: 7797: 7792: 7770: 7734: 7717: 7708: 7699: 7698: 7688: 7686: 7676: 7669: 7650: 7630: 7621: 7605: 7585: 7576: 7567: 7566: 7556: 7550: 7549: 7539: 7532: 7513: 7500: 7480: 7471: 7460: 7459: 7432: 7419: 7411: 7410: 7391: 7390: 7370: 7369: 7366: 7333: 7332: 7275: 7270: 7269: 7222: 7221: 7147: 7142: 7141: 7118: 7117: 7086: 7085: 7070: 6973:be an ideal in 6946: 6927: 6910: 6909: 6895: 6851: 6838: 6825: 6820: 6799: 6794: 6793: 6769: 6761: 6760: 6733: 6714: 6709: 6708: 6702: 6701:has a basis of 6696: 6672: 6630: 6622: 6621: 6591: 6583: 6582: 6558: 6553: 6552: 6528: 6509: 6492: 6491: 6453: 6448: 6429: 6377: 6369: 6368: 6333: 6328: 6327: 6288: 6269: 6258: 6257: 6249:because of the 6247:free resolution 6240: 6231: 6228: 6217: 6211: 6174: 6161: 6145: 6140: 6101: 6096: 6074: 6056: 6043: 6027: 6022: 5995: 5990: 5980: 5954: 5949: 5941: 5940: 5892: 5887: 5869: 5864: 5831: 5826: 5818: 5817: 5778: 5757: 5743: 5721: 5689: 5688: 5658: 5639: 5615: 5610: 5609: 5585: 5566: 5561: 5560: 5536: 5517: 5500: 5499: 5493: 5472: 5453: 5448: 5447: 5433: 5421: 5413: 5409: 5401: 5369: 5368: 5364: 5345: 5344: 5340: 5336: 5317: 5316: 5312: 5269: 5251: 5244: 5240: 5204: 5196: 5195: 5114: 5103: 5102: 5095: 5076: 5075: 5056: 5055: 5044: 5037: 5026: 5022: 4997: 4992: 4991: 4931: 4926: 4884: 4879: 4871: 4870: 4834: 4821: 4801: 4782: 4771: 4770: 4743: 4738: 4737: 4710: 4705: 4704: 4674: 4656: 4643: 4638: 4637: 4612: 4607: 4606: 4582: 4577: 4576: 4545: 4540: 4539: 4518: 4513: 4512: 4491: 4486: 4485: 4455: 4436: 4412: 4407: 4406: 4399: 4371: 4370: 4340: 4326: 4302: 4288: 4243: 4224: 4208: 4200: 4199: 4156: 4155: 4119: 4100: 4067: 4048: 4023: 3978: 3959: 3947: 3943: 3942: 3931: 3930: 3920: 3899: 3880: 3875: 3874: 3867: 3862:hyperplanes in 3844: 3843: 3839: 3835: 3831: 3828:Krull dimension 3823: 3819: 3812: 3773: 3754: 3737: 3736: 3732: 3708: 3689: 3676: 3659: 3658: 3651: 3633: 3607: 3593: 3586: 3585: 3579: 3570: 3564: 3557: 3546: 3519: 3506: 3492: 3468: 3460: 3459: 3450: 3439: 3433: 3403: 3348: 3340: 3339: 3330: 3320: 3314: 3308: 3304:-vector space. 3299: 3293: 3286: 3275: 3269: 3263: 3257: 3250:Krull dimension 3243: 3240: 3196: 3188: 3187: 3166: 3161: 3160: 3120: 3079: 3031: 3006: 3001: 2993: 2992: 2958: 2945: 2916: 2911: 2903: 2902: 2880: 2879: 2855: 2836: 2817: 2812: 2811: 2808: 2770: 2756: 2726: 2721: 2713: 2712: 2706: 2700: 2694: 2667: 2662: 2661: 2655: 2649: 2575: 2562: 2561: 2521: 2504: 2459: 2451: 2450: 2442:which is not a 2437: 2431: 2425: 2419: 2416: 2384: 2368: 2352: 2344: 2343: 2316: 2300: 2284: 2276: 2275: 2218: 2217: 2211:exact sequences 2207: 2202: 2187: 2158: 2153: 2152: 2146: 2136: 2112: 2093: 2074: 2069: 2068: 2065: 2057: 2054: 2046: 2043: 2034: 2028: 2022: 2016: 2010: 2007: 1996: 1986: 1980: 1949: 1943: 1937: 1882: 1881: 1874: 1864: 1834: 1809: 1801: 1800: 1797: 1791: 1747: 1725: 1711: 1687: 1679: 1678: 1667: 1637: 1629: 1628: 1598: 1590: 1589: 1542: 1537: 1536: 1511: 1510: 1506: 1502: 1462: 1461: 1425: 1402: 1395: 1384: 1341: 1333: 1332: 1299: 1291: 1290: 1269: 1264: 1263: 1236: 1226: 1185: 1184: 1147: 1146: 1106: 1044: 1020: 1003: 996: 990: 989: 951: 932: 915: 908: 885: 881: 847: 839: 838: 828: 825:Krull dimension 805: 804: 798: 768: 755: 741: 717: 709: 708: 699: 690: 653: 648: 641: 637: 615: 601: 577: 569: 568: 544: 525: 520: 519: 513: 507: 480: 461: 415: 407: 406: 393: 385: 379: 373: 349: 336: 317: 309: 308: 275: 270: 269: 245: 218: 217: 208: 199: 193: 155: 154: 123: 122: 17: 12: 11: 5: 8006: 8004: 7996: 7995: 7990: 7980: 7979: 7975: 7974: 7942: 7929: 7920:10.1.1.57.7472 7895: 7881: 7857: 7851: 7828: 7826: 7823: 7820: 7819: 7794: 7793: 7791: 7788: 7787: 7786: 7781: 7779:Hilbert scheme 7776: 7769: 7766: 7765: 7764: 7753: 7750: 7745: 7739: 7733: 7726: 7721: 7713: 7703: 7695: 7691: 7687: 7683: 7679: 7675: 7674: 7672: 7667: 7662: 7657: 7653: 7649: 7646: 7639: 7634: 7626: 7620: 7617: 7612: 7608: 7604: 7601: 7594: 7589: 7581: 7571: 7563: 7559: 7555: 7552: 7551: 7546: 7542: 7538: 7537: 7535: 7530: 7525: 7520: 7516: 7512: 7507: 7503: 7499: 7496: 7489: 7484: 7476: 7470: 7467: 7444: 7439: 7435: 7431: 7426: 7422: 7418: 7398: 7377: 7365: 7362: 7346: 7343: 7312: 7309: 7306: 7303: 7298: 7293: 7290: 7287: 7282: 7278: 7242: 7239: 7236: 7231: 7201: 7198: 7195: 7192: 7187: 7182: 7179: 7176: 7173: 7170: 7167: 7164: 7161: 7155: 7150: 7140:as a function 7127: 7110:coherent sheaf 7095: 7069: 7066: 6997:. Finally let 6958: 6953: 6949: 6945: 6942: 6939: 6934: 6930: 6926: 6923: 6920: 6917: 6894: 6891: 6878: 6877: 6866: 6858: 6854: 6850: 6847: 6844: 6841: 6832: 6828: 6823: 6819: 6816: 6813: 6806: 6802: 6797: 6790: 6787: 6784: 6781: 6776: 6772: 6768: 6745: 6740: 6736: 6732: 6729: 6726: 6721: 6717: 6684: 6679: 6675: 6671: 6668: 6665: 6662: 6658: 6654: 6651: 6648: 6645: 6642: 6637: 6633: 6629: 6609: 6606: 6603: 6598: 6594: 6590: 6570: 6565: 6561: 6540: 6535: 6531: 6527: 6524: 6521: 6516: 6512: 6508: 6505: 6502: 6499: 6488: 6487: 6476: 6473: 6470: 6467: 6460: 6456: 6451: 6447: 6442: 6439: 6436: 6432: 6428: 6425: 6422: 6417: 6412: 6409: 6406: 6402: 6398: 6395: 6392: 6389: 6384: 6380: 6376: 6340: 6336: 6324: 6323: 6312: 6309: 6306: 6303: 6300: 6295: 6291: 6287: 6284: 6281: 6276: 6272: 6268: 6265: 6236:over a graded 6227: 6224: 6208: 6207: 6196: 6187: 6184: 6181: 6177: 6173: 6170: 6167: 6164: 6159: 6152: 6148: 6143: 6139: 6136: 6133: 6130: 6127: 6124: 6121: 6118: 6115: 6108: 6104: 6099: 6095: 6092: 6089: 6086: 6083: 6080: 6077: 6071: 6063: 6059: 6055: 6052: 6049: 6046: 6041: 6034: 6030: 6025: 6021: 6018: 6015: 6012: 6009: 6002: 5998: 5993: 5989: 5986: 5983: 5977: 5974: 5971: 5968: 5961: 5957: 5952: 5948: 5934: 5933: 5922: 5918: 5915: 5912: 5905: 5902: 5899: 5895: 5890: 5886: 5883: 5876: 5872: 5867: 5863: 5860: 5857: 5854: 5851: 5848: 5845: 5838: 5834: 5829: 5825: 5811: 5810: 5799: 5795: 5791: 5785: 5781: 5776: 5770: 5767: 5764: 5760: 5750: 5746: 5741: 5733: 5728: 5724: 5720: 5715: 5712: 5709: 5705: 5700: 5696: 5673: 5670: 5665: 5661: 5657: 5654: 5651: 5646: 5642: 5638: 5634: 5630: 5627: 5622: 5618: 5597: 5592: 5588: 5584: 5581: 5578: 5573: 5569: 5548: 5543: 5539: 5535: 5532: 5529: 5524: 5520: 5516: 5513: 5510: 5507: 5479: 5475: 5471: 5468: 5465: 5460: 5456: 5432: 5429: 5418: 5417: 5391: 5390: 5379: 5376: 5352: 5324: 5302: 5301: 5290: 5287: 5284: 5281: 5276: 5272: 5268: 5264: 5258: 5254: 5250: 5247: 5243: 5239: 5236: 5233: 5230: 5225: 5222: 5219: 5215: 5211: 5207: 5203: 5189: 5188: 5177: 5174: 5171: 5168: 5165: 5162: 5158: 5154: 5151: 5148: 5141: 5136: 5127: 5124: 5121: 5117: 5113: 5110: 5083: 5063: 5004: 5000: 4981: 4980: 4969: 4966: 4963: 4960: 4957: 4954: 4951: 4948: 4945: 4938: 4934: 4929: 4925: 4922: 4919: 4916: 4913: 4910: 4907: 4904: 4901: 4898: 4891: 4887: 4882: 4878: 4864: 4863: 4852: 4849: 4846: 4841: 4837: 4833: 4828: 4824: 4816: 4813: 4808: 4804: 4798: 4789: 4785: 4781: 4778: 4755: 4750: 4746: 4725: 4722: 4717: 4713: 4692: 4689: 4686: 4681: 4677: 4673: 4669: 4663: 4659: 4655: 4650: 4646: 4619: 4615: 4594: 4589: 4585: 4575:that contains 4560: 4557: 4552: 4548: 4525: 4521: 4498: 4494: 4473: 4468: 4465: 4462: 4458: 4454: 4451: 4448: 4443: 4439: 4435: 4431: 4427: 4424: 4419: 4415: 4387: 4384: 4381: 4378: 4367: 4366: 4355: 4349: 4346: 4343: 4338: 4335: 4332: 4329: 4323: 4320: 4317: 4314: 4309: 4305: 4301: 4295: 4291: 4287: 4284: 4281: 4278: 4275: 4272: 4269: 4266: 4261: 4256: 4253: 4250: 4246: 4242: 4239: 4236: 4231: 4227: 4223: 4219: 4215: 4211: 4207: 4184: 4181: 4178: 4175: 4172: 4169: 4166: 4163: 4152: 4151: 4140: 4137: 4134: 4131: 4126: 4122: 4118: 4115: 4112: 4107: 4103: 4099: 4095: 4091: 4088: 4085: 4080: 4077: 4074: 4070: 4066: 4063: 4060: 4055: 4051: 4047: 4043: 4039: 4030: 4026: 4020: 4011: 4008: 4005: 4000: 3996: 3991: 3988: 3985: 3981: 3977: 3974: 3971: 3966: 3962: 3958: 3954: 3950: 3946: 3941: 3938: 3906: 3902: 3898: 3895: 3892: 3887: 3883: 3851: 3818:The dimension 3793: 3789: 3785: 3780: 3776: 3772: 3769: 3766: 3761: 3757: 3753: 3750: 3747: 3744: 3720: 3715: 3711: 3707: 3704: 3701: 3696: 3692: 3688: 3683: 3679: 3675: 3672: 3669: 3666: 3632: 3629: 3613: 3610: 3605: 3602: 3599: 3596: 3543: 3542: 3526: 3522: 3518: 3515: 3512: 3509: 3504: 3501: 3498: 3495: 3489: 3486: 3483: 3480: 3475: 3471: 3467: 3421: 3418: 3415: 3410: 3406: 3402: 3398: 3395: 3392: 3389: 3386: 3383: 3380: 3377: 3374: 3369: 3366: 3363: 3359: 3355: 3351: 3347: 3239: 3236: 3224: 3220: 3217: 3214: 3211: 3208: 3203: 3199: 3195: 3173: 3169: 3157: 3156: 3145: 3138: 3135: 3132: 3129: 3126: 3123: 3118: 3115: 3112: 3109: 3106: 3103: 3100: 3097: 3094: 3091: 3088: 3085: 3082: 3076: 3070: 3064: 3061: 3058: 3053: 3050: 3047: 3044: 3041: 3035: 3029: 3026: 3023: 3020: 3013: 3009: 3004: 3000: 2986: 2985: 2974: 2965: 2961: 2957: 2954: 2951: 2948: 2944: 2939: 2936: 2933: 2930: 2923: 2919: 2914: 2910: 2887: 2867: 2862: 2858: 2854: 2851: 2848: 2843: 2839: 2835: 2832: 2829: 2824: 2820: 2807: 2804: 2792: 2788: 2785: 2782: 2777: 2773: 2769: 2763: 2759: 2755: 2752: 2749: 2746: 2739: 2736: 2733: 2729: 2724: 2720: 2680: 2677: 2674: 2670: 2646: 2645: 2634: 2630: 2626: 2623: 2619: 2615: 2611: 2607: 2600: 2596: 2588: 2585: 2582: 2578: 2573: 2569: 2555: 2554: 2543: 2539: 2536: 2533: 2528: 2524: 2520: 2516: 2511: 2507: 2503: 2500: 2497: 2494: 2491: 2488: 2485: 2480: 2477: 2474: 2470: 2466: 2462: 2458: 2415: 2412: 2408: 2407: 2396: 2391: 2387: 2383: 2380: 2375: 2371: 2367: 2364: 2359: 2355: 2351: 2337: 2336: 2323: 2319: 2315: 2312: 2307: 2303: 2299: 2296: 2291: 2287: 2283: 2269: 2268: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2206: 2203: 2201: 2198: 2175: 2171: 2165: 2161: 2124: 2119: 2115: 2111: 2108: 2105: 2100: 2096: 2092: 2089: 2086: 2081: 2077: 2061: 2050: 2039: 2032: 2006: 2003: 1963:Hilbert series 1934:graded modules 1907: 1904: 1901: 1898: 1895: 1892: 1889: 1876:is called the 1872: 1852: 1849: 1846: 1841: 1837: 1833: 1830: 1827: 1824: 1821: 1816: 1812: 1808: 1795: 1788: 1787: 1776: 1773: 1765: 1760: 1757: 1754: 1750: 1743: 1740: 1737: 1734: 1731: 1728: 1723: 1720: 1717: 1714: 1708: 1705: 1702: 1699: 1694: 1690: 1686: 1655: 1652: 1649: 1644: 1640: 1636: 1616: 1613: 1610: 1605: 1601: 1597: 1577: 1574: 1571: 1568: 1565: 1562: 1559: 1555: 1549: 1545: 1524: 1521: 1518: 1490: 1487: 1484: 1481: 1478: 1475: 1472: 1469: 1458: 1457: 1446: 1440: 1434: 1431: 1428: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1399: 1391: 1387: 1381: 1376: 1373: 1370: 1366: 1362: 1359: 1356: 1353: 1348: 1344: 1340: 1317: 1314: 1311: 1306: 1302: 1298: 1276: 1272: 1260: 1259: 1248: 1243: 1239: 1233: 1229: 1223: 1218: 1215: 1212: 1208: 1204: 1201: 1198: 1195: 1192: 1166: 1163: 1160: 1157: 1154: 1139: 1138: 1124: 1121: 1118: 1115: 1112: 1109: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1050: 1047: 1041: 1035: 1029: 1026: 1023: 1018: 1015: 1012: 1009: 1006: 1000: 983: 982: 970: 966: 963: 958: 954: 947: 941: 938: 935: 930: 927: 924: 921: 918: 912: 906: 903: 900: 897: 894: 891: 888: 884: 880: 877: 874: 871: 868: 865: 862: 859: 854: 850: 846: 812: 795: 794: 783: 775: 771: 767: 764: 761: 758: 753: 750: 747: 744: 738: 735: 732: 729: 724: 720: 716: 687: 686: 675: 668: 660: 656: 651: 647: 644: 640: 634: 629: 626: 623: 619: 613: 610: 607: 604: 598: 595: 592: 589: 584: 580: 576: 551: 547: 543: 540: 537: 532: 528: 504: 503: 492: 487: 483: 479: 476: 473: 468: 464: 460: 455: 450: 447: 444: 440: 436: 433: 430: 427: 422: 418: 414: 389: 384:-vector space 370: 369: 356: 352: 348: 343: 339: 335: 332: 329: 324: 320: 316: 290: 287: 282: 278: 266: 265: 252: 248: 242: 239: 236: 232: 228: 225: 192: 189: 181:Hilbert scheme 168: 165: 162: 142: 139: 136: 133: 130: 100: 99: 84: 81: 33:Hilbert series 15: 13: 10: 9: 6: 4: 3: 2: 8005: 7994: 7991: 7989: 7986: 7985: 7983: 7971: 7967: 7962: 7957: 7953: 7952: 7947: 7943: 7940: 7936: 7932: 7926: 7921: 7916: 7912: 7908: 7904: 7900: 7896: 7892: 7888: 7884: 7882:0-387-94268-8 7878: 7874: 7870: 7866: 7862: 7858: 7854: 7848: 7844: 7840: 7839: 7834: 7830: 7829: 7824: 7811: 7810: 7805: 7799: 7796: 7789: 7785: 7782: 7780: 7777: 7775: 7772: 7771: 7767: 7751: 7743: 7724: 7701: 7693: 7689: 7681: 7677: 7670: 7665: 7655: 7651: 7647: 7637: 7618: 7610: 7606: 7602: 7592: 7569: 7561: 7557: 7553: 7544: 7540: 7533: 7528: 7518: 7514: 7510: 7505: 7501: 7497: 7487: 7465: 7458: 7457: 7456: 7437: 7433: 7429: 7424: 7420: 7396: 7375: 7363: 7361: 7341: 7330: 7326: 7304: 7291: 7288: 7280: 7276: 7267: 7262: 7260: 7256: 7237: 7219: 7215: 7193: 7180: 7177: 7171: 7168: 7162: 7148: 7115: 7111: 7083: 7079: 7075: 7067: 7065: 7063: 7059: 7058:HilbertSeries 7055: 7051: 7047: 7042: 7039: 7033: 7031: 7026: 7024: 7020: 7016: 7013:refining the 7012: 7008: 7004: 7003:Gröbner basis 7000: 6996: 6992: 6988: 6984: 6980: 6976: 6972: 6951: 6947: 6943: 6940: 6937: 6932: 6928: 6921: 6918: 6915: 6907: 6902: 6900: 6892: 6890: 6888: 6884: 6883:Gröbner basis 6864: 6856: 6848: 6845: 6842: 6830: 6826: 6821: 6817: 6814: 6811: 6804: 6800: 6795: 6788: 6782: 6774: 6770: 6766: 6759: 6758: 6757: 6743: 6738: 6734: 6730: 6727: 6724: 6719: 6715: 6705: 6699: 6682: 6677: 6669: 6666: 6663: 6656: 6652: 6649: 6643: 6635: 6631: 6627: 6604: 6596: 6592: 6588: 6568: 6563: 6559: 6533: 6529: 6525: 6522: 6519: 6514: 6510: 6503: 6500: 6497: 6474: 6468: 6458: 6454: 6449: 6445: 6440: 6437: 6434: 6426: 6423: 6415: 6410: 6407: 6404: 6400: 6396: 6390: 6382: 6378: 6374: 6367: 6366: 6365: 6362: 6360: 6356: 6338: 6334: 6310: 6307: 6301: 6293: 6289: 6282: 6274: 6270: 6263: 6256: 6255: 6254: 6252: 6248: 6245:has a graded 6243: 6239: 6234: 6225: 6223: 6220: 6214: 6194: 6185: 6182: 6179: 6171: 6168: 6165: 6150: 6146: 6141: 6137: 6134: 6131: 6128: 6125: 6122: 6116: 6106: 6102: 6097: 6093: 6090: 6087: 6084: 6081: 6078: 6069: 6061: 6053: 6050: 6047: 6032: 6028: 6023: 6019: 6016: 6010: 6000: 5996: 5991: 5987: 5984: 5975: 5969: 5959: 5955: 5950: 5946: 5939: 5938: 5937: 5920: 5913: 5903: 5900: 5897: 5893: 5888: 5884: 5874: 5870: 5865: 5861: 5858: 5852: 5846: 5836: 5832: 5827: 5823: 5816: 5815: 5814: 5797: 5793: 5783: 5779: 5768: 5765: 5762: 5758: 5748: 5744: 5739: 5726: 5722: 5713: 5710: 5707: 5703: 5694: 5687: 5686: 5685: 5671: 5663: 5659: 5655: 5652: 5649: 5644: 5640: 5632: 5628: 5625: 5620: 5616: 5595: 5590: 5586: 5582: 5579: 5576: 5571: 5567: 5541: 5537: 5533: 5530: 5527: 5522: 5518: 5511: 5508: 5505: 5496: 5477: 5473: 5469: 5466: 5463: 5458: 5454: 5444: 5442: 5438: 5430: 5428: 5424: 5407: 5399: 5396: 5395: 5394: 5377: 5374: 5350: 5322: 5310: 5307: 5306: 5305: 5288: 5282: 5274: 5270: 5266: 5262: 5256: 5252: 5248: 5245: 5241: 5237: 5231: 5220: 5213: 5209: 5205: 5201: 5194: 5193: 5192: 5175: 5172: 5163: 5156: 5152: 5146: 5139: 5122: 5115: 5108: 5101: 5100: 5099: 5081: 5061: 5052: 5050: 5040: 5035: 5029: 5021:, which is a 5020: 5019:Artinian ring 5002: 4998: 4988: 4986: 4967: 4961: 4955: 4952: 4946: 4936: 4932: 4927: 4923: 4917: 4914: 4911: 4905: 4899: 4889: 4885: 4880: 4876: 4869: 4868: 4867: 4850: 4847: 4839: 4835: 4826: 4822: 4814: 4811: 4806: 4802: 4787: 4783: 4776: 4769: 4768: 4767: 4753: 4748: 4744: 4723: 4720: 4715: 4711: 4687: 4684: 4679: 4675: 4667: 4661: 4657: 4653: 4648: 4644: 4635: 4617: 4613: 4592: 4587: 4583: 4574: 4558: 4555: 4550: 4546: 4523: 4519: 4496: 4492: 4466: 4463: 4460: 4456: 4452: 4449: 4446: 4441: 4437: 4429: 4425: 4422: 4417: 4413: 4403: 4382: 4376: 4353: 4347: 4344: 4341: 4333: 4327: 4321: 4315: 4307: 4303: 4299: 4293: 4285: 4282: 4279: 4273: 4267: 4254: 4251: 4248: 4244: 4240: 4237: 4234: 4229: 4225: 4217: 4213: 4209: 4205: 4198: 4197: 4196: 4182: 4179: 4176: 4173: 4170: 4167: 4164: 4161: 4138: 4135: 4124: 4120: 4116: 4113: 4110: 4105: 4101: 4093: 4089: 4078: 4075: 4072: 4068: 4064: 4061: 4058: 4053: 4049: 4041: 4037: 4028: 4024: 4006: 3998: 3989: 3986: 3983: 3979: 3975: 3972: 3969: 3964: 3960: 3952: 3948: 3944: 3936: 3929: 3928: 3927: 3923: 3904: 3900: 3896: 3893: 3890: 3885: 3881: 3873: 3865: 3849: 3830:minus one of 3829: 3816: 3809: 3807: 3791: 3787: 3778: 3774: 3770: 3767: 3764: 3759: 3755: 3748: 3745: 3742: 3713: 3709: 3705: 3702: 3699: 3694: 3690: 3686: 3681: 3677: 3670: 3667: 3664: 3657: 3649: 3644: 3642: 3638: 3628: 3611: 3608: 3600: 3594: 3582: 3576: 3573: 3567: 3560: 3556:is such that 3553: 3549: 3524: 3516: 3513: 3510: 3499: 3493: 3487: 3481: 3473: 3469: 3465: 3458: 3457: 3456: 3453: 3446: 3442: 3436: 3416: 3408: 3404: 3400: 3393: 3390: 3387: 3381: 3375: 3364: 3357: 3353: 3349: 3345: 3336: 3333: 3327: 3323: 3317: 3311: 3305: 3302: 3296: 3289: 3282: 3278: 3272: 3266: 3260: 3255: 3251: 3246: 3237: 3235: 3222: 3218: 3215: 3209: 3201: 3197: 3193: 3171: 3167: 3143: 3136: 3130: 3127: 3124: 3113: 3110: 3107: 3104: 3101: 3095: 3089: 3086: 3083: 3074: 3062: 3059: 3056: 3051: 3048: 3045: 3042: 3039: 3027: 3021: 3011: 3007: 3002: 2998: 2991: 2990: 2989: 2972: 2963: 2955: 2952: 2949: 2942: 2937: 2931: 2921: 2917: 2912: 2908: 2901: 2900: 2899: 2885: 2860: 2856: 2852: 2849: 2846: 2841: 2837: 2830: 2827: 2822: 2818: 2805: 2803: 2790: 2783: 2775: 2771: 2767: 2761: 2757: 2753: 2747: 2734: 2727: 2722: 2718: 2709: 2703: 2697: 2675: 2668: 2658: 2652: 2632: 2628: 2621: 2617: 2613: 2605: 2598: 2594: 2583: 2576: 2567: 2560: 2559: 2558: 2541: 2534: 2526: 2522: 2518: 2509: 2505: 2501: 2498: 2492: 2486: 2475: 2468: 2464: 2460: 2456: 2449: 2448: 2447: 2445: 2440: 2434: 2428: 2422: 2413: 2411: 2394: 2389: 2385: 2381: 2378: 2373: 2369: 2365: 2362: 2357: 2353: 2349: 2342: 2341: 2340: 2321: 2317: 2313: 2310: 2305: 2301: 2297: 2294: 2289: 2285: 2281: 2274: 2273: 2272: 2255: 2247: 2239: 2231: 2223: 2216: 2215: 2214: 2212: 2204: 2199: 2197: 2193: 2190: 2173: 2169: 2163: 2159: 2149: 2144: 2139: 2117: 2113: 2109: 2106: 2103: 2098: 2094: 2087: 2084: 2079: 2075: 2064: 2060: 2053: 2049: 2042: 2038: 2031: 2025: 2019: 2013: 2004: 2002: 1999: 1994: 1989: 1983: 1979: 1974: 1972: 1968: 1964: 1960: 1955: 1952: 1946: 1940: 1935: 1930: 1928: 1924: 1919: 1905: 1902: 1899: 1896: 1893: 1890: 1887: 1879: 1871: 1867: 1847: 1839: 1835: 1831: 1828: 1822: 1814: 1810: 1806: 1794: 1774: 1771: 1763: 1758: 1755: 1752: 1748: 1741: 1735: 1732: 1729: 1718: 1712: 1706: 1700: 1692: 1688: 1684: 1677: 1676: 1675: 1673: 1650: 1642: 1638: 1634: 1611: 1603: 1599: 1595: 1575: 1572: 1566: 1563: 1560: 1553: 1547: 1543: 1522: 1519: 1516: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1467: 1444: 1432: 1429: 1426: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1389: 1385: 1379: 1374: 1371: 1368: 1364: 1360: 1354: 1346: 1342: 1338: 1331: 1330: 1329: 1312: 1304: 1300: 1296: 1274: 1270: 1246: 1241: 1237: 1231: 1227: 1221: 1216: 1213: 1210: 1206: 1202: 1196: 1190: 1183: 1182: 1181: 1178: 1164: 1161: 1158: 1155: 1152: 1144: 1122: 1116: 1113: 1110: 1099: 1096: 1093: 1087: 1081: 1078: 1075: 1072: 1069: 1060: 1057: 1054: 1051: 1048: 1039: 1027: 1024: 1021: 1016: 1013: 1010: 1007: 1004: 988: 987: 986: 968: 964: 961: 956: 952: 939: 936: 933: 928: 925: 922: 919: 916: 904: 901: 898: 895: 892: 889: 886: 882: 875: 869: 866: 860: 852: 848: 844: 837: 836: 835: 832: 826: 810: 801: 781: 773: 765: 762: 759: 748: 742: 736: 730: 722: 718: 714: 707: 706: 705: 702: 696: 693: 673: 666: 658: 654: 649: 645: 642: 638: 632: 627: 624: 621: 617: 608: 602: 596: 590: 582: 578: 574: 567: 566: 565: 549: 545: 541: 538: 535: 530: 526: 516: 510: 490: 485: 481: 474: 466: 462: 458: 448: 445: 442: 438: 434: 428: 420: 416: 412: 405: 404: 403: 402: 401:formal series 398: 392: 388: 382: 376: 354: 350: 346: 341: 337: 330: 327: 322: 318: 314: 307: 306: 305: 302: 288: 285: 280: 276: 250: 246: 240: 237: 234: 230: 226: 223: 216: 215: 214: 211: 207: 202: 198: 190: 188: 186: 182: 166: 163: 160: 140: 134: 131: 128: 120: 115: 113: 109: 105: 97: 93: 92:maximal ideal 89: 85: 82: 79: 76: 72: 68: 67: 66: 63: 61: 57: 53: 49: 44: 42: 38: 34: 30: 26: 22: 7949: 7902: 7899:Schenck, Hal 7864: 7837: 7808: 7798: 7367: 7328: 7265: 7263: 7213: 7113: 7071: 7061: 7057: 7043: 7034: 7029: 7027: 7022: 7018: 7015:total degree 7006: 6998: 6994: 6990: 6986: 6982: 6978: 6974: 6970: 6905: 6903: 6896: 6879: 6703: 6697: 6489: 6363: 6355:free modules 6325: 6241: 6238:regular ring 6232: 6229: 6218: 6212: 6209: 5935: 5812: 5494: 5445: 5434: 5422: 5419: 5397: 5392: 5308: 5303: 5190: 5053: 5038: 5027: 4989: 4982: 4865: 4636:, which has 4573:affine space 4404: 4368: 4153: 3921: 3817: 3810: 3645: 3634: 3580: 3577: 3571: 3565: 3558: 3551: 3547: 3544: 3451: 3444: 3440: 3434: 3337: 3331: 3325: 3321: 3315: 3309: 3306: 3300: 3294: 3287: 3280: 3276: 3270: 3264: 3258: 3244: 3241: 3158: 2987: 2809: 2707: 2701: 2695: 2656: 2650: 2647: 2556: 2444:zero divisor 2438: 2432: 2426: 2420: 2417: 2409: 2338: 2270: 2208: 2194: 2188: 2147: 2137: 2062: 2058: 2051: 2047: 2040: 2036: 2029: 2023: 2017: 2011: 2008: 1997: 1987: 1981: 1975: 1966: 1962: 1958: 1956: 1950: 1944: 1938: 1931: 1927:Schenck 2003 1920: 1877: 1869: 1865: 1792: 1789: 1671: 1459: 1261: 1179: 1140: 984: 833: 799: 796: 700: 697: 691: 688: 514: 508: 505: 390: 386: 380: 374: 371: 303: 267: 209: 200: 194: 116: 101: 64: 45: 32: 28: 24: 18: 7833:Harris, Joe 7784:Quot scheme 7255:Serre twist 6353:are graded 5191:shows that 4605:This makes 3335:minus one. 185:Quot scheme 7982:Categories 7825:References 7804:Ravi Vakil 6326:where the 3285:such that 2205:Additivity 1799:such that 1790:The least 1509:of degree 88:local ring 31:, and the 7915:CiteSeerX 7907:Cambridge 7790:Citations 7749:→ 7732:→ 7648:− 7619:⊕ 7603:− 7554:− 7511:− 7498:− 7469:→ 7345:~ 7172:χ 6941:… 6908:a field, 6904:Thus let 6846:− 6827:δ 6815:⋯ 6801:δ 6735:δ 6728:… 6716:δ 6667:− 6523:… 6438:− 6424:− 6401:∑ 6305:→ 6299:→ 6286:→ 6283:⋯ 6280:→ 6267:→ 6183:− 6169:− 6147:δ 6135:⋯ 6117:⋯ 6103:δ 6091:⋯ 6051:− 6029:δ 6020:− 6011:⋯ 5997:δ 5988:− 5901:− 5871:δ 5862:− 5790:→ 5775:→ 5766:− 5723:δ 5711:− 5699:→ 5669:⟩ 5653:… 5637:⟨ 5587:δ 5580:… 5568:δ 5531:… 5467:… 5375:δ 5323:δ 5257:δ 5249:− 5224:⟩ 5218:⟨ 5170:⟶ 5167:⟩ 5161:⟨ 5150:⟶ 5135:⟶ 5123:δ 5112:⟶ 5082:δ 4915:− 4845:⟶ 4832:⟶ 4812:− 4797:⟶ 4780:⟶ 4721:− 4691:⟩ 4685:− 4672:⟨ 4472:⟩ 4464:− 4450:… 4434:⟨ 4405:The ring 4345:− 4283:− 4260:⟩ 4252:− 4238:… 4222:⟨ 4174:… 4133:⟶ 4130:⟩ 4114:… 4098:⟨ 4087:⟶ 4084:⟩ 4076:− 4062:… 4046:⟨ 4019:⟶ 3995:⟩ 3987:− 3973:… 3957:⟨ 3940:⟶ 3894:… 3768:… 3703:… 3668:⊂ 3514:− 3391:− 3254:nilpotent 3128:− 3111:− 3096:⋯ 3060:− 3049:− 2953:− 2850:… 2625:→ 2610:→ 2572:→ 2502:− 2252:→ 2244:→ 2236:→ 2228:→ 2107:… 1900:δ 1897:− 1891:⁡ 1756:− 1753:δ 1733:− 1730:δ 1564:− 1561:δ 1520:− 1517:δ 1480:δ 1477:− 1471:≥ 1430:− 1427:δ 1419:− 1416:δ 1407:− 1365:∑ 1207:∑ 1162:δ 1159:− 1114:− 1111:δ 1088:⋯ 1079:− 1076:δ 1058:− 1055:δ 1025:− 1022:δ 1014:− 1011:δ 965:⋯ 937:− 934:δ 926:− 923:δ 902:⋯ 893:δ 811:δ 774:δ 763:− 646:− 618:∏ 539:… 454:∞ 439:∑ 347:⁡ 334:⟼ 268:and that 238:≥ 231:⨁ 164:∈ 138:→ 129:π 7901:(2003), 7863:(1995), 7835:(1992). 7806:(2015). 7768:See also 7666:→ 7529:→ 7212:, where 5740:→ 5608:Setting 3731:, where 2595:→ 1965:and the 1328:is thus 7970:0485835 7939:0011360 7891:1322960 7216:is the 5398:Theorem 5309:Theorem 3870:, of a 3561:(1) ≠ 0 2035:, ..., 1141:is the 823:is the 204:over a 104:Hilbert 52:modules 7968:  7937:  7927:  7917:  7889:  7879:  7849:  7009:for a 6977:. Let 5032:, and 5017:is an 4369:where 2660:, and 2143:kernel 2141:. Its 1961:, the 985:where 797:where 689:where 73:of a 27:, the 23:, the 7813:(PDF) 7327:. If 7108:is a 7054:Magma 7050:Maple 7001:be a 6985:. If 6899:above 6620:from 5311:- If 4990:Thus 3298:as a 3262:as a 2339:and 2135:onto 2056:onto 1969:of a 1936:over 206:field 110:of a 71:ideal 58:over 41:field 35:of a 7925:ISBN 7877:ISBN 7847:ISBN 7060:and 7052:and 5446:Let 4154:for 3563:and 2418:Let 2186:and 1957:The 1863:for 1666:for 1460:For 1180:If 1156:> 1145:for 183:and 102:The 78:ring 7956:doi 7869:doi 7323:by 7080:by 7072:In 7005:of 6490:If 5492:be 5425:− 1 5367:by 5041:(1) 5030:(1) 4632:an 3924:+ 1 3919:of 3822:of 3455:is 3326:(f) 3290:(1) 2878:in 2436:in 2021:by 1995:of 1985:in 1888:deg 1289:in 827:of 698:If 506:If 338:dim 19:In 7984:: 7966:MR 7964:, 7935:MR 7933:, 7923:, 7913:, 7909:: 7905:, 7887:MR 7885:, 7875:, 7845:. 7841:. 7261:. 7253:a 7064:. 7032:. 7025:. 5414:dÎŽ 5051:. 4559:0. 4402:. 3643:. 3627:. 3575:. 2192:. 2001:. 1918:. 1868:≄ 831:. 301:. 187:. 114:. 62:. 7973:. 7958:: 7894:. 7871:: 7855:. 7815:. 7752:0 7744:X 7738:O 7725:n 7720:P 7712:O 7702:] 7694:2 7690:f 7682:1 7678:f 7671:[ 7661:) 7656:2 7652:d 7645:( 7638:n 7633:P 7625:O 7616:) 7611:1 7607:d 7600:( 7593:n 7588:P 7580:O 7570:] 7562:1 7558:f 7545:2 7541:f 7534:[ 7524:) 7519:2 7515:d 7506:1 7502:d 7495:( 7488:n 7483:P 7475:O 7466:0 7443:) 7438:2 7434:d 7430:, 7425:1 7421:d 7417:( 7397:X 7376:X 7342:M 7329:M 7311:) 7308:) 7305:m 7302:( 7297:F 7292:, 7289:X 7286:( 7281:0 7277:H 7266:m 7241:) 7238:m 7235:( 7230:F 7214:χ 7200:) 7197:) 7194:m 7191:( 7186:F 7181:, 7178:X 7175:( 7169:= 7166:) 7163:m 7160:( 7154:F 7149:p 7126:F 7114:X 7094:F 7023:B 7019:G 7007:I 6999:B 6995:I 6993:= 6991:H 6987:I 6983:I 6979:H 6975:R 6971:I 6957:] 6952:n 6948:x 6944:, 6938:, 6933:1 6929:x 6925:[ 6922:K 6919:= 6916:R 6906:K 6865:. 6857:n 6853:) 6849:t 6843:1 6840:( 6831:h 6822:t 6818:+ 6812:+ 6805:1 6796:t 6789:= 6786:) 6783:t 6780:( 6775:L 6771:S 6767:H 6744:, 6739:h 6731:, 6725:, 6720:1 6704:h 6698:L 6683:. 6678:n 6674:) 6670:t 6664:1 6661:( 6657:/ 6653:1 6650:= 6647:) 6644:t 6641:( 6636:R 6632:S 6628:H 6608:) 6605:t 6602:( 6597:M 6593:S 6589:H 6569:, 6564:i 6560:L 6539:] 6534:n 6530:x 6526:, 6520:, 6515:1 6511:x 6507:[ 6504:k 6501:= 6498:R 6475:. 6472:) 6469:t 6466:( 6459:i 6455:L 6450:S 6446:H 6441:1 6435:i 6431:) 6427:1 6421:( 6416:k 6411:1 6408:= 6405:i 6397:= 6394:) 6391:t 6388:( 6383:M 6379:S 6375:H 6339:i 6335:L 6311:, 6308:0 6302:M 6294:1 6290:L 6275:k 6271:L 6264:0 6242:R 6233:M 6219:k 6213:k 6195:. 6186:k 6180:n 6176:) 6172:t 6166:1 6163:( 6158:) 6151:k 6142:t 6138:+ 6132:+ 6129:t 6126:+ 6123:1 6120:( 6114:) 6107:1 6098:t 6094:+ 6088:+ 6085:t 6082:+ 6079:1 6076:( 6070:= 6062:n 6058:) 6054:t 6048:1 6045:( 6040:) 6033:k 6024:t 6017:1 6014:( 6008:) 6001:1 5992:t 5985:1 5982:( 5976:= 5973:) 5970:t 5967:( 5960:k 5956:R 5951:S 5947:H 5921:. 5917:) 5914:t 5911:( 5904:1 5898:i 5894:R 5889:S 5885:H 5882:) 5875:i 5866:t 5859:1 5856:( 5853:= 5850:) 5847:t 5844:( 5837:i 5833:R 5828:S 5824:H 5798:. 5794:0 5784:i 5780:R 5769:1 5763:i 5759:R 5749:i 5745:f 5732:] 5727:i 5719:[ 5714:1 5708:i 5704:R 5695:0 5672:, 5664:i 5660:f 5656:, 5650:, 5645:1 5641:f 5633:/ 5629:R 5626:= 5621:i 5617:R 5596:. 5591:k 5583:, 5577:, 5572:1 5547:] 5542:n 5538:x 5534:, 5528:, 5523:1 5519:x 5515:[ 5512:K 5509:= 5506:R 5495:k 5478:k 5474:f 5470:, 5464:, 5459:1 5455:f 5423:n 5416:. 5410:ÎŽ 5402:d 5378:. 5365:V 5351:f 5341:V 5337:R 5313:f 5289:. 5286:) 5283:t 5280:( 5275:R 5271:S 5267:H 5263:) 5253:t 5246:1 5242:( 5238:= 5235:) 5232:t 5229:( 5221:f 5214:/ 5210:R 5206:S 5202:H 5176:, 5173:0 5164:f 5157:/ 5153:R 5147:R 5140:f 5126:] 5120:[ 5116:R 5109:0 5096:R 5062:f 5045:V 5039:P 5028:P 5023:k 5003:0 4999:R 4968:. 4965:) 4962:t 4959:( 4956:P 4953:= 4950:) 4947:t 4944:( 4937:1 4933:R 4928:S 4924:H 4921:) 4918:t 4912:1 4909:( 4906:= 4903:) 4900:t 4897:( 4890:0 4886:R 4881:S 4877:H 4851:, 4848:0 4840:0 4836:R 4827:1 4823:R 4815:1 4807:d 4803:h 4788:1 4784:R 4777:0 4754:, 4749:1 4745:R 4724:1 4716:d 4712:h 4688:1 4680:d 4676:h 4668:/ 4662:1 4658:R 4654:= 4649:0 4645:R 4618:0 4614:V 4593:. 4588:0 4584:V 4556:= 4551:d 4547:h 4524:d 4520:h 4497:0 4493:V 4467:1 4461:d 4457:h 4453:, 4447:, 4442:0 4438:h 4430:/ 4426:R 4423:= 4418:1 4414:R 4400:R 4386:) 4383:t 4380:( 4377:P 4354:, 4348:t 4342:1 4337:) 4334:t 4331:( 4328:P 4322:= 4319:) 4316:t 4313:( 4308:R 4304:S 4300:H 4294:d 4290:) 4286:t 4280:1 4277:( 4274:= 4271:) 4268:t 4265:( 4255:1 4249:d 4245:h 4241:, 4235:, 4230:0 4226:h 4218:/ 4214:R 4210:S 4206:H 4183:. 4180:d 4177:, 4171:, 4168:0 4165:= 4162:k 4139:, 4136:0 4125:k 4121:h 4117:, 4111:, 4106:1 4102:h 4094:/ 4090:R 4079:1 4073:k 4069:h 4065:, 4059:, 4054:1 4050:h 4042:/ 4038:R 4029:k 4025:h 4010:] 4007:1 4004:[ 3999:) 3990:1 3984:k 3980:h 3976:, 3970:, 3965:0 3961:h 3953:/ 3949:R 3945:( 3937:0 3922:d 3905:d 3901:h 3897:, 3891:, 3886:0 3882:h 3868:R 3850:d 3840:V 3836:V 3832:R 3824:V 3820:d 3813:k 3792:I 3788:/ 3784:] 3779:n 3775:x 3771:, 3765:, 3760:0 3756:x 3752:[ 3749:k 3746:= 3743:R 3733:k 3719:] 3714:n 3710:x 3706:, 3700:, 3695:1 3691:x 3687:, 3682:0 3678:x 3674:[ 3671:k 3665:I 3652:V 3612:! 3609:d 3604:) 3601:1 3598:( 3595:P 3581:d 3572:A 3566:d 3559:P 3554:) 3552:t 3550:( 3548:P 3525:d 3521:) 3517:t 3511:1 3508:( 3503:) 3500:t 3497:( 3494:P 3488:= 3485:) 3482:t 3479:( 3474:A 3470:S 3466:H 3452:A 3447:) 3445:t 3443:( 3441:P 3435:A 3420:) 3417:t 3414:( 3409:A 3405:S 3401:H 3397:) 3394:t 3388:1 3385:( 3382:= 3379:) 3376:t 3373:( 3368:) 3365:f 3362:( 3358:/ 3354:A 3350:S 3346:H 3332:A 3324:/ 3322:A 3316:f 3310:A 3301:K 3295:A 3288:P 3283:) 3281:t 3279:( 3277:P 3271:A 3265:K 3259:A 3245:A 3223:. 3219:1 3216:= 3213:) 3210:t 3207:( 3202:K 3198:S 3194:H 3172:n 3168:x 3144:. 3137:! 3134:) 3131:1 3125:n 3122:( 3117:) 3114:1 3108:n 3105:+ 3102:k 3099:( 3093:) 3090:1 3087:+ 3084:k 3081:( 3075:= 3069:) 3063:1 3057:n 3052:1 3046:n 3043:+ 3040:k 3034:( 3028:= 3025:) 3022:k 3019:( 3012:n 3008:R 3003:P 2999:H 2973:. 2964:n 2960:) 2956:t 2950:1 2947:( 2943:1 2938:= 2935:) 2932:t 2929:( 2922:n 2918:R 2913:S 2909:H 2886:n 2866:] 2861:n 2857:x 2853:, 2847:, 2842:1 2838:x 2834:[ 2831:K 2828:= 2823:n 2819:R 2791:. 2787:) 2784:t 2781:( 2776:A 2772:S 2768:H 2762:d 2758:t 2754:= 2751:) 2748:t 2745:( 2738:] 2735:d 2732:[ 2728:A 2723:S 2719:H 2708:f 2702:d 2696:A 2679:] 2676:d 2673:[ 2669:A 2657:f 2651:f 2633:, 2629:0 2622:f 2618:/ 2614:A 2606:A 2599:f 2587:] 2584:d 2581:[ 2577:A 2568:0 2542:. 2538:) 2535:t 2532:( 2527:A 2523:S 2519:H 2515:) 2510:d 2506:t 2499:1 2496:( 2493:= 2490:) 2487:t 2484:( 2479:) 2476:f 2473:( 2469:/ 2465:A 2461:S 2457:H 2439:A 2433:d 2427:f 2421:A 2395:. 2390:C 2386:P 2382:H 2379:+ 2374:A 2370:P 2366:H 2363:= 2358:B 2354:P 2350:H 2322:C 2318:S 2314:H 2311:+ 2306:A 2302:S 2298:H 2295:= 2290:B 2286:S 2282:H 2256:0 2248:C 2240:B 2232:A 2224:0 2189:S 2174:I 2170:/ 2164:n 2160:R 2148:I 2138:S 2123:] 2118:n 2114:X 2110:, 2104:, 2099:1 2095:X 2091:[ 2088:K 2085:= 2080:n 2076:R 2063:i 2059:g 2052:i 2048:X 2041:n 2037:g 2033:1 2030:g 2024:n 2018:K 2012:S 1998:V 1988:P 1982:V 1951:m 1945:t 1939:S 1906:1 1903:+ 1894:P 1873:0 1870:n 1866:n 1851:) 1848:n 1845:( 1840:S 1836:F 1832:H 1829:= 1826:) 1823:n 1820:( 1815:S 1811:P 1807:H 1796:0 1793:n 1775:. 1772:n 1764:+ 1759:1 1749:n 1742:! 1739:) 1736:1 1727:( 1722:) 1719:1 1716:( 1713:P 1707:= 1704:) 1701:n 1698:( 1693:S 1689:P 1685:H 1668:n 1654:) 1651:n 1648:( 1643:S 1639:F 1635:H 1615:) 1612:n 1609:( 1604:S 1600:P 1596:H 1576:. 1573:! 1570:) 1567:1 1558:( 1554:/ 1548:i 1544:a 1523:1 1507:n 1503:i 1489:, 1486:1 1483:+ 1474:i 1468:n 1445:. 1439:) 1433:1 1422:1 1413:+ 1410:i 1404:n 1398:( 1390:i 1386:a 1380:d 1375:0 1372:= 1369:i 1361:= 1358:) 1355:n 1352:( 1347:S 1343:F 1339:H 1316:) 1313:t 1310:( 1305:S 1301:S 1297:H 1275:n 1271:t 1247:, 1242:i 1238:t 1232:i 1228:a 1222:d 1217:0 1214:= 1211:i 1203:= 1200:) 1197:t 1194:( 1191:P 1165:, 1153:n 1123:! 1120:) 1117:1 1108:( 1103:) 1100:1 1097:+ 1094:n 1091:( 1085:) 1082:2 1073:+ 1070:n 1067:( 1064:) 1061:1 1052:+ 1049:n 1046:( 1040:= 1034:) 1028:1 1017:1 1008:+ 1005:n 999:( 969:) 962:+ 957:n 953:t 946:) 940:1 929:1 920:+ 917:n 911:( 905:+ 899:+ 896:t 890:+ 887:1 883:( 879:) 876:t 873:( 870:P 867:= 864:) 861:t 858:( 853:S 849:S 845:H 829:S 800:P 782:, 770:) 766:t 760:1 757:( 752:) 749:t 746:( 743:P 737:= 734:) 731:t 728:( 723:S 719:S 715:H 701:S 692:Q 674:, 667:) 659:i 655:d 650:t 643:1 639:( 633:h 628:1 625:= 622:i 612:) 609:t 606:( 603:Q 597:= 594:) 591:t 588:( 583:S 579:S 575:H 550:h 546:d 542:, 536:, 531:1 527:d 515:h 509:S 491:. 486:n 482:t 478:) 475:n 472:( 467:S 463:F 459:H 449:0 446:= 443:n 435:= 432:) 429:t 426:( 421:S 417:S 413:H 391:n 387:S 381:K 375:n 355:n 351:S 342:K 331:n 328:: 323:S 319:F 315:H 289:K 286:= 281:0 277:S 251:i 247:S 241:0 235:i 227:= 224:S 210:K 201:S 167:S 161:s 141:S 135:X 132:: 98:.

Index

commutative algebra
graded commutative algebra
field
filtered algebras
modules
coherent sheaves
projective schemes
ideal
multivariate polynomial
ring
local ring
maximal ideal
Hilbert–Samuel polynomial
Hilbert
Hilbert–PoincarĂ© series
graded vector space
algebraic geometry
Hilbert scheme
Quot scheme
graded commutative algebra
field
Hilbert–PoincarĂ© series
formal series
Krull dimension
binomial coefficient
numerical polynomial
Schenck 2003
graded modules
filtered algebra
projective variety

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑