Knowledge (XXG)

Hopf conjecture

Source đź“ť

401:, a theorem which had also been conjectured first by Hopf. One of the lines of attacks is by looking for manifolds with more symmetry. It is particular for example that all known manifolds of positive sectional curvature allow for an isometric circle action. The corresponding vector field is called a 1826:
There is a conjecture which relates to the Hopf sign conjecture but which does not refer to Riemannian geometry at all. Aspherical manifolds are connected manifolds for which all higher homotopy groups disappear. The Euler characteristic then should satisfy the same condition as a negatively curved
1817:
Finally, one can ask why one would be interested in such a special case like the Hopf product conjecture. Hopf himself was motivated by problems from physics. When Hopf started to work in the mid 1920s, the theory of relativity was only 10 years old and it sparked a great deal of interest in
569:
discusses the conjecture in his book, and points to the work of Hopf from the 1920s which was influenced by such type of questions. The conjectures are listed as problem 8 (positive curvature case) and 10 (negative curvature case) in ``Yau's problems" of 1982.
1414:
are the only simply-connected 4-manifolds which are known to admit a metric of positive curvature. Wolfgang Ziller once conjectured this might be the full list and that in dimension 5, the only simply-connected 5-manifold of positive curvature is the 5-sphere
2499: 1721:
with positive sectional curvature. So, when looking at the evidence and the work done so far, it appears that the Hopf question most likely will be answered as the statement "There is no metric of positive curvature on
2001: 544: 714: 1812: 1764: 1715: 1599: 1547: 1332: 1659:
is not possible as then the manifold has to be a sphere.) A general reference for manifolds with non-negative sectional curvature giving many examples is as well as. A related conjecture is that
840: 223: 1898: 2310:
Jean-Claude Hausmann, Geometric Hopfian and non-Hopfian situations. Geometry and topology (Athens, Ga., 1985), 157–166, Lecture Notes in Pure and Appl. Math., 105, Dekker, New York, 1987
1976:(a PhD student of Morse) from a year earlier. The problem to generalize this to higher dimensions was for some time known as the Hopf conjecture too. In any case, this is now a theorem: 1904:
There can not be a direct relation to the Riemannian case as there are aspherical manifolds that are not homeomorphic to a smooth Riemannian manifold with negative sectional curvature.
1927:
There had been a bit of confusion about the word "Hopf conjecture" as an unrelated mathematician Eberhard Hopf and contemporary of Heinz Hopf worked on topics like geodesic flows. (
888: 768: 395: 357: 2438: 2090: 1503: 1412: 578:
There are analogue conjectures if the curvature is allowed to become zero too. The statement should still be attributed to Hopf (for example in a talk given in 1953 in Italy).
1966: 1657: 1628: 1471: 1442: 1380: 2353:
Wolfgang Ziller, Riemannian Manifolds with Positive Sectional Curvature, Lecture given in Guanajuato of 2010 in: Geometry of Manifolds with Non-negative Sectional Curvature,
1164: 1059: 1024: 956: 277: 2519: 2278: 1121: 989: 921: 2139: 2039: 1272: 1191: 641: 111: 1348:
One does not know any example of a compact, simply-connected manifold of nonnegative sectional curvature which does not admit a metric of strictly positive curvature.
319: 1245: 1086: 461: 432: 2298: 1211: 1339:
The conjecture was popularized in the book of Gromoll, Klingenberg and Meyer from 1968, and was prominently displayed as Problem 1 in Yau's list of problems.
2480:
Wolfgang Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, Surv. Differ. Geom., 11, pages 63-102, International Press, 2007
1766:" because so far, the theorems of Bourguignon (perturbation result near product metric), Hopf (codimension 1), Weinstein (codimension 2) as well as the 2588: 1968:
has no conjugate points, then it must be flat (the Gauss curvature is zero everywhere). The theorem of Eberhard Hopf generalized a theorem of
493: 280: 1818:
differential geometry, especially in global structure of 4-manifolds, as such manifolds appear in cosmology as models of the universe.
2536: 2489:
C. Escher and W. Ziller, Topology of non-negatively curved manifolds", Annals of Global Analysis and Geometry, 46, pages 23-55, 2014
2243: 2208: 119: 654: 2354: 2332: 2200: 2444: 2268:, Sulla geometria riemanniana globale della superficie, Rendiconti del Seminario matematico e fisico di Milano, 1953, pages 48-63 2096: 1131:
Hopf asked whether every continuous self-map of an oriented closed manifold of degree 1 is necessarily a homotopy equivalence.
397:. For sufficiently pinched positive curvature manifolds, the Hopf conjecture (in the positive curvature case) follows from the 2573: 1773: 1770:
excluding pinched positive curvature metrics, point towards this outcome. The construction of a positive curvature metric on
1725: 1676: 1560: 1508: 1293: 773: 2375: 1553:
that in the neighborhood of the product metric, there is no metric of positive curvature. It is also known from work of
1505:
are the only simply connected positive curvature 4-manifolds would settle the Hopf product conjecture. Back to the case
2133: 2173: 550: 1814:
would certainly be a surprise in global differential geometry, but it is not excluded yet that such a metric exists.
549:
On the history of the problem: the first written explicit appearance of the conjecture is in the proceedings of the
2235: 1916: 149: 1839: 1444:. Of course, solving the Hopf product conjecture would settle the Yau question. Also the Ziller conjecture that 123: 2367: 1550: 139: 845: 2155: 1919:
conjectured that the same inequality holds for a non-positively curved piecewise Euclidean (PE) manifold.
719: 362: 324: 2408: 2060: 21: 1476: 1385: 1942: 1633: 1604: 1447: 1418: 1356: 2583: 604: 592: 402: 74: 58: 1137: 2324: 1833: 1029: 994: 926: 600: 596: 588: 584: 405:. The conjecture (for the positive curvature case) has also been proved for manifolds of dimension 236: 135: 70: 66: 54: 50: 40:
The Hopf conjecture is an open problem in global Riemannian geometry. It goes back to questions of
1091: 961: 893: 226: 1343:
formulated there an interesting new observation (which could be reformulated as a conjecture).
2578: 2515: 2290: 2239: 2204: 1996: 1973: 1718: 1250: 1169: 610: 288: 131: 80: 2543: 2453: 2105: 2010: 1908: 298: 2554: 2467: 2383: 2340: 2253: 2119: 2022: 1223: 1064: 2551: 2463: 2379: 2336: 2277:
R.L. Bishop and S.I. Goldberg, Some implications on the generalized Gauss-Bonnet theorem,
2249: 2115: 2018: 1668:
of rank greater than one cannot carry a Riemannian metric of positive sectional curvature.
1665: 437: 408: 648:
This version was stated as such as Question 1 in the paper or then in a paper of Chern.
291:
in 1955.). For manifolds of dimension 6 or higher the conjecture is open. An example of
2396: 2320: 2227: 2052: 1936: 1767: 1554: 1340: 1213:
factors through a non-trivial covering space, contradicting the degree-1 assumption.
1196: 398: 2567: 2511: 2192: 2035: 1969: 1928: 1601:
exists with positive curvature, then this Riemannian manifold can not be embedded in
1217: 566: 292: 2370:(1975), "Some constructions related to H. Hopf's conjecture on product manifolds", 1912: 464: 230: 2038:, Positive sectional curvatures does not imply positive Gauss-Bonnet integrand, 1978:
A Riemannian metric without conjugate points on the n-dimensional torus is flat.
558: 284: 2500:
Proceedings of the National Academy of Sciences of the United States of America
2374:, Proceedings of Symposia in Pure Mathematics, vol. 27, Providence, R.I.: 2265: 2168: 2135:
The Hopf conjecture for manifolds with low cohomogeneity or high symmetry rank
1932: 562: 143: 127: 41: 29: 2458: 2400: 2110: 2056: 1822:
Thurston conjecture on aspherical manifolds (extension of Hopf's conjecture)
553:, which is a paper based on talks, Heinz Hopf gave in the spring of 1931 in 476: 321:. The positive curvature case is known to hold however for hypersurfaces in 1935:
are unrelated and might never have met even so they were both students of
1836:
of even dimension. Then its Euler characteristic satisfies the inequality
1999:(1966). "On curvature and characteristic classes of a Riemann manifold". 554: 25: 539:{\displaystyle k-(\operatorname {rank} G-\operatorname {rank} H)\leq 5.} 295:
had shown that the Chern–Gauss–Bonnet integrand can become negative for
2547: 2014: 229:, assuring that the orientation cover is simply connected, so that the 651:
An example for which the conjecture is confirmed is for the product
2002:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
1939:). There is a theorem of Eberhard Hopf stating that if the 2-torus 2234:, Annals of Mathematics Studies, vol. 102, Princeton, N.J.: 1630:. (It follows already from a result of Hopf that an embedding in 1285:
Another famous question of Hopf is the Hopf product conjecture:
2331:. Lecture Notes in Mathematics. Vol. 55. Berlin-New York: 709:{\displaystyle M=M_{1}\times M_{2}\times \cdots \times M_{d}} 574:
Non-negatively or non-positively curved Riemannian manifolds
546:
Some references about manifolds with some symmetry are and
1827:
manifold is conjectured to satisfy in Riemannian geometry:
2171:(1932), "Differentialgeometry und topologische Gestalt", 1923:(Unrelated:) Riemannian metrics with no conjugate points 20:
may refer to one of several conjectural statements from
1807:{\displaystyle \mathbb {S} ^{2}\times \mathbb {S} ^{2}} 1759:{\displaystyle \mathbb {S} ^{2}\times \mathbb {S} ^{2}} 1710:{\displaystyle \mathbb {S} ^{2}\times \mathbb {S} ^{2}} 1594:{\displaystyle \mathbb {S} ^{2}\times \mathbb {S} ^{2}} 1542:{\displaystyle \mathbb {S} ^{2}\times \mathbb {S} ^{2}} 1327:{\displaystyle \mathbb {S} ^{2}\times \mathbb {S} ^{2}} 279:. For 4-manifolds, the statement also follows from the 1907:
This topological version of Hopf conjecture is due to
2411: 2063: 1945: 1842: 1776: 1728: 1679: 1636: 1607: 1563: 1511: 1479: 1450: 1421: 1388: 1359: 1296: 1253: 1226: 1199: 1172: 1140: 1094: 1067: 1032: 997: 964: 929: 896: 848: 835:{\displaystyle \chi (M)=\prod _{k=1}^{d}\chi (M_{k})} 776: 722: 657: 613: 496: 440: 411: 365: 327: 301: 239: 152: 83: 2174:
Jahresbericht der Deutschen Mathematiker-Vereinigung
890:, the sign conjecture is confirmed in that case (if 36:
Positively or negatively curved Riemannian manifolds
2498:E. Hopf, Closed Surfaces without conjugate points, 2154:L. Kennard, "On the Hopf conjecture with symmetry, 2432: 2084: 1960: 1892: 1806: 1758: 1709: 1651: 1622: 1593: 1541: 1497: 1465: 1436: 1406: 1374: 1326: 1266: 1239: 1205: 1185: 1158: 1115: 1080: 1053: 1018: 983: 950: 915: 882: 834: 762: 708: 635: 538: 455: 426: 389: 351: 313: 271: 217: 105: 2533:Riemannian tori without conjugate points are flat 2520:Transactions of the American Mathematical Society 2279:Transactions of the American Mathematical Society 1281:Product conjecture for the product of two spheres 2140:Proceedings of the American Mathematical Society 2040:Proceedings of the American Mathematical Society 716:of 2-dimensional manifolds with curvature sign 359:(Hopf) or codimension two surfaces embedded in 2299:Bulletin of the American Mathematical Society 1277:There are, however, some non-Hopfian groups. 218:{\displaystyle b_{0}-b_{1}+b_{2}-b_{3}+b_{4}} 8: 1893:{\displaystyle (-1)^{k}\chi (M^{2k})\geq 0.} 757: 736: 1216:This implies that the conjecture holds for 475:admitting an isometric action of a compact 130:, this follows from the finiteness of the 2457: 2418: 2414: 2413: 2410: 2109: 2070: 2066: 2065: 2062: 1952: 1948: 1947: 1944: 1872: 1856: 1841: 1798: 1794: 1793: 1783: 1779: 1778: 1775: 1750: 1746: 1745: 1735: 1731: 1730: 1727: 1701: 1697: 1696: 1686: 1682: 1681: 1678: 1643: 1639: 1638: 1635: 1614: 1610: 1609: 1606: 1585: 1581: 1580: 1570: 1566: 1565: 1562: 1533: 1529: 1528: 1518: 1514: 1513: 1510: 1489: 1485: 1482: 1481: 1478: 1457: 1453: 1452: 1449: 1428: 1424: 1423: 1420: 1398: 1394: 1391: 1390: 1387: 1366: 1362: 1361: 1358: 1318: 1314: 1313: 1303: 1299: 1298: 1295: 1258: 1252: 1231: 1225: 1198: 1177: 1171: 1139: 1093: 1072: 1066: 1031: 996: 969: 963: 928: 901: 895: 874: 864: 853: 847: 823: 807: 796: 775: 770:. As the Euler characteristic satisfies 727: 721: 700: 681: 668: 656: 627: 612: 495: 439: 410: 372: 368: 367: 364: 334: 330: 329: 326: 300: 257: 244: 238: 209: 196: 183: 170: 157: 151: 97: 82: 2197:A panoramic view of Riemannian geometry 1988: 1334:carry a metric with positive curvature? 2518:, Manifolds without conjugate points, 2132:Thomas PĂĽttmann and Catherine Searle, 2222: 2220: 883:{\displaystyle \prod _{k=1}^{d}e_{k}} 471:-dimensional torus and for manifolds 7: 1166:of degree 1 induces a surjection on 44:from 1931. A modern formulation is: 763:{\displaystyle e_{k}\in \{-1,0,1\}} 390:{\displaystyle \mathbb {R} ^{2d+2}} 352:{\displaystyle \mathbb {R} ^{2d+1}} 122:, these statements follow from the 2433:{\displaystyle \mathbb {R} ^{n+2}} 2085:{\displaystyle \mathbb {R} ^{n+2}} 2057:"Positively curved n-manifolds in 1274:and thus a homotopy equivalence. 14: 2537:Geometric and Functional Analysis 2531:Dmitri Burago and Sergei Ivanov, 1498:{\displaystyle \mathbb {CP} ^{2}} 1407:{\displaystyle \mathbb {CP} ^{2}} 1382:and the complex projective plane 1220:, as for them one then gets that 482:with principal isotropy subgroup 2445:Journal of Differential Geometry 2329:Riemannsche Geometrie im Grossen 2232:Seminar on Differential Geometry 2097:Journal of Differential Geometry 1961:{\displaystyle \mathbb {T} ^{2}} 1652:{\displaystyle \mathbb {R} ^{5}} 1623:{\displaystyle \mathbb {R} ^{6}} 1466:{\displaystyle \mathbb {S} ^{4}} 1437:{\displaystyle \mathbb {S} ^{5}} 1375:{\displaystyle \mathbb {S} ^{4}} 1134:It is easy to see that any map 1881: 1865: 1853: 1843: 1159:{\displaystyle f\colon M\to M} 1150: 1104: 1098: 1042: 1036: 1007: 1001: 939: 933: 829: 816: 786: 780: 624: 614: 595:. A compact, (2d)-dimensional 527: 503: 146:the Euler characteristic with 94: 84: 1: 2589:Unsolved problems in geometry 2376:American Mathematical Society 1557:that if a metric is given on 1061:for odd d, and if one of the 1054:{\displaystyle \chi (M)<0} 1019:{\displaystyle \chi (M)>0} 951:{\displaystyle \chi (M)>0} 272:{\displaystyle b_{1}=b_{3}=0} 583:A compact, even-dimensional 49:A compact, even-dimensional 2230:(1982), "Problem section", 1821: 1673:This would also imply that 1549:: it is known from work of 551:German Mathematical Society 2605: 2327:; Meyer, Wolfgang (1968). 2301:, 72, pages 167-2019, 1966 2281:, 112, pages 508-545, 1964 2236:Princeton University Press 1116:{\displaystyle \chi (M)=0} 984:{\displaystyle e_{k}<0} 916:{\displaystyle e_{k}>0} 281:Chern–Gauss–Bonnet theorem 128:four-dimensional manifolds 2522:, 51, pages 362-386, 1942 2158:, 17, 2013, pages 563-593 1353:At present, the 4-sphere 287:in 1955 (written down by 2542:(1994), no. 3, 259-269, 2368:Bourguignon, Jean-Pierre 1267:{\displaystyle \pi _{1}} 1186:{\displaystyle \pi _{1}} 636:{\displaystyle (-1)^{d}} 106:{\displaystyle (-1)^{d}} 2502:, 34, page 47-51 (1948) 2156:Geometry & Topology 2145:(2001), no. 1, 163-166. 1832:Suppose M is a closed, 1551:Jean-Pierre Bourguignon 463:admitting an isometric 2459:10.4310/jdg/1214429270 2434: 2111:10.4310/jdg/1214429270 2086: 1962: 1894: 1808: 1760: 1711: 1653: 1624: 1595: 1543: 1499: 1467: 1438: 1408: 1376: 1328: 1268: 1241: 1207: 1187: 1160: 1117: 1082: 1055: 1020: 985: 952: 917: 884: 869: 836: 812: 764: 710: 637: 540: 457: 428: 391: 353: 315: 314:{\displaystyle d>2} 273: 219: 140:Euler–PoincarĂ© formula 107: 2574:Differential geometry 2435: 2372:Differential Geometry 2087: 1963: 1895: 1809: 1761: 1712: 1654: 1625: 1596: 1544: 1500: 1468: 1439: 1409: 1377: 1329: 1269: 1247:is an isomorphism on 1242: 1240:{\displaystyle f_{*}} 1208: 1188: 1161: 1127:Self-maps of degree 1 1118: 1083: 1081:{\displaystyle e_{k}} 1056: 1021: 986: 953: 918: 885: 849: 837: 792: 765: 711: 638: 565:in the fall of 1931. 541: 458: 429: 392: 354: 316: 274: 220: 108: 22:differential geometry 2409: 2325:Klingenberg, Wilhelm 2238:, pp. 669–706, 2061: 1943: 1840: 1774: 1726: 1677: 1634: 1605: 1561: 1509: 1477: 1448: 1419: 1386: 1357: 1294: 1251: 1224: 1197: 1170: 1138: 1092: 1065: 1030: 995: 962: 927: 894: 846: 842:which has the sign 774: 720: 655: 611: 605:Euler characteristic 593:Euler characteristic 494: 456:{\displaystyle 4k+4} 438: 427:{\displaystyle 4k+2} 409: 403:killing vector field 363: 325: 299: 237: 150: 124:Gauss–Bonnet theorem 81: 75:Euler characteristic 59:Euler characteristic 2401:"Positively curved 1834:aspherical manifold 1290:Can the 4-manifold 601:sectional curvature 597:Riemannian manifold 589:sectional curvature 585:Riemannian manifold 71:sectional curvature 67:Riemannian manifold 55:sectional curvature 51:Riemannian manifold 2548:10.1007/BF01896241 2430: 2378:, pp. 33–37, 2293:, The geometry of 2082: 2015:10.1007/BF02960745 1997:Chern, Shiing-Shen 1958: 1890: 1804: 1756: 1707: 1649: 1620: 1591: 1539: 1495: 1463: 1434: 1404: 1372: 1324: 1264: 1237: 1203: 1183: 1156: 1113: 1078: 1051: 1016: 981: 948: 913: 880: 832: 760: 706: 633: 599:with non-positive 587:with non-negative 536: 486:and cohomogeneity 453: 424: 387: 349: 311: 269: 215: 103: 2516:Gustav A. Hedlund 2291:Shiing-Shen Chern 1719:Riemannian metric 1206:{\displaystyle f} 591:has non-negative 289:Shiing-Shen Chern 132:fundamental group 2596: 2558: 2529: 2523: 2509: 2503: 2496: 2490: 2487: 2481: 2478: 2472: 2471: 2461: 2439: 2437: 2436: 2431: 2429: 2428: 2417: 2393: 2387: 2386: 2364: 2358: 2351: 2345: 2344: 2317: 2311: 2308: 2302: 2288: 2282: 2275: 2269: 2263: 2257: 2256: 2224: 2215: 2214: 2189: 2183: 2182: 2165: 2159: 2152: 2146: 2130: 2124: 2123: 2113: 2091: 2089: 2088: 2083: 2081: 2080: 2069: 2049: 2043: 2033: 2027: 2026: 1993: 1967: 1965: 1964: 1959: 1957: 1956: 1951: 1909:William Thurston 1899: 1897: 1896: 1891: 1880: 1879: 1861: 1860: 1813: 1811: 1810: 1805: 1803: 1802: 1797: 1788: 1787: 1782: 1765: 1763: 1762: 1757: 1755: 1754: 1749: 1740: 1739: 1734: 1716: 1714: 1713: 1708: 1706: 1705: 1700: 1691: 1690: 1685: 1658: 1656: 1655: 1650: 1648: 1647: 1642: 1629: 1627: 1626: 1621: 1619: 1618: 1613: 1600: 1598: 1597: 1592: 1590: 1589: 1584: 1575: 1574: 1569: 1548: 1546: 1545: 1540: 1538: 1537: 1532: 1523: 1522: 1517: 1504: 1502: 1501: 1496: 1494: 1493: 1488: 1472: 1470: 1469: 1464: 1462: 1461: 1456: 1443: 1441: 1440: 1435: 1433: 1432: 1427: 1413: 1411: 1410: 1405: 1403: 1402: 1397: 1381: 1379: 1378: 1373: 1371: 1370: 1365: 1333: 1331: 1330: 1325: 1323: 1322: 1317: 1308: 1307: 1302: 1273: 1271: 1270: 1265: 1263: 1262: 1246: 1244: 1243: 1238: 1236: 1235: 1212: 1210: 1209: 1204: 1192: 1190: 1189: 1184: 1182: 1181: 1165: 1163: 1162: 1157: 1122: 1120: 1119: 1114: 1087: 1085: 1084: 1079: 1077: 1076: 1060: 1058: 1057: 1052: 1025: 1023: 1022: 1017: 991:for all k, then 990: 988: 987: 982: 974: 973: 957: 955: 954: 949: 923:for all k, then 922: 920: 919: 914: 906: 905: 889: 887: 886: 881: 879: 878: 868: 863: 841: 839: 838: 833: 828: 827: 811: 806: 769: 767: 766: 761: 732: 731: 715: 713: 712: 707: 705: 704: 686: 685: 673: 672: 642: 640: 639: 634: 632: 631: 545: 543: 542: 537: 462: 460: 459: 454: 433: 431: 430: 425: 396: 394: 393: 388: 386: 385: 371: 358: 356: 355: 350: 348: 347: 333: 320: 318: 317: 312: 278: 276: 275: 270: 262: 261: 249: 248: 224: 222: 221: 216: 214: 213: 201: 200: 188: 187: 175: 174: 162: 161: 136:PoincarĂ© duality 112: 110: 109: 104: 102: 101: 16:In mathematics, 2604: 2603: 2599: 2598: 2597: 2595: 2594: 2593: 2564: 2563: 2562: 2561: 2530: 2526: 2510: 2506: 2497: 2493: 2488: 2484: 2479: 2475: 2412: 2407: 2406: 2397:Weinstein, Alan 2395: 2394: 2390: 2366: 2365: 2361: 2352: 2348: 2333:Springer Verlag 2321:Gromoll, Detlef 2319: 2318: 2314: 2309: 2305: 2289: 2285: 2276: 2272: 2264: 2260: 2246: 2228:Yau, Shing-Tung 2226: 2225: 2218: 2211: 2191: 2190: 2186: 2167: 2166: 2162: 2153: 2149: 2131: 2127: 2064: 2059: 2058: 2053:Weinstein, Alan 2051: 2050: 2046: 2034: 2030: 1995: 1994: 1990: 1985: 1946: 1941: 1940: 1925: 1868: 1852: 1838: 1837: 1824: 1792: 1777: 1772: 1771: 1744: 1729: 1724: 1723: 1695: 1680: 1675: 1674: 1666:symmetric space 1637: 1632: 1631: 1608: 1603: 1602: 1579: 1564: 1559: 1558: 1527: 1512: 1507: 1506: 1480: 1475: 1474: 1451: 1446: 1445: 1422: 1417: 1416: 1389: 1384: 1383: 1360: 1355: 1354: 1312: 1297: 1292: 1291: 1283: 1254: 1249: 1248: 1227: 1222: 1221: 1195: 1194: 1193:; if not, then 1173: 1168: 1167: 1136: 1135: 1129: 1090: 1089: 1068: 1063: 1062: 1028: 1027: 1026:for even d and 993: 992: 965: 960: 959: 925: 924: 897: 892: 891: 870: 844: 843: 819: 772: 771: 723: 718: 717: 696: 677: 664: 653: 652: 623: 609: 608: 576: 492: 491: 436: 435: 407: 406: 366: 361: 360: 328: 323: 322: 297: 296: 253: 240: 235: 234: 227:Synge's theorem 205: 192: 179: 166: 153: 148: 147: 93: 79: 78: 61:. A compact, (2 38: 18:Hopf conjecture 12: 11: 5: 2602: 2600: 2592: 2591: 2586: 2581: 2576: 2566: 2565: 2560: 2559: 2524: 2504: 2491: 2482: 2473: 2427: 2424: 2421: 2416: 2405:-manifolds in 2388: 2359: 2346: 2312: 2303: 2283: 2270: 2258: 2244: 2216: 2209: 2193:Berger, Marcel 2184: 2160: 2147: 2125: 2079: 2076: 2073: 2068: 2044: 2028: 1987: 1986: 1984: 1981: 1974:Gustav Hedlund 1955: 1950: 1937:Erhard Schmidt 1924: 1921: 1902: 1901: 1889: 1886: 1883: 1878: 1875: 1871: 1867: 1864: 1859: 1855: 1851: 1848: 1845: 1823: 1820: 1801: 1796: 1791: 1786: 1781: 1768:sphere theorem 1753: 1748: 1743: 1738: 1733: 1704: 1699: 1694: 1689: 1684: 1671: 1670: 1646: 1641: 1617: 1612: 1588: 1583: 1578: 1573: 1568: 1555:Alan Weinstein 1536: 1531: 1526: 1521: 1516: 1492: 1487: 1484: 1460: 1455: 1431: 1426: 1401: 1396: 1393: 1369: 1364: 1351: 1350: 1341:Shing-Tung Yau 1337: 1336: 1321: 1316: 1311: 1306: 1301: 1282: 1279: 1261: 1257: 1234: 1230: 1218:Hopfian groups 1202: 1180: 1176: 1155: 1152: 1149: 1146: 1143: 1128: 1125: 1112: 1109: 1106: 1103: 1100: 1097: 1088:is zero, then 1075: 1071: 1050: 1047: 1044: 1041: 1038: 1035: 1015: 1012: 1009: 1006: 1003: 1000: 980: 977: 972: 968: 947: 944: 941: 938: 935: 932: 912: 909: 904: 900: 877: 873: 867: 862: 859: 856: 852: 831: 826: 822: 818: 815: 810: 805: 802: 799: 795: 791: 788: 785: 782: 779: 759: 756: 753: 750: 747: 744: 741: 738: 735: 730: 726: 703: 699: 695: 692: 689: 684: 680: 676: 671: 667: 663: 660: 646: 645: 630: 626: 622: 619: 616: 575: 572: 535: 532: 529: 526: 523: 520: 517: 514: 511: 508: 505: 502: 499: 452: 449: 446: 443: 423: 420: 417: 414: 399:sphere theorem 384: 381: 378: 375: 370: 346: 343: 340: 337: 332: 310: 307: 304: 283:as noticed by 268: 265: 260: 256: 252: 247: 243: 212: 208: 204: 199: 195: 191: 186: 182: 178: 173: 169: 165: 160: 156: 116: 115: 100: 96: 92: 89: 86: 69:with negative 65:)-dimensional 53:with positive 37: 34: 28:attributed to 13: 10: 9: 6: 4: 3: 2: 2601: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2571: 2569: 2556: 2553: 2549: 2545: 2541: 2538: 2534: 2528: 2525: 2521: 2517: 2513: 2512:Marston Morse 2508: 2505: 2501: 2495: 2492: 2486: 2483: 2477: 2474: 2469: 2465: 2460: 2455: 2451: 2447: 2446: 2441: 2425: 2422: 2419: 2404: 2398: 2392: 2389: 2385: 2381: 2377: 2373: 2369: 2363: 2360: 2356: 2350: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2316: 2313: 2307: 2304: 2300: 2297:-structures, 2296: 2292: 2287: 2284: 2280: 2274: 2271: 2267: 2262: 2259: 2255: 2251: 2247: 2245:0-691-08268-5 2241: 2237: 2233: 2229: 2223: 2221: 2217: 2212: 2210:3-540-65317-1 2206: 2202: 2198: 2194: 2188: 2185: 2180: 2176: 2175: 2170: 2164: 2161: 2157: 2151: 2148: 2144: 2141: 2137: 2136: 2129: 2126: 2121: 2117: 2112: 2107: 2103: 2099: 2098: 2093: 2077: 2074: 2071: 2054: 2048: 2045: 2041: 2037: 2036:Robert Geroch 2032: 2029: 2024: 2020: 2016: 2012: 2008: 2004: 2003: 1998: 1992: 1989: 1982: 1980: 1979: 1975: 1971: 1970:Marston Morse 1953: 1938: 1934: 1930: 1929:Eberhard Hopf 1922: 1920: 1918: 1917:Michael Davis 1914: 1910: 1905: 1900: 1887: 1884: 1876: 1873: 1869: 1862: 1857: 1849: 1846: 1835: 1830: 1829: 1828: 1819: 1815: 1799: 1789: 1784: 1769: 1751: 1741: 1736: 1720: 1702: 1692: 1687: 1669: 1667: 1662: 1661: 1660: 1644: 1615: 1586: 1576: 1571: 1556: 1552: 1534: 1524: 1519: 1490: 1458: 1429: 1399: 1367: 1349: 1346: 1345: 1344: 1342: 1335: 1319: 1309: 1304: 1288: 1287: 1286: 1280: 1278: 1275: 1259: 1255: 1232: 1228: 1219: 1214: 1200: 1178: 1174: 1153: 1147: 1144: 1141: 1132: 1126: 1124: 1110: 1107: 1101: 1095: 1073: 1069: 1048: 1045: 1039: 1033: 1013: 1010: 1004: 998: 978: 975: 970: 966: 945: 942: 936: 930: 910: 907: 902: 898: 875: 871: 865: 860: 857: 854: 850: 824: 820: 813: 808: 803: 800: 797: 793: 789: 783: 777: 754: 751: 748: 745: 742: 739: 733: 728: 724: 701: 697: 693: 690: 687: 682: 678: 674: 669: 665: 661: 658: 649: 644: 628: 620: 617: 606: 602: 598: 594: 590: 586: 581: 580: 579: 573: 571: 568: 567:Marcel Berger 564: 560: 556: 552: 547: 533: 530: 524: 521: 518: 515: 512: 509: 506: 500: 497: 489: 485: 481: 478: 474: 470: 466: 450: 447: 444: 441: 421: 418: 415: 412: 404: 400: 382: 379: 376: 373: 344: 341: 338: 335: 308: 305: 302: 294: 293:Robert Geroch 290: 286: 282: 266: 263: 258: 254: 250: 245: 241: 232: 231:Betti numbers 228: 210: 206: 202: 197: 193: 189: 184: 180: 176: 171: 167: 163: 158: 154: 145: 142:equating for 141: 137: 133: 129: 125: 121: 114: 98: 90: 87: 76: 72: 68: 62: 60: 57:has positive 56: 52: 47: 46: 45: 43: 35: 33: 31: 27: 23: 19: 2539: 2532: 2527: 2507: 2494: 2485: 2476: 2449: 2443: 2402: 2391: 2371: 2362: 2349: 2328: 2315: 2306: 2294: 2286: 2273: 2261: 2231: 2196: 2187: 2178: 2172: 2163: 2150: 2142: 2134: 2128: 2101: 2095: 2047: 2031: 2006: 2000: 1991: 1977: 1926: 1913:Ruth Charney 1906: 1903: 1831: 1825: 1816: 1672: 1663: 1352: 1347: 1338: 1289: 1284: 1276: 1215: 1133: 1130: 650: 647: 582: 577: 548: 487: 483: 479: 472: 468: 465:torus action 117: 64: 48: 39: 17: 15: 2584:Conjectures 2169:Hopf, Heinz 2009:: 117–126. 559:Switzerland 285:John Milnor 144:4-manifolds 2568:Categories 2452:(1): 1–4. 2266:Heinz Hopf 2104:(1): 1–4. 2042:, 54, 1976 1983:References 1933:Heinz Hopf 1717:admits no 1664:A compact 563:Bad Elster 490:such that 42:Heinz Hopf 30:Heinz Hopf 2181:: 209–228 1885:≥ 1863:χ 1847:− 1790:× 1742:× 1693:× 1577:× 1525:× 1310:× 1256:π 1233:∗ 1175:π 1151:→ 1145:: 1096:χ 1034:χ 999:χ 931:χ 851:∏ 814:χ 794:∏ 778:χ 740:− 734:∈ 694:× 691:⋯ 688:× 675:× 618:− 531:≤ 522:⁡ 516:− 510:⁡ 501:− 477:Lie group 190:− 164:− 88:− 2579:Topology 2399:(1970). 2355:Springer 2201:Springer 2195:(2003). 2055:(1970). 643:or zero. 607:of sign 555:Fribourg 120:surfaces 77:of sign 26:topology 2555:1274115 2468:0264562 2384:0380906 2341:0229177 2254:0645728 2120:0264562 2023:0075647 958:and if 561:and at 233:vanish 2466:  2382:  2357:, 2014 2339:  2252:  2242:  2207:  2118:  2021:  126:. For 467:of a 134:and 2514:and 2240:ISBN 2205:ISBN 1972:and 1931:and 1915:and 1473:and 1046:< 1011:> 976:< 943:> 908:> 603:has 519:rank 507:rank 306:> 225:and 138:and 118:For 73:has 24:and 2544:doi 2454:doi 2143:130 2106:doi 2011:doi 1123:). 434:or 2570:: 2552:MR 2550:, 2535:, 2464:MR 2462:. 2448:. 2442:. 2380:MR 2337:MR 2335:. 2323:; 2250:MR 2248:, 2219:^ 2203:. 2199:. 2179:41 2177:, 2138:, 2116:MR 2114:. 2102:14 2100:. 2094:. 2019:MR 2017:. 2007:20 2005:. 1911:. 1888:0. 557:, 534:5. 32:. 2557:. 2546:: 2540:4 2470:. 2456:: 2450:4 2440:" 2426:2 2423:+ 2420:n 2415:R 2403:n 2343:. 2295:G 2213:. 2122:. 2108:: 2092:" 2078:2 2075:+ 2072:n 2067:R 2025:. 2013:: 1954:2 1949:T 1882:) 1877:k 1874:2 1870:M 1866:( 1858:k 1854:) 1850:1 1844:( 1800:2 1795:S 1785:2 1780:S 1752:2 1747:S 1737:2 1732:S 1703:2 1698:S 1688:2 1683:S 1645:5 1640:R 1616:6 1611:R 1587:2 1582:S 1572:2 1567:S 1535:2 1530:S 1520:2 1515:S 1491:2 1486:P 1483:C 1459:4 1454:S 1430:5 1425:S 1400:2 1395:P 1392:C 1368:4 1363:S 1320:2 1315:S 1305:2 1300:S 1260:1 1229:f 1201:f 1179:1 1154:M 1148:M 1142:f 1111:0 1108:= 1105:) 1102:M 1099:( 1074:k 1070:e 1049:0 1043:) 1040:M 1037:( 1014:0 1008:) 1005:M 1002:( 979:0 971:k 967:e 946:0 940:) 937:M 934:( 911:0 903:k 899:e 876:k 872:e 866:d 861:1 858:= 855:k 830:) 825:k 821:M 817:( 809:d 804:1 801:= 798:k 790:= 787:) 784:M 781:( 758:} 755:1 752:, 749:0 746:, 743:1 737:{ 729:k 725:e 702:d 698:M 683:2 679:M 670:1 666:M 662:= 659:M 629:d 625:) 621:1 615:( 528:) 525:H 513:G 504:( 498:k 488:k 484:H 480:G 473:M 469:k 451:4 448:+ 445:k 442:4 422:2 419:+ 416:k 413:4 383:2 380:+ 377:d 374:2 369:R 345:1 342:+ 339:d 336:2 331:R 309:2 303:d 267:0 264:= 259:3 255:b 251:= 246:1 242:b 211:4 207:b 203:+ 198:3 194:b 185:2 181:b 177:+ 172:1 168:b 159:0 155:b 113:. 99:d 95:) 91:1 85:( 63:d

Index

differential geometry
topology
Heinz Hopf
Heinz Hopf
Riemannian manifold
sectional curvature
Euler characteristic
Riemannian manifold
sectional curvature
Euler characteristic
surfaces
Gauss–Bonnet theorem
four-dimensional manifolds
fundamental group
Poincaré duality
Euler–Poincaré formula
4-manifolds
Synge's theorem
Betti numbers
Chern–Gauss–Bonnet theorem
John Milnor
Shiing-Shen Chern
Robert Geroch
sphere theorem
killing vector field
torus action
Lie group
German Mathematical Society
Fribourg
Switzerland

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑