Knowledge (XXG)

Hyperthermophile

Source 📝

194:.The most common wall is a paracrystalline surface layer formed by proteins or glycoproteins of hexagonal symmetry. With the exception of the genus Thermoplasma which lacks a wall, a deficiency that is filled by the development of a cell membrane with a unique chemical structure. It contains a lipid tetraether with and glucose in a very high proportion to the total lipids. In addition, it is accompanied by glycoproteins that together with lipids give the membrane of Thermoplasma spp stability against the acidic and thermophilic conditions in which it lives. 268:. It grows on many different sugars such as starch, maltose, and cellobiose, that once in the cell they are transformed in glucose, but they can use even others organic substrate as carbon and energy source. Some evidences showed that glucose is catabolysed by a modified Embden-Meyerhof pathway, that is the canonical version of well-known glycolysis, present in both eukaryotes and bacteria. 156: 271:
Some differences discovered concerned the sugar kinase of starting reactions of this pathway: instead of conventional glucokinase and phosphofructokinase, two novel sugar kinase have been discovered. These enzymes are ADP-dependent glucokinase (ADP-GK) and ADP-dependent phosphofructokinase (ADP-PFK),
613:
In June 1965, Thomas Brock, a microbiologist at Indiana University, discovered a new form of bacteria in the thermal vents of Yellowstone National Park. They can survive at near-boiling temperatures. At that time the upper temperature for life was thought to be 73 °C. He found that one particular
216:
denature at elevated temperatures and so also must adapt. Protein complexes known as heat shock proteins assist with proper folding. Their function is to bind or engulf the protein during synthesis, creating an environment conducive to its correct tertiary conformation. In addition, heat shock
179:. They grow-similar to mesophiles-within a temperature range of about 25–30 °C between the minimal and maximal temperature. The fastest growth is obtained at their optimal growth temperature which may be up to 106 °C. The main characteristics they present in their morphology are: 209:
units. At certain points of the membrane, side chains linked by covalent bonds and a monolayer are found at these points. Thus, the membrane is much more stable and resistant to temperature alterations than the acidic bilayers present in eukaryotic organisms and
34:
is an organism that thrives in extremely hot environments—from 60 °C (140 °F) upwards. An optimal temperature for the existence of hyperthermophiles is often above 80 °C (176 °F). Hyperthermophiles are often within the domain
254:
Hyperthermophiles have a great diversity in metabolism including chemolithoautotrophs and chemoorganoheterotrophs, while there are not phototrophic hyperthermophiles known. Sugar catabolism involves non-phosphorylated versions of the
137:
to their functional analogs in organisms that thrive at lower temperatures but have evolved to exhibit optimal function at much greater temperatures. Most of the low-temperature homologs of the hyperthermostable proteins would be
200:
is the main adaptation to temperature. This membrane is radically different from that known from and to eukaryotes. The membrane of Archaeabacteria is built on a tetraether unit, thus establishing ether bonds between
896:
Saiki, R. K.; Gelfand, d. h.; Stoffel, S; Scharf, S. J.; Higuchi, R; Horn, G. T.; Mullis, K. B.; Erlich, H. A. (1988). "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase".
47:
increase the boiling point of water. Many hyperthermophiles are also able to withstand other environmental extremes, such as high acidity or high radiation levels. Hyperthermophiles are a subset of
296:. Thermophiles-hyperthermophiles employ different mechanisms to adapt their cells to heat, especially to the cell wall, plasma membrane and its biomolecules (DNA, proteins, etc.): 122:; however, recent studies show that "there is no obvious correlation between the GC content of the genome and the optimal environmental growth temperature of the organism." 280:
As a rule, hyperthermophiles do not propagate at 50 °C or below, some not even below 80 or 90º. Although unable to grow at ambient temperatures, they are able to
102:
Although no hyperthermophile has shown to thrive at temperatures >122 °C, their existence is possible. Strain 121 survives 130 °C for two hours, but was
524: 237:
is an enzyme found in all hyperthermophiles. It is responsible for the introduction of positive spins which confer greater stability against high temperatures.
259:
some modified versions of the Embden-Meyerhof pathway, the canonical Embden-Meyerhof pathway is present only in hyperthermophilic Bacteria but not Archaea.
792:"Gene-centric association analysis for the correlation between the guanine-cytosine content levels and temperature range conditions of prokaryotic species" 43:
are also able to tolerate extreme temperatures. Some of these bacteria are able to live at temperatures greater than 100 °C, deep in the ocean where
588: 1367: 976:
Vázquez Bringas FJ, Santiago I, Gil L, Ribera T, Gracia-Salinas MJ, Román LS, Blas ID, Prades M, Alonso de Diego M, Ardanaz N, Muniesa A (2014).
304:" bonds (diether or tetraether) in archaea. In some archaea the membrane has a monolayer structure which further increases its heat resistance. 142:
above 60 °C. Such hyperthermostable proteins are often commercially important, as chemical reactions proceed faster at high temperatures.
1158:
Bar-Even, Arren; Flamholz, Avi; Noor, Elad; Milo, Ron (2012-05-17). "Rethinking glycolysis: on the biochemical logic of metabolic pathways".
700: 606: 1115:
Sakuraba, Haruhiko; Goda, Shuichiro; Ohshima, Toshihisa (2004). "Unique sugar metabolism and novel enzymes of hyperthermophilic archaea".
359:
that distinguish these organisms from other organisms. These strategies include an essential requirement for key proteins employed in
1686: 241:
this protein has been found in the genus and characterized by an increase, up to 40 °C, in the melting temperature of DNA. The
356: 205:
molecules and hydrophobic side chains that do not consist of fatty acids. These side chains are mainly composed of repeating
716: 256: 1360: 318:
that help the correct folding of proteins in situations of cellular stress such as the temperature in which they grow.
139: 743:"High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes" 1671: 1604: 368: 186:
the outermost part of archaea, it is arranged around the cell and protects the cell contents. It does not contain
133:—that is, they can maintain structural stability (and therefore function) at high temperatures. Such proteins are 83:, requiring temperatures of at least 90 °C for survival. An extraordinary heat-tolerant hyperthermophile is 68: 1013:
Brock, Christina M.; Bañó-Polo, Manuel; Garcia-Murria, Maria J.; Mingarro, Ismael; Esteve-Gasent, Maria (2017).
75:
in 1965. Since then, more than 70 species have been established. The most extreme hyperthermophiles live on the
1522: 1257:"Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork" 432: 360: 1645: 1638: 1624: 1529: 1353: 163:
Due to their extreme environments, hyperthermophiles can be adapted to several variety of factors such as
339:
Presence of a DNA reverse DNA gyrase that produces positive supercoiling and stabilizes DNA against heat.
1801: 1631: 1560: 52: 978:"Desarrollo de una aplicación informática para aprender clínica y producción equina jugando al Trivial" 593:. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 27. Springer. pp. xviii. 1553: 906: 463: 284:
there for many years. Based on their simple growth requirements, hyperthermophiles could grow on any
103: 1752: 1729: 1676: 1651: 1585: 1420: 614:
spring, Octopus Spring, had large amounts of pink, filamentous bacteria at temperatures of 82–88 °C.
496: 412: 372: 315: 264: 1339: 1203:"Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures" 1097: 680: 569: 272:
they catalyse the same reactions but use ADP as phosphoryl donor, instead of ATP, producing AMP.
134: 977: 300:
The presence in their plasma membrane of long-chain and saturated fatty acids in bacteria and "
1757: 1735: 1597: 1546: 1328: 1288: 1234: 1183: 1175: 1140: 1132: 1089: 1081: 1046: 922: 878: 823: 772: 696: 661: 602: 561: 400: 106:
until it had been transferred into a fresh growth medium, at a relatively cooler 103 °C.
80: 1806: 1691: 1489: 1460: 1320: 1278: 1268: 1224: 1214: 1167: 1124: 1073: 1036: 1026: 992: 914: 868: 858: 847:
genome and proteome composition: indications for hyperthermophilic and parasitic adaptation"
813: 803: 762: 754: 688: 651: 643: 594: 553: 477: 439: 93:
at 121 °C (hence its name). The current record growth temperature is 122 °C, for
1775: 1711: 1681: 1475: 1440: 130: 72: 1311:
Stetter, Karl (Feb 2013). "A brief history of the discovery of hyperthermophilic life".
910: 1767: 1706: 1425: 1283: 1256: 1229: 1202: 1041: 1014: 873: 842: 818: 791: 767: 742: 656: 627: 217:
proteins can collaborate in transporting newly folded proteins to their site of action.
996: 1795: 1722: 424: 293: 234: 187: 1101: 573: 1780: 1741: 1716: 1696: 1535: 1470: 1376: 514: 453: 229: 95: 76: 48: 44: 647: 1015:"Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi" 918: 692: 1747: 1701: 1480: 1465: 1395: 808: 720: 519: 355:
The hyperthermophilic archaea appear to have special strategies for coping with
233:
is characterized by the fact that it prevents DNA damage at these temperatures.
946: 1762: 1591: 1455: 1445: 1435: 1430: 1400: 1390: 1064:
Schönheit, P.; Schäfer, T. (January 1995). "Metabolism of hyperthermophiles".
1031: 598: 557: 490: 446: 389: 364: 329: 119: 85: 1179: 1136: 1085: 223:
is also adapted to elevated temperatures by several mechanisms. The first is
1615: 1494: 1450: 1410: 863: 509: 90: 17: 1332: 1292: 1238: 1187: 1144: 1093: 1050: 882: 827: 776: 758: 565: 544:
Stetter, K. (2006). "History of discovery of the first hyperthermophiles".
1273: 1219: 926: 665: 1540: 1513: 1415: 1405: 1171: 486:, which thrives in 65–100 °C in Obsidian Pool, Yellowstone National Park. 459: 417: 405: 393: 333: 245:
with which these proteins are associated collaborate in its supercoiling.
206: 202: 191: 40: 1324: 420:
which thrives at 100 °C, first discovered in Italy near a volcanic vent.
1576: 1077: 325:
that prevent chemical damage (depurination or depyrimidination) to DNA.
242: 126: 36: 1128: 159:
Different morphologies and classes of hyperthermophilic microorganisms
1566: 262:
Most of informations about sugar catabolism came from observation on
115: 89:, which has been able to double its population during 24 hours in an 27:
Organism that thrives in extremely hot environments from 60°C upwards
155: 312: 308: 301: 154: 587:
Seckbach, Joseph; Oren, Aharon; Stan-Lotter, Helga, eds. (2013).
1345: 289: 56: 1349: 227:, which has been isolated in only a few species of the genus. 114:
Early research into hyperthermophiles speculated that their
367:
process), an apparent lack of the DNA repair process of
717:"Microbe from depths takes life to hottest known limit" 590:
Polyextremophiles — Life under multiple forms of stress
947:"Archaeabacterias hipertermófilas: vida en ebullición" 1664: 1614: 1575: 1512: 1503: 1383: 1066:World Journal of Microbiology & Biotechnology 51:. Their existence may support the possibility of 408:living at 113 °C in Atlantic hydrothermal vents. 67:Hyperthermophiles isolated from hot springs in 525:Unique properties of hyperthermophilic archaea 1361: 1250: 1248: 1201:Schwartz, Michael H.; Pan, Tao (2015-12-10). 683:. In Horneck, G.; Baumstark-Khan, C. (eds.). 8: 985:Revista complutense de ciencias veterinarias 954:Revista Complutense de Ciencias Veterinarias 841:Das S, Paul S, Bag SK, Dutta C (July 2006). 342:Presence of proteins with higher content in 628:"The value of basic research: discovery of 129:molecules in the hyperthermophiles exhibit 1509: 1368: 1354: 1346: 190:, which makes them naturally resistant to 1282: 1272: 1228: 1218: 1040: 1030: 940: 938: 936: 872: 862: 817: 807: 766: 655: 971: 969: 967: 536: 288:, even on other planets and moons like 225:cyclic potassium 2,3-diphosphoglycerate 1340:How hot is too Hot? T-Limit Expedition 396:living at 121 °C in the Pacific Ocean. 371:and a lack of the MutS/MutL homologs ( 59:can thrive in environmental extremes. 1008: 1006: 7: 945:Fernández, P.G.; Ruiz, M.P. (2007). 741:Hurst LD, Merchant AR (March 2001). 790:Zheng H, Wu H; Wu (December 2010). 681:"Hyperthermophilic Microorganisms" 321:Accumulation of compounds such as 25: 1687:Acidophiles in acid mine drainage 997:10.5209/rev_RCCV.2014.v8.n1.44301 1313:Biochemical Society Transactions 484:Geothermobacterium ferrireducens 632:and other extreme thermophiles" 118:could be characterized by high 687:. Springer. pp. 169–184. 1: 332:that stabilizes DNA, RNA and 919:10.1126/science.239.4839.487 693:10.1007/978-3-642-59381-9_12 323:potassium diphosphoglycerate 809:10.1186/1471-2105-11-S11-S7 648:10.1093/genetics/146.4.1207 1823: 1672:Abiogenic petroleum origin 1605:Thermococcus gammatolerans 379:Specific hyperthermophiles 369:nucleotide excision repair 1032:10.1186/s12866-017-1127-y 599:10.1007/978-94-007-6488-0 558:10.1007/s00792-006-0012-7 346:, more resistant to heat. 286:hot water-containing site 69:Yellowstone National Park 1523:Chloroflexus aurantiacus 626:Brock TD (August 1997). 433:Methanococcus jannaschii 361:homologous recombination 257:Entner-Doudoroff pathway 120:guanine-cytosine content 1646:Halicephalobus mephisto 1639:Paralvinella sulfincola 1625:Cyanidioschyzon merolae 1530:Deinococcus radiodurans 1160:Nature Chemical Biology 864:10.1186/1471-2164-7-186 71:were first reported by 1207:Nucleic Acids Research 759:10.1098/rspb.2000.1397 679:Stetter, K.O. (2002). 471:Gram-negative Bacteria 160: 1632:Galdieria sulphuraria 1561:Spirochaeta americana 845:Nanoarchaeum equitans 198:Cytoplasmic membrane: 158: 104:not able to reproduce 96:Methanopyrus kandleri 53:extraterrestrial life 1554:Thermus thermophilus 1172:10.1038/nchembio.971 464:Central Indian Ridge 131:hyperthermostability 1753:Radiotrophic fungus 1730:Helaeomyia petrolei 1677:Acidithiobacillales 1586:Pyrococcus furiosus 1325:10.1042/BST20120284 1274:10.1155/2015/942605 1220:10.1093/nar/gkv1379 1117:The Chemical Record 911:1988Sci...239..487S 497:Thermotoga maritima 413:Pyrococcus furiosus 373:DNA mismatch repair 265:Pyrococcus furiosus 1255:Grogan DW (2015). 1078:10.1007/bf00339135 796:BMC Bioinformatics 462:in 80–122 °C in a 307:Overexpression of 161: 151:General physiology 81:hydrothermal vents 79:walls of deep-sea 1789: 1788: 1736:Hydrothermal vent 1660: 1659: 1598:Pyrolobus fumarii 1547:Thermus aquaticus 1129:10.1002/tcr.10066 702:978-3-642-59381-9 630:Thermus aquaticus 608:978-94-007-6487-3 401:Pyrolobus fumarii 16:(Redirected from 1814: 1692:Archaeoglobaceae 1665:Related articles 1510: 1490:Thermoacidophile 1485:Hyperthermophile 1461:Polyextremophile 1370: 1363: 1356: 1347: 1336: 1297: 1296: 1286: 1276: 1252: 1243: 1242: 1232: 1222: 1198: 1192: 1191: 1155: 1149: 1148: 1112: 1106: 1105: 1061: 1055: 1054: 1044: 1034: 1019:BMC Microbiology 1010: 1001: 1000: 982: 973: 962: 961: 951: 942: 931: 930: 905:(4839): 487–91. 893: 887: 886: 876: 866: 838: 832: 831: 821: 811: 802:(Suppl 11): S7. 787: 781: 780: 770: 738: 732: 731: 729: 728: 719:. Archived from 713: 707: 706: 676: 670: 669: 659: 623: 617: 616: 584: 578: 577: 541: 478:Aquifex aeolicus 440:Aeropyrum pernix 39:, although some 32:hyperthermophile 21: 1822: 1821: 1817: 1816: 1815: 1813: 1812: 1811: 1792: 1791: 1790: 1785: 1776:Thermostability 1712:Grylloblattidae 1682:Acidobacteriota 1656: 1610: 1571: 1505: 1499: 1441:Metallotolerant 1379: 1374: 1344: 1310: 1306: 1304:Further reading 1301: 1300: 1254: 1253: 1246: 1200: 1199: 1195: 1157: 1156: 1152: 1114: 1113: 1109: 1063: 1062: 1058: 1012: 1011: 1004: 980: 975: 974: 965: 949: 944: 943: 934: 895: 894: 890: 840: 839: 835: 789: 788: 784: 753:(1466): 493–7. 740: 739: 735: 726: 724: 715: 714: 710: 703: 678: 677: 673: 625: 624: 620: 609: 586: 585: 581: 543: 542: 538: 533: 506: 473: 458:strain 116, an 386: 381: 353: 344:α-helix regions 278: 252: 169:redox potential 153: 148: 112: 73:Thomas D. Brock 65: 55:, showing that 28: 23: 22: 15: 12: 11: 5: 1820: 1818: 1810: 1809: 1804: 1794: 1793: 1787: 1786: 1784: 1783: 1778: 1773: 1765: 1760: 1755: 1750: 1745: 1738: 1733: 1726: 1719: 1714: 1709: 1707:Thermoproteota 1704: 1699: 1694: 1689: 1684: 1679: 1674: 1668: 1666: 1662: 1661: 1658: 1657: 1655: 1654: 1649: 1642: 1635: 1628: 1620: 1618: 1612: 1611: 1609: 1608: 1601: 1594: 1589: 1581: 1579: 1573: 1572: 1570: 1569: 1564: 1557: 1550: 1543: 1538: 1533: 1526: 1518: 1516: 1507: 1501: 1500: 1498: 1497: 1492: 1487: 1478: 1476:Radioresistant 1473: 1468: 1463: 1458: 1453: 1448: 1443: 1438: 1433: 1428: 1426:Lithoautotroph 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1387: 1385: 1381: 1380: 1375: 1373: 1372: 1365: 1358: 1350: 1343: 1342: 1337: 1319:(1): 416–420. 1307: 1305: 1302: 1299: 1298: 1244: 1213:(1): 294–303. 1193: 1166:(6): 509–517. 1150: 1107: 1056: 1002: 963: 932: 888: 833: 782: 733: 708: 701: 671: 642:(4): 1207–10. 618: 607: 579: 552:(5): 357–362. 535: 534: 532: 529: 528: 527: 522: 517: 512: 505: 502: 501: 500: 487: 481: 472: 469: 468: 467: 450: 443: 436: 429: 421: 409: 397: 385: 382: 380: 377: 352: 349: 348: 347: 340: 337: 328:Production of 326: 319: 305: 277: 274: 251: 248: 247: 246: 218: 211: 195: 152: 149: 147: 144: 111: 108: 64: 61: 45:high pressures 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1819: 1808: 1805: 1803: 1800: 1799: 1797: 1782: 1779: 1777: 1774: 1772: 1770: 1766: 1764: 1761: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1743: 1739: 1737: 1734: 1732: 1731: 1727: 1725: 1724: 1723:Halobacterium 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1669: 1667: 1663: 1653: 1650: 1648: 1647: 1643: 1641: 1640: 1636: 1634: 1633: 1629: 1627: 1626: 1622: 1621: 1619: 1617: 1613: 1607: 1606: 1602: 1600: 1599: 1595: 1593: 1590: 1588: 1587: 1583: 1582: 1580: 1578: 1574: 1568: 1565: 1563: 1562: 1558: 1556: 1555: 1551: 1549: 1548: 1544: 1542: 1539: 1537: 1534: 1532: 1531: 1527: 1525: 1524: 1520: 1519: 1517: 1515: 1511: 1508: 1506:extremophiles 1502: 1496: 1493: 1491: 1488: 1486: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1388: 1386: 1382: 1378: 1377:Extremophiles 1371: 1366: 1364: 1359: 1357: 1352: 1351: 1348: 1341: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1309: 1308: 1303: 1294: 1290: 1285: 1280: 1275: 1270: 1266: 1262: 1258: 1251: 1249: 1245: 1240: 1236: 1231: 1226: 1221: 1216: 1212: 1208: 1204: 1197: 1194: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1154: 1151: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1111: 1108: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1060: 1057: 1052: 1048: 1043: 1038: 1033: 1028: 1024: 1020: 1016: 1009: 1007: 1003: 998: 994: 990: 986: 979: 972: 970: 968: 964: 959: 955: 948: 941: 939: 937: 933: 928: 924: 920: 916: 912: 908: 904: 900: 892: 889: 884: 880: 875: 870: 865: 860: 856: 852: 848: 846: 843:"Analysis of 837: 834: 829: 825: 820: 815: 810: 805: 801: 797: 793: 786: 783: 778: 774: 769: 764: 760: 756: 752: 748: 747:Proc Biol Sci 744: 737: 734: 723:on 2023-10-04 722: 718: 712: 709: 704: 698: 694: 690: 686: 682: 675: 672: 667: 663: 658: 653: 649: 645: 641: 637: 633: 631: 622: 619: 615: 610: 604: 600: 596: 592: 591: 583: 580: 575: 571: 567: 563: 559: 555: 551: 547: 546:Extremophiles 540: 537: 530: 526: 523: 521: 518: 516: 513: 511: 508: 507: 503: 499: 498: 494:, especially 493: 492: 488: 485: 482: 480: 479: 475: 474: 470: 465: 461: 457: 455: 451: 449: 448: 444: 442: 441: 437: 435: 434: 430: 428: 426: 425:Archaeoglobus 422: 419: 415: 414: 410: 407: 403: 402: 398: 395: 391: 388: 387: 383: 378: 376: 374: 370: 366: 362: 358: 350: 345: 341: 338: 335: 331: 327: 324: 320: 317: 314: 310: 306: 303: 299: 298: 297: 295: 291: 287: 283: 275: 273: 269: 267: 266: 260: 258: 249: 244: 240: 236: 235:Topoisomerase 232: 231: 226: 222: 219: 215: 212: 208: 204: 199: 196: 193: 189: 188:peptidoglycan 185: 182: 181: 180: 178: 174: 170: 166: 157: 150: 145: 143: 141: 136: 132: 128: 123: 121: 117: 109: 107: 105: 100: 98: 97: 92: 88: 87: 82: 78: 74: 70: 62: 60: 58: 54: 50: 49:extremophiles 46: 42: 38: 33: 19: 1802:Thermophiles 1781:Thermotogota 1768: 1742:Methanopyrus 1740: 1728: 1721: 1717:Halobacteria 1697:Berkeley Pit 1652:Pompeii worm 1644: 1637: 1630: 1623: 1603: 1596: 1584: 1559: 1552: 1545: 1536:Deinococcota 1528: 1521: 1484: 1483: / 1471:Psychrophile 1316: 1312: 1264: 1260: 1210: 1206: 1196: 1163: 1159: 1153: 1123:(5): 281–7. 1120: 1116: 1110: 1072:(1): 26–57. 1069: 1065: 1059: 1022: 1018: 988: 984: 957: 953: 902: 898: 891: 854: 851:BMC Genomics 850: 844: 836: 799: 795: 785: 750: 746: 736: 725:. Retrieved 721:the original 711: 685:Astrobiology 684: 674: 639: 635: 629: 621: 612: 589: 582: 549: 545: 539: 515:Psychrophile 495: 489: 483: 476: 454:Methanopyrus 452: 445: 438: 431: 423: 411: 399: 354: 343: 322: 285: 281: 279: 270: 263: 261: 253: 238: 230:Methanopyrus 228: 224: 220: 213: 197: 183: 176: 172: 168: 164: 162: 124: 113: 101: 94: 84: 66: 31: 29: 18:Hottest life 1748:Movile Cave 1702:Blood Falls 1481:Thermophile 1466:Psammophile 1396:Alkaliphile 520:Thermophile 375:proteins). 276:Adaptations 177:temperature 171:, level of 77:superheated 1796:Categories 1771:polymerase 1763:Tardigrade 1592:Strain 121 1456:Piezophile 1446:Oligotroph 1436:Methanogen 1431:Lithophile 1401:Capnophile 1391:Acidophile 1267:: 942605. 1025:(1): 219. 960:(2)): 560. 727:2018-04-06 531:References 491:Thermotoga 447:Sulfolobus 390:Strain 121 365:DNA repair 357:DNA damage 351:DNA repair 330:spermidine 316:chaperones 250:Metabolism 184:Cell wall: 146:Physiology 135:homologous 86:Strain 121 1758:Rio Tinto 1616:Eukaryota 1495:Xerophile 1451:Osmophile 1421:Lipophile 1411:Halophile 1180:1552-4450 1137:1527-8999 1086:0959-3993 991:(1): 45. 510:Mesophile 334:ribosomes 214:Proteins: 210:bacteria. 173:salinity, 140:denatured 91:autoclave 1541:Snottite 1514:Bacteria 1416:Hypolith 1406:Endolith 1333:23356321 1293:26146487 1239:26657639 1188:22596202 1145:14762828 1102:21904448 1094:24414410 1051:29166863 883:16869956 828:21172057 777:11296861 636:Genetics 574:36345694 566:16941067 504:See also 460:archaeon 456:kandleri 427:fulgidus 418:archaeon 406:archaeon 394:archaeon 243:histones 207:isoprene 203:glycerol 192:lysozyme 110:Research 41:bacteria 1807:Geysers 1577:Archaea 1504:Notable 1284:4471258 1261:Archaea 1230:4705672 1042:5700661 927:2448875 907:Bibcode 899:Science 874:1574309 857:: 186. 819:3024870 768:1088632 666:9258667 657:1208068 384:Archaea 282:survive 127:protein 63:History 37:Archaea 1567:GFAJ-1 1331:  1291:  1281:  1237:  1227:  1186:  1178:  1143:  1135:  1100:  1092:  1084:  1049:  1039:  925:  881:  871:  826:  816:  775:  765:  699:  664:  654:  605:  572:  564:  294:Europa 116:genome 1384:Types 1098:S2CID 981:(PDF) 950:(PDF) 570:S2CID 416:, an 404:, an 392:, an 313:GroEL 309:GroES 302:ether 239:Sac7d 1329:PMID 1289:PMID 1265:2015 1235:PMID 1184:PMID 1176:ISSN 1141:PMID 1133:ISSN 1090:PMID 1082:ISSN 1047:PMID 923:PMID 879:PMID 824:PMID 773:PMID 697:ISBN 662:PMID 603:ISBN 562:PMID 311:and 292:and 290:Mars 221:DNA: 175:and 125:The 57:life 1769:Taq 1321:doi 1279:PMC 1269:doi 1225:PMC 1215:doi 1168:doi 1125:doi 1074:doi 1037:PMC 1027:doi 993:doi 915:doi 903:239 869:PMC 859:doi 814:PMC 804:doi 763:PMC 755:doi 751:268 689:doi 652:PMC 644:doi 640:146 595:doi 554:doi 363:(a 1798:: 1327:. 1317:41 1315:. 1287:. 1277:. 1263:. 1259:. 1247:^ 1233:. 1223:. 1211:44 1209:. 1205:. 1182:. 1174:. 1162:. 1139:. 1131:. 1119:. 1096:. 1088:. 1080:. 1070:11 1068:. 1045:. 1035:. 1023:17 1021:. 1017:. 1005:^ 987:. 983:. 966:^ 956:. 952:. 935:^ 921:. 913:. 901:. 877:. 867:. 853:. 849:. 822:. 812:. 800:11 798:. 794:. 771:. 761:. 749:. 745:. 695:. 660:. 650:. 638:. 634:. 611:. 601:. 568:. 560:. 550:10 548:. 167:, 165:pH 99:. 30:A 1369:e 1362:t 1355:v 1335:. 1323:: 1295:. 1271:: 1241:. 1217:: 1190:. 1170:: 1164:8 1147:. 1127:: 1121:3 1104:. 1076:: 1053:. 1029:: 999:. 995:: 989:8 958:1 929:. 917:: 909:: 885:. 861:: 855:7 830:. 806:: 779:. 757:: 730:. 705:. 691:: 668:. 646:: 597:: 576:. 556:: 466:. 336:. 20:)

Index

Hottest life
Archaea
bacteria
high pressures
extremophiles
extraterrestrial life
life
Yellowstone National Park
Thomas D. Brock
superheated
hydrothermal vents
Strain 121
autoclave
Methanopyrus kandleri
not able to reproduce
genome
guanine-cytosine content
protein
hyperthermostability
homologous
denatured

peptidoglycan
lysozyme
glycerol
isoprene
Methanopyrus
Topoisomerase
histones
Entner-Doudoroff pathway

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.