Knowledge (XXG)

Hot hand

Source 📝

257:
misunderstands random events in the market and is influenced by a belief that a small sample is able to represent the underlying process. To examine the effect of the hot hand and gambler's heuristic on the buying and selling behaviors of consumers, three hypotheses were made. Hypothesis one stated that consumers that were given stocks with positive and negative trends in earning would be more likely to buy a stock that was positive when it was first getting started but would become less likely to do so as the trend lengthened. Hypothesis two was that consumers would be more likely to sell a stock with negative earnings as the trend length initially increased but would decrease as the trend length increased more. Finally, the third hypothesis was that consumers in the buy condition show stronger preferences for the winning stock over the losing stock than consumers in the sell condition show for the losing stock over the winning stock. A consequence of the third hypothesis is that on average, consumers buy winners and sell losers.
144:
ranging in age from 22 to 90 years old. These participants were given a questionnaire preceded by a prompt that said in college and professional basketball games no players make 100% of their attempted shots. Then the questionnaire asked two important questions: (1) Does a basketball player have a better chance of making a shot after having just made the last two or three shots than after having missed the last two or three shots? (2) Is it important to pass the ball to someone who has just made several shots in a row?
61:. However, later research questioned whether the belief is indeed a fallacy. Some recent studies using modern statistical analysis have observed evidence for the "hot hand" in some sporting activities; however, other recent studies have not observed evidence of the "hot hand". Moreover, evidence suggests that only a small subset of players may show a "hot hand" and, among those who do, the magnitude (i.e., effect size) of the "hot hand" tends to be small. 182:
sequential dependency within each shooter across all shots. They also searched for sequential dependencies within each shooter per set of 25 continuous shots, and employed a variety of novel techniques for isolating hot performance. According to the hot hand a player should have very few runs and instead their hits and misses should be in clusters.
165:
Therefore, GTV concluded that there is no sign of a hot hand phenomenon. However, Miller and Sanjurjo show that GTV's assumption is wrong and, in fact, the expected rate of hits after a streak of hits should be lower than the rate of hits after a streak of misses. Thus, an equal rate of hits to misses after a streak is a sign of a hot hand.
297:, and counter the gambler's fallacy by having the participant focus on the person tossing the coin. In contrast, they attempted to initiate the hot-hand fallacy by centering the participant's focus on the person tossing the coin as a reason for the streak of either heads or tails. In either case the data should fall in line with 82:, and Robert Vallone. The "Hot Hand in Basketball" study questioned the hypothesis that basketball players have "hot hands", which the paper defined as the claim that players are more likely to make a successful shot if their previous shot was successful. The study looked at the inability of respondents to properly understand 221:
there was a significant increase in players' probabilities of hitting the second shot in a two-shot series compared to the first one. They also found that in a set of two consecutive shots, the probability of hitting the second shot is greater following a hit than following a miss on the previous one.
151:
One study looked at the root of the hot-hand fallacy as being from an inability to appropriately judge sequences. The study compiled research from dozens of behavioral and cognitive studies that examined the hot-hand and gambler's fallacies with random mechanisms and skill-generated streaks. In terms
143:
There are many proposed explanations for why people are susceptible to the hot-hand fallacy. Alan D. Castel, and others investigated the idea that age would alter an individual's belief in the fallacy. To test this idea researchers conducted a cross-sectional study where they sampled 455 participants
320:
The researchers found the results of this study to match their initial hypothesis that the gambler's fallacy could in fact be countered by the use of the hot hand and people's attention to the person who was actively flipping the coin. It is important to note that this counteraction of the gambler's
285:
wheel. It is caused by the false belief that the random numbers of a small sample will balance out the way they do in large samples; this is known as the law of small numbers heuristic. The difference between this and the hot-hand fallacy is that with the hot-hand fallacy an individual expects a run
172:
because they start counting after a series of hits/misses. Miller and Sanjurjo show analytically for a series of one hit (and empirically for bigger streaks) that this introduces a bias towards more misses, given that the number following samples is small enough (e.g. less than 100 for a fair coin).
160:
In 2018 Miller and Sanjurjo published a new analysis of the original research of Gilovich, Tversky, and Vallone (GTV) and in contrast concluded that there is "significant evidence of streak shooting". Miller and Sanjurjo concluded that there is indeed a statistical basis for the hot hand phenomenon
90:
can impair a person's judgement of statistical information, the hot hand fallacy can lead people to form incorrect assumptions regarding random events. The three researchers provide an example in the study regarding the "coin toss"; respondents expected even short sequences of heads and tails to be
185:
In their research there were only two players who had a significantly lower number of runs than expected by chance. No shooter had significantly more runs than would be expected by chance. About half of the shooters (12 of 23 = 52%) had fewer runs than expected, and about half (11 of 23 = 48%) had
260:
The results of the experiment did not support the first hypothesis but did support hypotheses two and three, suggesting that the use of these heuristics is dependent on buying or selling and the length of the sequence. In summary, buyers for both short and long trends and sellers for short trends
220:
A paper from October 2011 by Yaari and Eisenmann, a large dataset of more than 300,000 NBA free throws were found to show "strong evidence" for the "hot hand" phenomenon at the individual level. They analyzed all free throws taken during five regular NBA seasons from 2005 to 2010. They found that
316:
was coming up with a lot of heads or tails. Finally there was a control condition in which there was nothing said by the person tossing the coin. The participants were also assigned to different groups, one in which the person flipping the coin changed and the other where the person remained the
147:
The main interest of the questionnaire was to see if a participant answered yes to the first question, implying that they believed in the hot-hand fallacy. The results showed that participants over 70 years of age were twice as likely to believe the fallacy than adults 40–49, confirming that the
114:
and shot selection would interfere with the shooter. The second and third take out the element of shot selection, and the fourth eliminates the game setting and the distractions and other external factors mentioned before. The studies primarily found that the outcomes of both field goal and free
231:
In 2014, a paper from three Harvard graduates presented at the Sloan Sports Analytics Conference, which used advanced statistics that for the first time could control for variables in basketball games such as the player's shot location and a defender's position, showed a "small yet significant
181:
A 2003 study by Koehler, J. J. & Conley C. A. was conducted to examine the hot hand in professional basketball. In this study the researchers examined film from the NBA shooting contests from 1994 to 1997. Through studying the film of the contests the researchers hoped to find evidence of
164:
GTV assumed that there is only evidence of a hot hand if the probability of a hit is higher after a streak of hits than the probability of a hit after a streak of misses. This cannot be observed in the hit pattern of the 76ers. The aforementioned probabilities are not significantly different.
235:
In 2015, an examination of the 1985 study by Joshua Miller and Adam Sanjurjo found flaws in the methodology of the 1985 study and showed that, in fact, the hot hands may exist. The researchers said that instead it may be attributable to a misapplication of statistical techniques. The authors
256:
There are places other than sport that can be affected by the hot-hand fallacy. A study conducted by Joseph Johnson et al. examined the characteristics of an individual's buying and selling behavior as it pertained to the hot hand and gambler's heuristic. Both of these occur when a consumer
91:
approximately 50% heads and 50% tails. The study proposed two biases that are created by the kind of thought pattern applied to the coin toss: it could lead an individual to believe that the probability of heads or tails increases after a long sequence of either has occurred (known as the
286:
to continue. There is a much larger aspect of the hot hand that relies on the individual. This relates to a person's perceived ability to predict random events, which is not possible for truly random events. The fact that people believe that they have this ability is in line with the
110:. The third study analyzed free-throw data and the fourth study was of a controlled shooting experiment. The reason for the different studies was to gradually eliminate external factors around the shot. For example, in the first study there is the factor of how the opposing team's 49:) is a phenomenon, previously considered a cognitive social bias, that a person who experiences a successful outcome has a greater chance of success in further attempts. The concept is often applied to sports and skill-based tasks in general and originates from 186:
more runs than expected. The researchers also compared the shooters hits and misses. The data were more in accordance with chance than the hot hand. Through their analysis of the data the conclusion was drawn that there was nothing that supported the hot hand
242:
However, other recent studies have not observed evidence of the "hot hand". Moreover, evidence suggests that only a small subset of players may show a "hot hand" and, among those who do, the magnitude (i.e., effect size) of the "hot hand" tends to be small.
136:). The second explanation deals with people's inability to recognize chance sequences. People expect chance sequences to alternate between the options more than they actually do. Chance sequences can seem too lumpy, and are thus dismissed as non-chance ( 216:
of their own experiments. By performing power analysis on the 1985 data, the researchers concluded that even if the Philadelphia 76ers did shoot in streaks, it is highly unlikely that Gilovich, Vallone and Tversky would have discovered that fact.
152:
of judging random sequences the general conclusion was that people do not have a statistically correct concept of random. It concluded that human beings are built to see patterns in sensory and conceptual data of all types.
321:
fallacy only happened if the person tossing the coin remained the same. This study shed light on the idea that the gambler's and hot hand fallacies at times fight for dominance when people try to make predictions about the
277:. The gambler's fallacy is the expectation of a reversal following a run of one outcome. Gambler's fallacy occurs mostly in cases in which people feel that an event is random, such as rolling a pair of dice on a 173:
According to Miller and Sanjurjo: "it is incorrect to expect a consistent 50 percent (Bernoulli i.i.d.) shooter who has taken 100 shots to make half of the shots that immediately follow a streak of three hits".
119:
of each other. In the later studies involving the controlled shooting experiment the results were the same; evidently, the researchers concluded that the sense of being "hot" does not predict hits or misses.
148:
older individuals relied more on heuristic-based processes. Older adults are more likely to remember positive information, making them more sensitive to gains and less to losses than younger adults.
53:, where a shooter is more likely to score if their previous attempts were successful; i.e., while having the "hot hand.” While previous success at a task can indeed change the 239:
A 2021 study, using data from NBA Three-Point Contests over the period 1986–2020, found "considerable evidence of hot hand shooting in and across individuals".
418: 95:); or it could cause an individual to reject randomness due to a belief that a streak of either outcome is not representative of a random sample. 57:
attitude and subsequent success rate of a player, researchers for many years did not find evidence for a "hot hand" in practice, dismissing it as
107: 308:
They tested this concept under three different conditions. The first was person focused, where the person who tossed the coin mentioned that
132:
towards looking for streaks before watching a basketball game. This bias would then affect their perceptions and recollection of the game (
856:"The Hot (Invisible?) Hand: Can Time Sequence Patterns of Success/Failure in Sports Be Modeled as Repeated Random Independent Trials?" 449:
Miller, Joshua B.; Sanjurjo, Adam (2016). "Surprised by the Gambler's and Hot Hand Fallacies? A Truth in the Law of Small Numbers".
116: 617:
Castel, Alan; Drolet Rossi, A.; McGIllivary, S. (2012). "Beliefs About the "Hot Hand" in Basketball Across the Adult Life Span".
1158: 393: 573:
Gilovich, Thomas; Tversky, A.; Vallone, R. (1985). "The Hot Hand in Basketball: On the Misperception of Random Sequences".
205:
More recent research has questioned the earlier findings, instead finding support for the belief of a hot hand phenomenon.
828: 1081:
Raab, Markus; Gula, B.; Gigerenzer, G. (2011). "The Hot hand Exists in Volleyball and Is Used for Allocation Decisions".
699: 1163: 1153: 128:
Gilovich offers two different explanations for why people believe hot hands exist. The first is that a person may be
312:
was tossing a lot of heads or tails. Second was a coin focus, where the person who tossed the coin mentioned that
1148: 31: 483:
McNair, Brian; Margolin, Eric; Law, Michael; Ritov, Ya'acov (2020). "The Hot Hand and Its Effect on the NBA".
228:
and found that there was "strong evidence" that the hot hand existed in ten different statistical categories.
374: 914: 947: 364: 782:
Raab, Markus; Gula, Bartosz; Gigerenzer, Gerd (2012). "Raab, M., Gula, B., & Gigerenzer, G. (2011)".
225: 867: 520: 354: 344: 274: 262: 261:
would fall under the influence of the hot-hand fallacy. The opposite would be in accordance with the
92: 339: 287: 137: 111: 103: 1063: 1017: 714: 680: 590: 484: 462: 99: 1108: 977: 922: 895: 809: 742: 672: 634: 548: 369: 301:, whereby they feel that they can control the outcomes of random events in ways that defy the 298: 213: 209: 133: 98:
The first study was conducted via a questionnaire of 100 basketball fans from the colleges of
419:"The Hot Hand Fallacy: Cognitive Mistakes or Equilibrium Adjustments? Evidence from Baseball" 1098: 1090: 1055: 1009: 1000:
Johnson, Joseph; Tellis, G.J.; Macinnis, D.J. (2005). "Losers, Winners, and Biased Trades".
967: 959: 885: 875: 799: 791: 734: 724: 664: 626: 582: 538: 528: 454: 1103: 1048:
Sympathetic Magic and Perceptions of Randomness: The Hot Hand Versus the Gambler's Fallacy
804: 75: 1128: 871: 524: 890: 855: 543: 508: 1046:
Roney, Christopher J. R.; Trick, Lana M. (2009). "Roney, C. R., Trick, L. M. (2009)".
1142: 1021: 963: 586: 294: 169: 1067: 684: 466: 236:
concluded that people were right to believe that the hot hand exists in basketball.
302: 79: 594: 880: 533: 655:
Oskarsson, Van Boven (2009). "What's Next? Judging Sequences of Binary Events".
359: 349: 17: 837: 1059: 194: 187: 87: 83: 54: 50: 981: 926: 746: 265:
which has more of an influence on longer sequences of numerical information.
1133: 948:"Is it a Fallacy to Believe in the Hot Hand in the NBA Three-Point Contest?" 763:
Koehler, Jonathan (2003). "The "Hot Hand" Myth in Professional Basketball".
334: 1112: 899: 813: 676: 638: 552: 193:
A study reported that a belief in the hot-hand fallacy affects a player's
458: 305:, such as being "hot" at tossing a specific randomly determined outcome. 293:
In this study, the researchers wanted to test if they could manipulate a
282: 273:
A study was conducted to examine the difference between the hot-hand and
972: 700:"Surprised by the Hot Hand Fallacy? A Truth in the Law of Small Numbers" 738: 58: 1129:
The Hot Hand in Basketball: Fallacy or Adaptive Thinking? - B.D. Burns
729: 1094: 795: 668: 630: 224:
In November 2013, researchers at Stanford University used data from
1013: 719: 489: 278: 106:. The other looked at the individual records of players from the 129: 836:. International Conference on Cognitive Science. Archived from 830:
The Story of The Hot Hand: Powerful Myth or Powerless Critique?
1134:
The Hot Hand Fallacy: Taxonomy of the Logical Fallacies
201:
Recent research examining whether there is a hot hand
1041: 1039: 1037: 1035: 1033: 1031: 74:The fallacy was first described in a 1985 paper by 507:Pelechrinis, Konstantinos; Winston, Wayne (2022). 156:Reanalysis of Gilovich, Tversky, and Vallone study 502: 500: 168:Miller and Sanjurjo stated that GTV introduced a 212:noted that Gilovich et al. did not examine the 995: 993: 991: 568: 566: 564: 562: 161:in the hit pattern of the Philadelphia 76ers. 8: 650: 648: 612: 610: 608: 606: 604: 478: 476: 1083:Journal of Experimental Psychology: Applied 827:Korb, Kevin B.; Stillwell, Michael (2003). 784:Journal of Experimental Psychology: Applied 946:Miller, Joshua B.; Sanjurjo, Adam (2021). 915:"Does the 'Hot Hand' Exist in Basketball?" 758: 756: 698:Miller, Joshua B.; Sanjurjo, Adam (2018). 1102: 971: 889: 879: 803: 728: 718: 542: 532: 488: 394:"List of cognitive biases with examples" 385: 7: 444: 442: 440: 438: 423:Stanford Graduate School of Business 412: 410: 401:Academy of Wisdom and Enlightenment 70:1985 "Hot Hand in Basketball" paper 25: 854:Yaari, G.; Eisenmann, S. (2011). 208:A 2003 paper from researchers at 964:10.1016/j.euroecorev.2021.103771 417:Green, Brett; Zwiebel, Jeffery. 1104:11858/00-001M-0000-0024-EE20-4 805:11858/00-001M-0000-0024-EE20-4 1: 86:and random events; much like 1002:Journal of Consumer Research 881:10.1371/journal.pone.0024532 587:10.1016/0010-0285(85)90010-6 534:10.1371/journal.pone.0261890 765:Journal of Sport Psychology 1180: 509:"The Hot Hand in the Wild" 108:1980–81 Philadelphia 76ers 29: 1060:10.1080/13546780902847137 913:Cohen, Ben (2014-02-27). 32:Hot hand (disambiguation) 952:European Economic Review 375:Winning streak (sports) 1159:Basketball terminology 657:Psychological Bulletin 365:Statistical randomness 281:table or spinning the 247:In non-sport contexts 226:Major League Baseball 124:Proposed explanations 65:Development of theory 43:"hot hand phenomenon" 619:Psychology and Aging 575:Cognitive Psychology 459:10.2139/ssrn.2627354 355:Poisson distribution 30:For other uses, see 919:Wall Street Journal 872:2011PLoSO...624532Y 525:2022PLoSO..1761890P 451:IGIER Working Paper 340:Clustering illusion 288:illusion of control 138:clustering illusion 115:throw attempts are 41:(also known as the 1164:1985 introductions 1154:Informal fallacies 403:. 15 January 2017. 232:hot-hand effect." 112:defensive strategy 47:"hot hand fallacy" 730:10.3982/ecta14943 370:Survivorship bias 345:Gambler's fallacy 299:sympathetic magic 275:gambler's fallacy 263:gambler's fallacy 214:statistical power 210:Monash University 177:Follow up studies 134:confirmation bias 93:gambler's fallacy 16:(Redirected from 1171: 1149:Cognitive biases 1117: 1116: 1106: 1095:10.1037/a0025951 1078: 1072: 1071: 1043: 1026: 1025: 997: 986: 985: 975: 943: 937: 936: 934: 933: 910: 904: 903: 893: 883: 851: 845: 844: 842: 835: 824: 818: 817: 807: 796:10.1037/a0025951 779: 773: 772: 760: 751: 750: 732: 722: 713:(6): 2019–2047. 704: 695: 689: 688: 669:10.1037/a0014821 652: 643: 642: 631:10.1037/a0026991 614: 599: 598: 570: 557: 556: 546: 536: 504: 495: 494: 492: 480: 471: 470: 446: 433: 432: 430: 429: 414: 405: 404: 398: 390: 21: 18:Hot-hand fallacy 1179: 1178: 1174: 1173: 1172: 1170: 1169: 1168: 1139: 1138: 1125: 1120: 1080: 1079: 1075: 1045: 1044: 1029: 1008:(32): 324–329. 999: 998: 989: 945: 944: 940: 931: 929: 912: 911: 907: 853: 852: 848: 840: 833: 826: 825: 821: 781: 780: 776: 762: 761: 754: 702: 697: 696: 692: 654: 653: 646: 616: 615: 602: 572: 571: 560: 519:(1): e0261890. 506: 505: 498: 482: 481: 474: 448: 447: 436: 427: 425: 416: 415: 408: 396: 392: 391: 387: 383: 331: 303:laws of physics 271: 254: 249: 203: 179: 158: 126: 76:Thomas Gilovich 72: 67: 35: 28: 23: 22: 15: 12: 11: 5: 1177: 1175: 1167: 1166: 1161: 1156: 1151: 1141: 1140: 1137: 1136: 1131: 1124: 1123:External links 1121: 1119: 1118: 1073: 1054:(2): 197–210. 1027: 1014:10.1086/432241 987: 938: 905: 866:(10): e24532. 846: 843:on 2013-09-27. 819: 774: 771:(25): 253–259. 752: 690: 663:(2): 262–285. 644: 625:(3): 601–605. 600: 581:(3): 295–314. 558: 496: 472: 434: 406: 384: 382: 379: 378: 377: 372: 367: 362: 357: 352: 347: 342: 337: 330: 327: 270: 267: 253: 250: 248: 245: 202: 199: 178: 175: 157: 154: 125: 122: 71: 68: 66: 63: 27:Cognitive bias 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1176: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1146: 1144: 1135: 1132: 1130: 1127: 1126: 1122: 1114: 1110: 1105: 1100: 1096: 1092: 1088: 1084: 1077: 1074: 1069: 1065: 1061: 1057: 1053: 1049: 1042: 1040: 1038: 1036: 1034: 1032: 1028: 1023: 1019: 1015: 1011: 1007: 1003: 996: 994: 992: 988: 983: 979: 974: 969: 965: 961: 957: 953: 949: 942: 939: 928: 924: 920: 916: 909: 906: 901: 897: 892: 887: 882: 877: 873: 869: 865: 861: 857: 850: 847: 839: 832: 831: 823: 820: 815: 811: 806: 801: 797: 793: 789: 785: 778: 775: 770: 766: 759: 757: 753: 748: 744: 740: 736: 731: 726: 721: 716: 712: 708: 701: 694: 691: 686: 682: 678: 674: 670: 666: 662: 658: 651: 649: 645: 640: 636: 632: 628: 624: 620: 613: 611: 609: 607: 605: 601: 596: 592: 588: 584: 580: 576: 569: 567: 565: 563: 559: 554: 550: 545: 540: 535: 530: 526: 522: 518: 514: 510: 503: 501: 497: 491: 486: 479: 477: 473: 468: 464: 460: 456: 452: 445: 443: 441: 439: 435: 424: 420: 413: 411: 407: 402: 395: 389: 386: 380: 376: 373: 371: 368: 366: 363: 361: 358: 356: 353: 351: 348: 346: 343: 341: 338: 336: 333: 332: 328: 326: 324: 318: 315: 311: 306: 304: 300: 296: 291: 289: 284: 280: 276: 268: 266: 264: 258: 251: 246: 244: 240: 237: 233: 229: 227: 222: 218: 215: 211: 206: 200: 198: 196: 191: 189: 183: 176: 174: 171: 170:sampling bias 166: 162: 155: 153: 149: 145: 141: 139: 135: 131: 123: 121: 118: 113: 109: 105: 101: 96: 94: 89: 85: 81: 77: 69: 64: 62: 60: 56: 55:psychological 52: 48: 44: 40: 33: 19: 1089:(1): 81–94. 1086: 1082: 1076: 1051: 1047: 1005: 1001: 973:10045/117429 955: 951: 941: 930:. Retrieved 918: 908: 863: 859: 849: 838:the original 829: 822: 790:(1): 81–94. 787: 783: 777: 768: 764: 710: 707:Econometrica 706: 693: 660: 656: 622: 618: 578: 574: 516: 512: 450: 426:. Retrieved 422: 400: 388: 322: 319: 313: 309: 307: 292: 272: 259: 255: 241: 238: 234: 230: 223: 219: 207: 204: 197:of success. 192: 184: 180: 167: 163: 159: 150: 146: 142: 127: 97: 80:Amos Tversky 73: 46: 42: 38: 36: 739:10045/85611 360:Probability 350:Game theory 195:perceptions 117:independent 1143:Categories 958:: 103771. 932:2016-05-06 720:1902.01265 490:2010.15943 428:2016-05-06 381:References 188:hypothesis 88:innumeracy 84:randomness 59:fallacious 51:basketball 39:"hot hand" 1022:145211986 982:0014-2921 927:0099-9660 747:0012-9682 335:Apophenia 295:coin toss 252:Consumers 1113:22004053 1068:28063710 900:21998630 860:PLOS ONE 814:22004053 685:10138928 677:19254080 639:22288426 553:35077477 513:PLOS ONE 467:17952286 329:See also 314:the coin 283:roulette 269:Gambling 104:Stanford 891:3187751 868:Bibcode 544:8789340 521:Bibcode 453:(552). 325:event. 100:Cornell 1111:  1066:  1020:  980:  925:  898:  888:  812:  745:  683:  675:  637:  595:317235 593:  551:  541:  465:  317:same. 130:biased 1064:S2CID 1018:S2CID 841:(PDF) 834:(PDF) 715:arXiv 703:(PDF) 681:S2CID 591:S2CID 485:arXiv 463:S2CID 397:(PDF) 279:craps 1109:PMID 978:ISSN 923:ISSN 896:PMID 810:PMID 743:ISSN 673:PMID 635:PMID 549:PMID 323:same 102:and 37:The 1099:hdl 1091:doi 1056:doi 1010:doi 968:hdl 960:doi 956:138 886:PMC 876:doi 800:hdl 792:doi 735:hdl 725:doi 665:doi 661:135 627:doi 583:doi 539:PMC 529:doi 455:doi 310:she 140:). 78:, 45:or 1145:: 1107:. 1097:. 1087:18 1085:. 1062:. 1052:15 1050:. 1030:^ 1016:. 1004:. 990:^ 976:. 966:. 954:. 950:. 921:. 917:. 894:. 884:. 874:. 862:. 858:. 808:. 798:. 788:18 786:. 767:. 755:^ 741:. 733:. 723:. 711:86 709:. 705:. 679:. 671:. 659:. 647:^ 633:. 623:27 621:. 603:^ 589:. 579:17 577:. 561:^ 547:. 537:. 527:. 517:17 515:. 511:. 499:^ 475:^ 461:. 437:^ 421:. 409:^ 399:. 290:. 190:. 1115:. 1101:: 1093:: 1070:. 1058:: 1024:. 1012:: 1006:2 984:. 970:: 962:: 935:. 902:. 878:: 870:: 864:6 816:. 802:: 794:: 769:2 749:. 737:: 727:: 717:: 687:. 667:: 641:. 629:: 597:. 585:: 555:. 531:: 523:: 493:. 487:: 469:. 457:: 431:. 34:. 20:)

Index

Hot-hand fallacy
Hot hand (disambiguation)
basketball
psychological
fallacious
Thomas Gilovich
Amos Tversky
randomness
innumeracy
gambler's fallacy
Cornell
Stanford
1980–81 Philadelphia 76ers
defensive strategy
independent
biased
confirmation bias
clustering illusion
sampling bias
hypothesis
perceptions
Monash University
statistical power
Major League Baseball
gambler's fallacy
gambler's fallacy
craps
roulette
illusion of control
coin toss

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.