Knowledge (XXG)

Superheating

Source đź“ť

428:, requiring exceeding the boiling point by several degrees Celsius. Once a bubble does begin to grow, the surface tension pressure decreases, so it expands explosively in a positive feedback loop. In practice, most containers have scratches or other imperfections which trap pockets of air that provide starting bubbles, and impure water containing small particles can also trap air pockets. Only a smooth container of purified liquid can reliably superheat. 741: 107: 132:
Surface tension makes the bubble act like an elastic balloon. The pressure inside is raised slightly by the "skin" attempting to contract. For the bubble to expand, the temperature must be raised slightly above the boiling point to generate enough vapor pressure to overcome both surface tension and
469:
from the solvent. There are ways to prevent superheating in a microwave oven, such as putting a non-metallic object (such as a stir stick) into the container beforehand or using a scratched container. To avoid a dangerous sudden boiling, it is recommended not to microwave water for an excessive
460:
points. Superheating is more likely after repeated heating and cooling cycles of an undisturbed container, as when a forgotten coffee cup is re-heated without being removed from a microwave oven. This is due to heating cycles releasing dissolved gases such as
136:
What makes superheating so explosive is that a larger bubble is easier to inflate than a small one; just as when blowing up a balloon, the hardest part is getting started. It turns out the excess pressure
641:"A series of superheated water with oil film experiments done in the microwave by Louis A. Bloomfield, physics professor at the University of Virginia. Experiment #13 proceeds with surprising violence" 125:
Superheating is an exception to this simple rule; a liquid is sometimes observed not to boil even though its vapor pressure does exceed the ambient pressure. The cause is an additional force, the
361: 302: 569: 400: 217: 249: 114:
Water is said to "boil" when bubbles of water vapor grow without bound, bursting at the surface. For a vapor bubble to expand, the temperature must be high enough that the
426: 158: 452:, potentially spraying boiling water out of the container. The boiling can be triggered by jostling the cup, inserting a stirring device, or adding a substance like 178: 19:
This article is about the phenomenon where a liquid can exist in a metastable state above its boiling point. For pressurized water above 100 Â°C, see
678: 405:
This means if the largest bubbles in a container are small, only a few micrometres in diameter, overcoming the surface tension may require a large
456:
or sugar. The chance of superheating is greater with smooth containers, because scratches or chips can house small pockets of air, which serve as
222:
This can be derived by imagining a plane cutting a bubble into two halves. Each half is pulled towards the middle with a surface tension force
606: 110:
For boiling to occur, the vapor pressure must exceed the ambient pressure plus a small amount of pressure induced by surface tension
1188: 640: 945: 507: 28: 1015: 940: 671: 1127: 955: 1010: 755: 1137: 307: 79:, where boiling might occur at any time, induced by external or internal effects. Superheating is achieved by heating a 542:
Debenedetti, P.G.Metastable Liquids: Concepts and Principles; Princeton University Press: Princeton, NJ, USA, 1996.
254: 1183: 664: 1162: 1061: 691: 94:
water in a very smooth container. Disturbing the water may cause an unsafe eruption of hot water and result in
1193: 1056: 634:
Video of superheated water in a microwave explosively flash boiling, why it happens, and why it's dangerous.
366: 183: 816: 1081: 1071: 821: 80: 444:
prevents boiling, leaving the surface calm. However, once the water is disturbed, some of it violently
1000: 760: 119: 225: 975: 867: 857: 770: 725: 502: 1122: 1051: 885: 1152: 1147: 1117: 1076: 965: 917: 902: 795: 765: 602: 598: 445: 408: 140: 20: 1107: 730: 1097: 950: 687: 552: 517: 441: 126: 84: 895: 890: 847: 780: 775: 479: 453: 437: 163: 115: 35: 644: 1177: 1132: 1112: 1035: 995: 930: 862: 785: 68: 59: 633: 1030: 1025: 1020: 985: 935: 852: 512: 497: 122:, primarily). Below that temperature, a water vapor bubble will shrink and vanish. 586: 1066: 960: 872: 740: 91: 55: 24: 1005: 980: 907: 877: 811: 790: 651: 618: 522: 457: 436:
Superheating can occur when an undisturbed container of water is heated in a
492: 75: 656: 106: 1142: 970: 570:"Risk of Burns from Eruptions of Hot Water Overheated in Microwave Ovens" 466: 16:
Heating a liquid to a temperature above its boiling point without boiling
1102: 990: 925: 842: 837: 63: 29:
Vapor-compression refrigeration § Thermodynamic analysis of the system
711: 462: 51: 27:. For the 'superheat' used in vapor-compression refrigeration, see 720: 706: 449: 105: 160:
due to surface tension is inversely proportional to the diameter
95: 660: 716: 619:
Urban Legends Reference Pages: Superheated Microwaved Water
251:, which must be balanced by the force from excess pressure 568:
Health, Center for Devices and Radiological (2018-11-03).
587:
Critical Droplets and Nucleation, Cornell Solid State Lab
597:
Atmosphere-ocean Interaction By Eric Bradshaw Kraus,
411: 369: 310: 257: 228: 186: 166: 143: 553:"Negative Pressures and Cavitation in Liquid Helium" 440:. At the time the container is removed, the lack of 1090: 1044: 916: 830: 804: 748: 699: 420: 394: 356:{\displaystyle \Delta p(\pi d^{2}/4)\propto \pi d} 355: 296: 243: 211: 172: 152: 87:, while taking care not to disturb the liquid. 601:Published by Oxford University Press US, 1994 672: 8: 297:{\displaystyle \Delta p\times (\pi d^{2}/4)} 23:. For the device used in steam engines, see 478:Superheating of hydrogen liquid is used in 679: 665: 657: 129:, which suppresses the growth of bubbles. 410: 383: 368: 333: 327: 309: 283: 277: 256: 227: 200: 185: 165: 142: 83:substance in a clean container, free of 535: 395:{\displaystyle \Delta p\propto d^{-1}} 212:{\displaystyle \Delta p\propto d^{-1}} 7: 652:Video of superheated water in a pot. 563: 561: 412: 370: 311: 258: 187: 144: 118:exceeds the ambient pressure (the 14: 739: 508:Critical point (thermodynamics) 50:) is the phenomenon in which a 551:Maris, H., Balibar, S. (2000) 341: 317: 291: 267: 244:{\displaystyle F\propto \pi d} 1: 1128:Macroscopic quantum phenomena 432:Occurrence via microwave oven 1138:Order and disorder (physics) 1210: 42:(sometimes referred to as 18: 737: 1163:Thermo-dielectric effect 1062:Enthalpy of vaporization 756:Bose–Einstein condensate 421:{\displaystyle \Delta p} 180:of the bubble. That is, 153:{\displaystyle \Delta p} 1189:Thermodynamic processes 1057:Enthalpy of sublimation 1072:Latent internal energy 822:Color-glass condensate 422: 396: 363:, which simplifies to 357: 298: 245: 213: 174: 154: 111: 66:. This is a so-called 882:Magnetically ordered 639:Bloomfield, Louis A. 423: 397: 358: 299: 246: 214: 175: 155: 109: 761:Fermionic condensate 555:Physics Today 53, 29 409: 367: 308: 255: 226: 184: 164: 141: 120:atmospheric pressure 976:Chemical ionization 868:Programmable matter 858:Quantum spin liquid 726:Supercritical fluid 503:Bumping (chemistry) 44:boiling retardation 1123:Leidenfrost effect 1052:Enthalpy of fusion 817:Quark–gluon plasma 418: 392: 353: 294: 241: 209: 170: 150: 133:ambient pressure. 112: 90:This may occur by 1171: 1170: 1153:Superheated vapor 1148:Superconductivity 1118:Equation of state 966:Flash evaporation 918:Phase transitions 903:String-net liquid 796:Photonic molecule 766:Degenerate matter 599:Joost A. Businger 173:{\displaystyle d} 21:superheated water 1201: 1184:Phases of matter 1108:Compressed fluid 743: 688:States of matter 681: 674: 667: 658: 648: 643:. Archived from 621: 616: 610: 595: 589: 584: 578: 577: 565: 556: 549: 543: 540: 470:amount of time. 442:nucleation sites 427: 425: 424: 419: 401: 399: 398: 393: 391: 390: 362: 360: 359: 354: 337: 332: 331: 303: 301: 300: 295: 287: 282: 281: 250: 248: 247: 242: 218: 216: 215: 210: 208: 207: 179: 177: 176: 171: 159: 157: 156: 151: 85:nucleation sites 58:higher than its 1209: 1208: 1204: 1203: 1202: 1200: 1199: 1198: 1174: 1173: 1172: 1167: 1098:Baryonic matter 1086: 1040: 1011:Saturated fluid 951:Crystallization 912: 886:Antiferromagnet 826: 800: 744: 735: 695: 685: 647:on 2 June 2008. 638: 630: 625: 624: 617: 613: 596: 592: 585: 581: 567: 566: 559: 550: 546: 541: 537: 532: 527: 518:Supersaturation 488: 480:bubble chambers 476: 434: 407: 406: 379: 365: 364: 323: 306: 305: 304:. So we obtain 273: 253: 252: 224: 223: 196: 182: 181: 162: 161: 139: 138: 127:surface tension 104: 54:is heated to a 32: 17: 12: 11: 5: 1207: 1205: 1197: 1196: 1194:Fluid dynamics 1191: 1186: 1176: 1175: 1169: 1168: 1166: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1094: 1092: 1088: 1087: 1085: 1084: 1079: 1077:Trouton's rule 1074: 1069: 1064: 1059: 1054: 1048: 1046: 1042: 1041: 1039: 1038: 1033: 1028: 1023: 1018: 1013: 1008: 1003: 998: 993: 988: 983: 978: 973: 968: 963: 958: 953: 948: 946:Critical point 943: 938: 933: 928: 922: 920: 914: 913: 911: 910: 905: 900: 899: 898: 893: 888: 880: 875: 870: 865: 860: 855: 850: 848:Liquid crystal 845: 840: 834: 832: 828: 827: 825: 824: 819: 814: 808: 806: 802: 801: 799: 798: 793: 788: 783: 781:Strange matter 778: 776:Rydberg matter 773: 768: 763: 758: 752: 750: 746: 745: 738: 736: 734: 733: 728: 723: 714: 709: 703: 701: 697: 696: 686: 684: 683: 676: 669: 661: 655: 654: 649: 636: 629: 628:External links 626: 623: 622: 611: 590: 579: 557: 544: 534: 533: 531: 528: 526: 525: 520: 515: 510: 505: 500: 495: 489: 487: 484: 475: 472: 454:instant coffee 438:microwave oven 433: 430: 417: 414: 389: 386: 382: 378: 375: 372: 352: 349: 346: 343: 340: 336: 330: 326: 322: 319: 316: 313: 293: 290: 286: 280: 276: 272: 269: 266: 263: 260: 240: 237: 234: 231: 206: 203: 199: 195: 192: 189: 169: 149: 146: 116:vapor pressure 103: 100: 36:thermodynamics 15: 13: 10: 9: 6: 4: 3: 2: 1206: 1195: 1192: 1190: 1187: 1185: 1182: 1181: 1179: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1133:Mpemba effect 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1113:Cooling curve 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1095: 1093: 1089: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1049: 1047: 1043: 1037: 1036:Vitrification 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 1001:Recombination 999: 997: 996:Melting point 994: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 941:Critical line 939: 937: 934: 932: 931:Boiling point 929: 927: 924: 923: 921: 919: 915: 909: 906: 904: 901: 897: 894: 892: 889: 887: 884: 883: 881: 879: 876: 874: 871: 869: 866: 864: 863:Exotic matter 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 835: 833: 829: 823: 820: 818: 815: 813: 810: 809: 807: 803: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 753: 751: 747: 742: 732: 729: 727: 724: 722: 718: 715: 713: 710: 708: 705: 704: 702: 698: 693: 689: 682: 677: 675: 670: 668: 663: 662: 659: 653: 650: 646: 642: 637: 635: 632: 631: 627: 620: 615: 612: 608: 607:0-19-506618-9 604: 600: 594: 591: 588: 583: 580: 575: 571: 564: 562: 558: 554: 548: 545: 539: 536: 529: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 494: 491: 490: 485: 483: 481: 473: 471: 468: 464: 459: 455: 451: 447: 443: 439: 431: 429: 415: 403: 387: 384: 380: 376: 373: 350: 347: 344: 338: 334: 328: 324: 320: 314: 288: 284: 278: 274: 270: 264: 261: 238: 235: 232: 229: 220: 204: 201: 197: 193: 190: 167: 147: 134: 130: 128: 123: 121: 117: 108: 101: 99: 97: 93: 88: 86: 82: 78: 77: 72: 70: 65: 61: 60:boiling point 57: 53: 49: 48:boiling delay 45: 41: 37: 30: 26: 22: 1158:Superheating 1157: 1031:Vaporization 1026:Triple point 1021:Supercooling 986:Lambda point 936:Condensation 853:Time crystal 831:Other states 771:Quantum Hall 645:the original 614: 593: 582: 573: 547: 538: 513:Supercooling 498:Boiling chip 477: 474:Applications 435: 404: 221: 135: 131: 124: 113: 89: 74: 67: 47: 43: 40:superheating 39: 33: 1067:Latent heat 1016:Sublimation 961:Evaporation 896:Ferromagnet 891:Ferrimagnet 873:Dark matter 805:High energy 92:microwaving 81:homogeneous 56:temperature 25:superheater 1178:Categories 1082:Volatility 1045:Quantities 1006:Regelation 981:Ionization 956:Deposition 908:Superglass 878:Antimatter 812:QCD matter 791:Supersolid 786:Superfluid 749:Low energy 530:References 523:Subcooling 458:nucleation 69:metastable 62:, without 493:Autoclave 413:Δ 385:− 377:∝ 371:Δ 348:π 345:∝ 321:π 312:Δ 271:π 265:× 259:Δ 236:π 233:∝ 202:− 194:∝ 188:Δ 145:Δ 76:metastate 1143:Spinodal 1091:Concepts 971:Freezing 609:, pg 60. 486:See also 467:nitrogen 1103:Binodal 991:Melting 926:Boiling 843:Crystal 838:Colloid 446:flashes 64:boiling 731:Plasma 712:Liquid 605:  463:oxygen 52:liquid 721:Vapor 707:Solid 700:State 450:steam 102:Cause 96:burns 71:state 46:, or 692:list 603:ISBN 465:and 717:Gas 574:FDA 448:to 219:. 73:or 34:In 1180:: 719:/ 572:. 560:^ 482:. 402:. 98:. 38:, 694:) 690:( 680:e 673:t 666:v 576:. 416:p 388:1 381:d 374:p 351:d 342:) 339:4 335:/ 329:2 325:d 318:( 315:p 292:) 289:4 285:/ 279:2 275:d 268:( 262:p 239:d 230:F 205:1 198:d 191:p 168:d 148:p 31:.

Index

superheated water
superheater
Vapor-compression refrigeration § Thermodynamic analysis of the system
thermodynamics
liquid
temperature
boiling point
boiling
metastable
metastate
homogeneous
nucleation sites
microwaving
burns

vapor pressure
atmospheric pressure
surface tension
microwave oven
nucleation sites
flashes
steam
instant coffee
nucleation
oxygen
nitrogen
bubble chambers
Autoclave
Boiling chip
Bumping (chemistry)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑