Knowledge (XXG)

Homotopy extension property

Source đź“ť

843: 365: 542: 653: 451: 1000: 942: 250: 245: 197: 696: 1211: 883: 1382: 1358: 1316: 849:
If the above diagram (without the dashed map) commutes (this is equivalent to the conditions above), then pair (X,A) has the homotopy extension property if there exists a map
456: 396: 745: 1244: 113: 1161: 1124: 807: 579: 147: 1406: 1284: 1090: 1068: 1042: 829: 773: 718: 83: 1408:. This implies that any cofibration can be treated as an inclusion map, and therefore it can be treated as having the homotopy extension property. 584: 401: 1470: 1445: 951: 892: 202: 156: 1508: 1010: 658: 44: 1166: 1417: 1006: 48: 360:{\displaystyle {\tilde {f}}_{0}\circ \iota =\left.{\tilde {f}}_{0}\right|_{A}=f_{0}=\pi _{0}\circ f_{\bullet },} 1503: 852: 1363: 945: 1331: 1289: 537:{\displaystyle {\tilde {f}}_{\bullet }\circ \iota =\left.{\tilde {f}}_{\bullet }\right|_{A}=f_{\bullet }} 842: 1214: 374: 24: 1220: 92: 1132: 1095: 778: 550: 118: 1466: 1441: 86: 36: 39:
can be extended to a homotopy defined on a larger space. The homotopy extension property of
1391: 723: 1257: 1073: 1051: 1025: 812: 756: 701: 66: 1460: 1497: 1456: 1480: 1385: 1045: 1326: 1319: 40: 20: 1485: 52: 886: 751: 32: 648:{\displaystyle G\colon ((X\times \{0\})\cup (A\times I))\rightarrow Y} 839:
The homotopy extension property is depicted in the following diagram
1286:
has the homotopy extension property, then the simple inclusion map
446:{\displaystyle {\tilde {f}}_{\bullet }\colon X\rightarrow Y^{I}} 1369: 1005:
Note that this diagram is dual to (opposite to) that of the
995:{\displaystyle {\tilde {f}}_{\bullet }\colon X\times I\to Y} 841: 490: 284: 937:{\displaystyle {\tilde {f}}_{\bullet }\colon X\to Y^{I}} 1394: 1366: 1334: 1292: 1260: 1223: 1169: 1135: 1098: 1076: 1054: 1028: 954: 895: 855: 815: 781: 759: 726: 704: 661: 587: 553: 459: 404: 377: 253: 240:{\displaystyle {\tilde {f}}_{0}\colon X\rightarrow Y} 205: 192:{\displaystyle f_{\bullet }\colon A\rightarrow Y^{I}} 159: 121: 95: 69: 809:
has the homotopy extension property with respect to
1163:has the homotopy extension property if and only if 1400: 1376: 1352: 1310: 1278: 1238: 1205: 1155: 1118: 1084: 1062: 1036: 994: 936: 877: 823: 801: 767: 739: 712: 690: 647: 573: 536: 445: 390: 359: 239: 191: 141: 107: 77: 1152: 1115: 1081: 1059: 1033: 820: 798: 764: 750:If the pair has this property only for a certain 736: 709: 570: 138: 74: 691:{\displaystyle G'\colon X\times I\rightarrow Y} 581:has the homotopy extension property if any map 1206:{\displaystyle (X\times \{0\}\cup A\times I)} 8: 1185: 1179: 612: 606: 1393: 1368: 1367: 1365: 1333: 1291: 1259: 1222: 1168: 1151: 1134: 1114: 1097: 1080: 1075: 1058: 1053: 1032: 1027: 1009:; this duality is loosely referred to as 968: 957: 956: 953: 928: 909: 898: 897: 894: 889:, note that homotopies expressed as maps 869: 858: 857: 854: 819: 814: 797: 780: 763: 758: 735: 725: 708: 703: 660: 586: 569: 552: 528: 515: 505: 494: 493: 473: 462: 461: 458: 437: 418: 407: 406: 403: 382: 376: 348: 335: 322: 309: 299: 288: 287: 267: 256: 255: 252: 219: 208: 207: 204: 183: 164: 158: 137: 120: 94: 73: 68: 1429: 878:{\displaystyle {\tilde {f}}_{\bullet }} 1377:{\displaystyle \mathbf {\mathit {Y}} } 7: 1126:has the homotopy extension property. 885:which makes the diagram commute. By 1353:{\displaystyle \iota \colon Y\to Z} 1311:{\displaystyle \iota \colon A\to X} 14: 747:agree on their common domain). 1465:. Cambridge University Press. 1438:Lectures on Algebraic Topology 1344: 1302: 1273: 1261: 1200: 1170: 1148: 1136: 1111: 1099: 986: 962: 921: 903: 863: 794: 782: 682: 639: 636: 633: 621: 615: 597: 594: 566: 554: 499: 467: 430: 412: 293: 261: 231: 213: 176: 134: 122: 16:Property in algebraic topology 1: 1481:"Homotopy extension property" 1325:In fact, if you consider any 391:{\displaystyle f_{\bullet }} 151:homotopy extension property 29:homotopy extension property 1525: 1239:{\displaystyle X\times I.} 108:{\displaystyle A\subset X} 1418:Homotopy lifting property 1156:{\displaystyle (X,A)\,\!} 1119:{\displaystyle (X,A)\,\!} 1007:homotopy lifting property 948:with expressions as maps 802:{\displaystyle (X,A)\,\!} 655:can be extended to a map 574:{\displaystyle (X,A)\,\!} 142:{\displaystyle (X,A)\,\!} 49:homotopy lifting property 115:. We say that the pair 51:that is used to define 1402: 1401:{\displaystyle \iota } 1378: 1354: 1312: 1280: 1240: 1207: 1157: 1120: 1086: 1064: 1038: 1011:Eckmann–Hilton duality 996: 938: 879: 846: 825: 803: 769: 741: 740:{\displaystyle G'\,\!} 714: 692: 649: 575: 538: 447: 392: 361: 241: 193: 143: 109: 79: 1403: 1379: 1355: 1313: 1281: 1279:{\displaystyle (X,A)} 1241: 1208: 1158: 1121: 1087: 1085:{\displaystyle X\,\!} 1065: 1063:{\displaystyle A\,\!} 1039: 1037:{\displaystyle X\,\!} 997: 939: 880: 845: 826: 824:{\displaystyle Y\,\!} 804: 770: 768:{\displaystyle Y\,\!} 742: 715: 713:{\displaystyle G\,\!} 693: 650: 576: 539: 448: 393: 367:then there exists an 362: 242: 194: 153:if, given a homotopy 144: 110: 80: 78:{\displaystyle X\,\!} 1392: 1364: 1360:, then we have that 1332: 1290: 1258: 1221: 1167: 1133: 1096: 1074: 1052: 1026: 952: 893: 853: 813: 779: 757: 724: 702: 659: 585: 551: 457: 402: 375: 251: 203: 157: 119: 93: 67: 1440:, pp. 84, Springer 1388:to its image under 1070:is a subcomplex of 1509:Algebraic topology 1462:Algebraic Topology 1398: 1374: 1350: 1308: 1276: 1236: 1203: 1153: 1116: 1082: 1060: 1034: 992: 934: 875: 847: 821: 799: 765: 737: 710: 688: 645: 571: 547:That is, the pair 534: 443: 388: 357: 237: 189: 139: 105: 75: 25:algebraic topology 965: 946:natural bijection 906: 866: 502: 470: 415: 296: 264: 216: 87:topological space 23:, in the area of 1516: 1490: 1476: 1448: 1434: 1407: 1405: 1404: 1399: 1383: 1381: 1380: 1375: 1373: 1372: 1359: 1357: 1356: 1351: 1317: 1315: 1314: 1309: 1285: 1283: 1282: 1277: 1245: 1243: 1242: 1237: 1212: 1210: 1209: 1204: 1162: 1160: 1159: 1154: 1125: 1123: 1122: 1117: 1092:, then the pair 1091: 1089: 1088: 1083: 1069: 1067: 1066: 1061: 1043: 1041: 1040: 1035: 1001: 999: 998: 993: 973: 972: 967: 966: 958: 943: 941: 940: 935: 933: 932: 914: 913: 908: 907: 899: 884: 882: 881: 876: 874: 873: 868: 867: 859: 830: 828: 827: 822: 808: 806: 805: 800: 774: 772: 771: 766: 746: 744: 743: 738: 734: 719: 717: 716: 711: 697: 695: 694: 689: 669: 654: 652: 651: 646: 580: 578: 577: 572: 543: 541: 540: 535: 533: 532: 520: 519: 514: 510: 509: 504: 503: 495: 478: 477: 472: 471: 463: 452: 450: 449: 444: 442: 441: 423: 422: 417: 416: 408: 397: 395: 394: 389: 387: 386: 366: 364: 363: 358: 353: 352: 340: 339: 327: 326: 314: 313: 308: 304: 303: 298: 297: 289: 272: 271: 266: 265: 257: 246: 244: 243: 238: 224: 223: 218: 217: 209: 198: 196: 195: 190: 188: 187: 169: 168: 148: 146: 145: 140: 114: 112: 111: 106: 84: 82: 81: 76: 31:indicates which 1524: 1523: 1519: 1518: 1517: 1515: 1514: 1513: 1504:Homotopy theory 1494: 1493: 1479: 1473: 1455: 1452: 1451: 1435: 1431: 1426: 1414: 1390: 1389: 1362: 1361: 1330: 1329: 1288: 1287: 1256: 1255: 1252: 1219: 1218: 1165: 1164: 1131: 1130: 1094: 1093: 1072: 1071: 1050: 1049: 1024: 1023: 1019: 955: 950: 949: 924: 896: 891: 890: 856: 851: 850: 837: 811: 810: 777: 776: 755: 754: 727: 722: 721: 700: 699: 662: 657: 656: 583: 582: 549: 548: 524: 492: 489: 488: 460: 455: 454: 433: 405: 400: 399: 378: 373: 372: 344: 331: 318: 286: 283: 282: 254: 249: 248: 206: 201: 200: 179: 160: 155: 154: 117: 116: 91: 90: 65: 64: 61: 17: 12: 11: 5: 1522: 1520: 1512: 1511: 1506: 1496: 1495: 1492: 1491: 1477: 1471: 1457:Hatcher, Allen 1450: 1449: 1428: 1427: 1425: 1422: 1421: 1420: 1413: 1410: 1397: 1371: 1349: 1346: 1343: 1340: 1337: 1307: 1304: 1301: 1298: 1295: 1275: 1272: 1269: 1266: 1263: 1251: 1248: 1247: 1246: 1235: 1232: 1229: 1226: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1150: 1147: 1144: 1141: 1138: 1127: 1113: 1110: 1107: 1104: 1101: 1079: 1057: 1031: 1018: 1015: 991: 988: 985: 982: 979: 976: 971: 964: 961: 931: 927: 923: 920: 917: 912: 905: 902: 872: 865: 862: 836: 833: 818: 796: 793: 790: 787: 784: 775:, we say that 762: 733: 730: 707: 687: 684: 681: 678: 675: 672: 668: 665: 644: 641: 638: 635: 632: 629: 626: 623: 620: 617: 614: 611: 608: 605: 602: 599: 596: 593: 590: 568: 565: 562: 559: 556: 531: 527: 523: 518: 513: 508: 501: 498: 491: 487: 484: 481: 476: 469: 466: 440: 436: 432: 429: 426: 421: 414: 411: 398:to a homotopy 385: 381: 356: 351: 347: 343: 338: 334: 330: 325: 321: 317: 312: 307: 302: 295: 292: 285: 281: 278: 275: 270: 263: 260: 236: 233: 230: 227: 222: 215: 212: 186: 182: 178: 175: 172: 167: 163: 136: 133: 130: 127: 124: 104: 101: 98: 72: 60: 57: 15: 13: 10: 9: 6: 4: 3: 2: 1521: 1510: 1507: 1505: 1502: 1501: 1499: 1488: 1487: 1482: 1478: 1474: 1472:0-521-79540-0 1468: 1464: 1463: 1458: 1454: 1453: 1447: 1446:3-540-58660-1 1443: 1439: 1433: 1430: 1423: 1419: 1416: 1415: 1411: 1409: 1395: 1387: 1347: 1341: 1338: 1335: 1328: 1323: 1321: 1305: 1299: 1296: 1293: 1270: 1267: 1264: 1249: 1233: 1230: 1227: 1224: 1216: 1197: 1194: 1191: 1188: 1182: 1176: 1173: 1145: 1142: 1139: 1128: 1108: 1105: 1102: 1077: 1055: 1047: 1029: 1021: 1020: 1016: 1014: 1012: 1008: 1003: 989: 983: 980: 977: 974: 969: 959: 947: 929: 925: 918: 915: 910: 900: 888: 870: 860: 844: 840: 835:Visualisation 834: 832: 816: 791: 788: 785: 760: 753: 748: 731: 728: 705: 685: 679: 676: 673: 670: 666: 663: 642: 630: 627: 624: 618: 609: 603: 600: 591: 588: 563: 560: 557: 545: 529: 525: 521: 516: 511: 506: 496: 485: 482: 479: 474: 464: 438: 434: 427: 424: 419: 409: 383: 379: 370: 354: 349: 345: 341: 336: 332: 328: 323: 319: 315: 310: 305: 300: 290: 279: 276: 273: 268: 258: 234: 228: 225: 220: 210: 184: 180: 173: 170: 165: 161: 152: 131: 128: 125: 102: 99: 96: 88: 70: 58: 56: 54: 50: 46: 42: 38: 35:defined on a 34: 30: 26: 22: 1484: 1461: 1437: 1432: 1386:homeomorphic 1324: 1253: 1046:cell complex 1004: 848: 838: 749: 546: 368: 150: 62: 41:cofibrations 28: 18: 1327:cofibration 1320:cofibration 21:mathematics 1498:Categories 1486:PlanetMath 1424:References 1017:Properties 453:such that 247:such that 199:and a map 89:, and let 59:Definition 53:fibrations 33:homotopies 1436:A. Dold, 1396:ι 1345:→ 1339:: 1336:ι 1303:→ 1297:: 1294:ι 1228:× 1195:× 1189:∪ 1177:× 987:→ 981:× 975:: 970:∙ 963:~ 922:→ 916:: 911:∙ 904:~ 871:∙ 864:~ 683:→ 677:× 671:: 640:→ 628:× 619:∪ 604:× 592:: 530:∙ 507:∙ 500:~ 483:ι 480:∘ 475:∙ 468:~ 431:→ 425:: 420:∙ 413:~ 384:∙ 369:extension 350:∙ 342:∘ 333:π 294:~ 277:ι 274:∘ 262:~ 232:→ 226:: 214:~ 177:→ 171:: 166:∙ 100:⊂ 1459:(2002). 1412:See also 887:currying 752:codomain 732:′ 667:′ 149:has the 37:subspace 1215:retract 1129:A pair 944:are in 45:dual to 1469:  1444:  698:(i.e. 27:, the 1318:is a 1250:Other 1213:is a 1044:is a 85:be a 1467:ISBN 1442:ISBN 1048:and 720:and 63:Let 47:the 1384:is 1254:If 1217:of 1022:If 371:of 43:is 19:In 1500:: 1483:. 1322:. 1013:. 1002:. 831:. 544:. 55:. 1489:. 1475:. 1370:Y 1348:Z 1342:Y 1306:X 1300:A 1274:) 1271:A 1268:, 1265:X 1262:( 1234:. 1231:I 1225:X 1201:) 1198:I 1192:A 1186:} 1183:0 1180:{ 1174:X 1171:( 1149:) 1146:A 1143:, 1140:X 1137:( 1112:) 1109:A 1106:, 1103:X 1100:( 1078:X 1056:A 1030:X 990:Y 984:I 978:X 960:f 930:I 926:Y 919:X 901:f 861:f 817:Y 795:) 792:A 789:, 786:X 783:( 761:Y 729:G 706:G 686:Y 680:I 674:X 664:G 643:Y 637:) 634:) 631:I 625:A 622:( 616:) 613:} 610:0 607:{ 601:X 598:( 595:( 589:G 567:) 564:A 561:, 558:X 555:( 526:f 522:= 517:A 512:| 497:f 486:= 465:f 439:I 435:Y 428:X 410:f 380:f 355:, 346:f 337:0 329:= 324:0 320:f 316:= 311:A 306:| 301:0 291:f 280:= 269:0 259:f 235:Y 229:X 221:0 211:f 185:I 181:Y 174:A 162:f 135:) 132:A 129:, 126:X 123:( 103:X 97:A 71:X

Index

mathematics
algebraic topology
homotopies
subspace
cofibrations
dual to
homotopy lifting property
fibrations
topological space
codomain

currying
natural bijection
homotopy lifting property
Eckmann–Hilton duality
cell complex
retract
cofibration
cofibration
homeomorphic
Homotopy lifting property
ISBN
3-540-58660-1
Hatcher, Allen
Algebraic Topology
ISBN
0-521-79540-0
"Homotopy extension property"
PlanetMath
Categories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑