Knowledge (XXG)

Torus action

Source 📝

1239: 1052: 753: 252: 884: 324: 646: 122: 579: 169: 1226:
M. Brion, C. Procesi, Action d'un tore dans une variété projective, in Operator algebras, unitary representations, and invariant theory (Paris 1989), Prog. in Math. 92 (1990), 509–539.
511: 928: 1097: 785: 353: 936: 816: 276: 388: 467: 1223:
A. Bialynicki-Birula, "Some Theorems on Actions of Algebraic Groups," Annals of Mathematics, Second Series, Vol. 98, No. 3 (Nov., 1973), pp. 480–497
657: 1280: 1214: 366:
does not have finite dimension, the existence of such a decomposition is tricky but one easy case when decomposition is possible is when
180: 1309: 1299: 1273: 825: 285: 586: 84: 1304: 520: 133: 399: 282:
The decomposition exists because the linear action determines (and is determined by) a linear representation
1319: 476: 391: 1266: 1149: 1120: 893: 1314: 1174: 356: 1139: 70:
of a torus can be simultaneously diagonalized, after extending the base field if necessary: if a torus
514: 1060: 43:. In differential geometry, one considers an action of a real or complex torus on a manifold (or an 757: 395: 67: 25: 54:
algebraic variety with a torus acting on it in such a way that there is a dense orbit is called a
1192: 1187:
Altmann, Klaus; Ilten, Nathan Owen; Petersen, Lars; Süß, Hendrik; Vollmert, Robert (2012-08-15).
1047:{\displaystyle S=\bigoplus _{m_{0},\dots m_{n}\geq 0}S_{m_{0}\chi _{0}+\dots +m_{n}\chi _{n}}.} 1210: 21: 1250: 329: 1202: 1103:, then this is the usual decomposition of the polynomial ring into homogeneous components. 794: 261: 373: 29: 411: 1154: 1293: 55: 51: 1127: 1144: 748:{\displaystyle \chi _{i}(t)=t_{1}^{\alpha _{i,1}}\dots t_{r}^{\alpha _{i,r}},} 1111:
The Białynicki-Birula decomposition says that a smooth projective algebraic
1238: 1246: 44: 1175:"Konrad Voelkel » Białynicki-Birula and Motivic Decompositions «" 58:(for example, orbit closures that are normal are toric varieties). 1197: 1206: 32:
on the variety. A variety equipped with an action of a torus
258:-invariant subspace called the weight subspace of weight 1254: 247:{\displaystyle V_{\chi }=\{v\in V|t\cdot v=\chi (t)v\}} 1063: 939: 896: 828: 797: 760: 660: 589: 523: 479: 414: 394:; see below for an example). Alternatively, one uses 376: 332: 288: 264: 183: 136: 87: 1091: 1046: 922: 878: 810: 779: 747: 640: 573: 505: 461: 382: 370:is a union of finite-dimensional representations ( 347: 318: 270: 246: 163: 116: 879:{\displaystyle x_{0}^{m_{0}}\dots x_{r}^{m_{r}}} 319:{\displaystyle \pi :T\to \operatorname {GL} (V)} 74:is acting on a finite-dimensional vector space 641:{\displaystyle t\cdot x_{i}=\chi _{i}(t)x_{i}} 1274: 117:{\displaystyle V=\bigoplus _{\chi }V_{\chi }} 8: 469:be a polynomial ring over an infinite field 241: 197: 78:, then there is a direct sum decomposition: 574:{\displaystyle t=(t_{1},\dots ,t_{r})\in T} 164:{\displaystyle \chi :T\to \mathbb {G} _{m}} 1281: 1267: 1196: 1068: 1062: 1033: 1023: 1004: 994: 989: 971: 955: 950: 938: 914: 904: 895: 868: 863: 858: 843: 838: 833: 827: 802: 796: 765: 759: 728: 723: 718: 697: 692: 687: 665: 659: 632: 613: 600: 588: 556: 537: 522: 497: 492: 488: 487: 478: 450: 431: 413: 375: 331: 287: 263: 209: 188: 182: 155: 151: 150: 135: 108: 98: 86: 171:is a group homomorphism, a character of 1166: 506:{\displaystyle T=\mathbb {G} _{m}^{r}} 357:diagonalizable linear transformations 7: 1235: 1233: 1126:It is often described as algebraic 923:{\displaystyle \sum m_{i}\chi _{i}} 1253:. You can help Knowledge (XXG) by 14: 822:-weight vector and so a monomial 359:, upon extending the base field. 1237: 1107:Białynicki-Birula decomposition 1092:{\displaystyle \chi _{i}(t)=t} 1080: 1074: 677: 671: 625: 619: 562: 530: 456: 424: 342: 336: 313: 307: 298: 235: 229: 210: 146: 1: 780:{\displaystyle \alpha _{i,j}} 1189:The Geometry of T-Varieties 1336: 1232: 890:-weight vector of weight 16:In algebraic geometry, a 400:Hilbert-space direct sum 62:Linear action of a torus 348:{\displaystyle \pi (T)} 1150:Equivariant cohomology 1121:cellular decomposition 1093: 1048: 924: 880: 812: 781: 749: 642: 575: 507: 463: 398:; for example, uses a 384: 355:consists of commuting 349: 320: 272: 248: 165: 118: 1094: 1049: 925: 881: 813: 811:{\displaystyle x_{i}} 782: 750: 643: 576: 515:algebra automorphisms 508: 464: 385: 350: 321: 273: 271:{\displaystyle \chi } 249: 166: 119: 1061: 937: 894: 826: 795: 758: 658: 587: 521: 477: 412: 383:{\displaystyle \pi } 374: 330: 286: 262: 181: 134: 85: 1310:Algebraic varieties 875: 850: 741: 710: 502: 462:{\displaystyle S=k} 396:functional analysis 1300:Algebraic geometry 1140:Sumihiro's theorem 1115:-variety admits a 1089: 1044: 984: 920: 876: 854: 829: 808: 777: 745: 714: 683: 638: 571: 503: 486: 459: 380: 345: 316: 268: 244: 161: 114: 103: 1262: 1261: 1216:978-3-03719-114-9 946: 94: 22:algebraic variety 1327: 1305:Algebraic groups 1283: 1276: 1269: 1247:geometry-related 1241: 1234: 1220: 1200: 1179: 1178: 1171: 1098: 1096: 1095: 1090: 1073: 1072: 1053: 1051: 1050: 1045: 1040: 1039: 1038: 1037: 1028: 1027: 1009: 1008: 999: 998: 983: 976: 975: 960: 959: 929: 927: 926: 921: 919: 918: 909: 908: 885: 883: 882: 877: 874: 873: 872: 862: 849: 848: 847: 837: 817: 815: 814: 809: 807: 806: 786: 784: 783: 778: 776: 775: 754: 752: 751: 746: 740: 739: 738: 722: 709: 708: 707: 691: 670: 669: 647: 645: 644: 639: 637: 636: 618: 617: 605: 604: 580: 578: 577: 572: 561: 560: 542: 541: 512: 510: 509: 504: 501: 496: 491: 468: 466: 465: 460: 455: 454: 436: 435: 389: 387: 386: 381: 354: 352: 351: 346: 325: 323: 322: 317: 277: 275: 274: 269: 253: 251: 250: 245: 213: 193: 192: 170: 168: 167: 162: 160: 159: 154: 123: 121: 120: 115: 113: 112: 102: 1335: 1334: 1330: 1329: 1328: 1326: 1325: 1324: 1290: 1289: 1288: 1287: 1230: 1217: 1186: 1183: 1182: 1173: 1172: 1168: 1163: 1136: 1109: 1064: 1059: 1058: 1029: 1019: 1000: 990: 985: 967: 951: 935: 934: 910: 900: 892: 891: 864: 839: 824: 823: 798: 793: 792: 761: 756: 755: 724: 693: 661: 656: 655: 628: 609: 596: 585: 584: 552: 533: 519: 518: 475: 474: 446: 427: 410: 409: 372: 371: 328: 327: 284: 283: 260: 259: 184: 179: 178: 149: 132: 131: 104: 83: 82: 64: 30:algebraic torus 12: 11: 5: 1333: 1331: 1323: 1322: 1320:Geometry stubs 1317: 1312: 1307: 1302: 1292: 1291: 1286: 1285: 1278: 1271: 1263: 1260: 1259: 1242: 1228: 1227: 1224: 1221: 1215: 1181: 1180: 1165: 1164: 1162: 1159: 1158: 1157: 1155:monomial ideal 1152: 1147: 1142: 1135: 1132: 1108: 1105: 1088: 1085: 1082: 1079: 1076: 1071: 1067: 1055: 1054: 1043: 1036: 1032: 1026: 1022: 1018: 1015: 1012: 1007: 1003: 997: 993: 988: 982: 979: 974: 970: 966: 963: 958: 954: 949: 945: 942: 917: 913: 907: 903: 899: 871: 867: 861: 857: 853: 846: 842: 836: 832: 805: 801: 789: 788: 774: 771: 768: 764: 744: 737: 734: 731: 727: 721: 717: 713: 706: 703: 700: 696: 690: 686: 682: 679: 676: 673: 668: 664: 649: 648: 635: 631: 627: 624: 621: 616: 612: 608: 603: 599: 595: 592: 570: 567: 564: 559: 555: 551: 548: 545: 540: 536: 532: 529: 526: 500: 495: 490: 485: 482: 458: 453: 449: 445: 442: 439: 434: 430: 426: 423: 420: 417: 379: 344: 341: 338: 335: 315: 312: 309: 306: 303: 300: 297: 294: 291: 280: 279: 267: 243: 240: 237: 234: 231: 228: 225: 222: 219: 216: 212: 208: 205: 202: 199: 196: 191: 187: 176: 158: 153: 148: 145: 142: 139: 125: 124: 111: 107: 101: 97: 93: 90: 63: 60: 13: 10: 9: 6: 4: 3: 2: 1332: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1297: 1295: 1284: 1279: 1277: 1272: 1270: 1265: 1264: 1258: 1256: 1252: 1249:article is a 1248: 1243: 1240: 1236: 1231: 1225: 1222: 1218: 1212: 1208: 1204: 1199: 1194: 1190: 1185: 1184: 1176: 1170: 1167: 1160: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1137: 1133: 1131: 1129: 1124: 1122: 1118: 1114: 1106: 1104: 1102: 1086: 1083: 1077: 1069: 1065: 1041: 1034: 1030: 1024: 1020: 1016: 1013: 1010: 1005: 1001: 995: 991: 986: 980: 977: 972: 968: 964: 961: 956: 952: 947: 943: 940: 933: 932: 931: 915: 911: 905: 901: 897: 889: 869: 865: 859: 855: 851: 844: 840: 834: 830: 821: 803: 799: 772: 769: 766: 762: 742: 735: 732: 729: 725: 719: 715: 711: 704: 701: 698: 694: 688: 684: 680: 674: 666: 662: 654: 653: 652: 633: 629: 622: 614: 610: 606: 601: 597: 593: 590: 583: 582: 581: 568: 565: 557: 553: 549: 546: 543: 538: 534: 527: 524: 516: 513:act on it as 498: 493: 483: 480: 472: 451: 447: 443: 440: 437: 432: 428: 421: 418: 415: 407: 403: 401: 397: 393: 377: 369: 365: 360: 358: 339: 333: 310: 304: 301: 295: 292: 289: 265: 257: 238: 232: 226: 223: 220: 217: 214: 206: 203: 200: 194: 189: 185: 177: 174: 156: 143: 140: 137: 130: 129: 128: 109: 105: 99: 95: 91: 88: 81: 80: 79: 77: 73: 69: 68:linear action 61: 59: 57: 56:toric variety 53: 48: 46: 42: 40: 35: 31: 27: 23: 19: 1315:Morse theory 1255:expanding it 1244: 1229: 1188: 1169: 1128:Morse theory 1125: 1116: 1112: 1110: 1100: 1056: 887: 819: 790: 650: 470: 405: 404: 367: 363: 361: 281: 255: 172: 126: 75: 71: 65: 49: 38: 37: 36:is called a 33: 26:group action 18:torus action 17: 15: 1207:10.4171/114 1145:GKM variety 787:= integers. 1294:Categories 1161:References 791:Then each 390:is called 1198:1102.5760 1066:χ 1031:χ 1014:⋯ 1002:χ 978:≥ 965:… 948:⨁ 930:. Hence, 912:χ 898:∑ 852:… 763:α 726:α 712:… 695:α 663:χ 611:χ 594:⋅ 566:∈ 547:… 441:… 378:π 334:π 326:and then 305:⁡ 299:→ 290:π 266:χ 227:χ 218:⋅ 204:∈ 190:χ 147:→ 138:χ 110:χ 100:χ 96:⨁ 1134:See also 1119:-stable 1099:for all 1057:Note if 517:by: for 392:rational 45:orbifold 41:-variety 406:Example 1213:  651:where 473:. Let 408:: Let 127:where 52:normal 28:of an 20:on an 1245:This 1193:arXiv 886:is a 818:is a 24:is a 1251:stub 1211:ISBN 1203:doi 362:If 47:). 1296:: 1209:. 1201:. 1191:. 1130:. 1123:. 402:. 302:GL 254:, 66:A 50:A 1282:e 1275:t 1268:v 1257:. 1219:. 1205:: 1195:: 1177:. 1117:T 1113:T 1101:i 1087:t 1084:= 1081:) 1078:t 1075:( 1070:i 1042:. 1035:n 1025:n 1021:m 1017:+ 1011:+ 1006:0 996:0 992:m 987:S 981:0 973:n 969:m 962:, 957:0 953:m 944:= 941:S 916:i 906:i 902:m 888:T 870:r 866:m 860:r 856:x 845:0 841:m 835:0 831:x 820:T 804:i 800:x 773:j 770:, 767:i 743:, 736:r 733:, 730:i 720:r 716:t 705:1 702:, 699:i 689:1 685:t 681:= 678:) 675:t 672:( 667:i 634:i 630:x 626:) 623:t 620:( 615:i 607:= 602:i 598:x 591:t 569:T 563:) 558:r 554:t 550:, 544:, 539:1 535:t 531:( 528:= 525:t 499:r 494:m 489:G 484:= 481:T 471:k 457:] 452:n 448:x 444:, 438:, 433:0 429:x 425:[ 422:k 419:= 416:S 368:V 364:V 343:) 340:T 337:( 314:) 311:V 308:( 296:T 293:: 278:. 256:T 242:} 239:v 236:) 233:t 230:( 224:= 221:v 215:t 211:| 207:V 201:v 198:{ 195:= 186:V 175:. 173:T 157:m 152:G 144:T 141:: 106:V 92:= 89:V 76:V 72:T 39:T 34:T

Index

algebraic variety
group action
algebraic torus
orbifold
normal
toric variety
linear action
diagonalizable linear transformations
rational
functional analysis
Hilbert-space direct sum
algebra automorphisms
cellular decomposition
Morse theory
Sumihiro's theorem
GKM variety
Equivariant cohomology
monomial ideal
"Konrad Voelkel » Białynicki-Birula and Motivic Decompositions «"
arXiv
1102.5760
doi
10.4171/114
ISBN
978-3-03719-114-9
Stub icon
geometry-related
stub
expanding it
v

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.