Knowledge (XXG)

Iwasawa algebra

Source 📝

330:) occurs in it. This invariant is additive on short exact sequences of finitely generated torsion modules (though it is not additive on short exact sequences of finitely generated modules). It vanishes if and only if the finitely generated torsion module is finitely generated as a module over the subring 267:
Many of the modules over this algebra that occur in Iwasawa theory are finitely generated torsion modules. The structure of such modules can be described as follows. A quasi-isomorphism of modules is a homomorphism whose kernel and cokernel are both finite groups, in other words modules with support
264:] occurs in it. This is well-defined and is additive for short exact sequences of finitely-generated modules. The rank of a finitely generated module is zero if and only if the module is a torsion module, which happens if and only if the support has dimension at most 1. 503: 890: 653:-group. These are the finitely generated modules whose support has dimension at most 0. Such modules are Artinian and have a well defined length, which is finite and additive on short exact sequences. 649:
If the rank, the μ-invariant, and the λ-invariant of a finitely generated module all vanish, the module is finite (and conversely); in other words its underlying abelian group is a finite abelian
633: 349: 751: 1008: 559: 936: 776:
pointed out that the Iwasawa's result could be deduced from standard results about the structure of modules over integrally closed Noetherian rings such as the Iwasawa algebra.
1043: 965: 1169: 1213: 268:
either empty or the height 2 prime ideal. For any finitely generated torsion module there is a quasi-isomorphism to a finite sum of modules of the form
1292: 1257: 814: 306:, that is uniquely defined up to multiplication by a unit. The ideal generated by the characteristic power series is called the 205: 797: 343:
is the sum of the degrees of the distinguished polynomials that occur. In other words, if the module is pseudo-isomorphic to
310:
of the Iwasawa module. More generally, any generator of the characteristic ideal is called a characteristic power series.
570: 498:{\displaystyle \bigoplus _{i}\mathbf {Z} _{p}\!]/(p^{\mu _{i}})\oplus \bigoplus _{j}\mathbf {Z} _{p}\!]/(f_{j}^{m_{j}})} 198: 298:) occurs in the module is well defined and independent of the composition series. The torsion module therefore has a 698: 224: 970: 792:
dividing the order of the ideal class group of the cyclotomic field generated by the roots of unity of order
521: 1316: 906: 188: 1140: 1122: 159: 1130: 1087: 1019: 941: 194: 1241: 1282: 1253: 1222: 1188: 1148: 1271: 1178: 1105: 1097: 91: 1300: 1267: 1234: 1200: 1160: 1078:
Coates, John; Schneider, Peter; Sujatha, Ramdorai (2003), "Modules over Iwasawa algebras",
1296: 1275: 1263: 1249: 1230: 1196: 1156: 1109: 191: 135: 83: 25: 1144: 1248:, Grundlehren der Mathematischen Wissenschaften, vol. 323 (1st ed.), Berlin: 108: 1286: 1310: 1208: 638:
In terms of the characteristic power series, the μ-invariant is the minimum of the (
55: 40: 1183: 667:
for the element 1+γ+γ+...+γ where γ is a topological generator of Γ. Iwasawa (
285:
is a generator of a height 1 prime ideal. Moreover, the number of times any module
209: 227:(polynomials with leading coefficient 1 and all other coefficients divisible by 112: 1101: 212:
over a complete local ring that the prime ideals of this ring are as follows:
32: 1226: 1192: 1152: 642:-adic) valuations of the coefficients and the λ-invariant is the power of 317:
of a finitely-generated torsion module is the number of times the module
80: 1285:(1958), "Classes des corps cyclotomiques (d'après K. Iwasawa) Exp.174", 1167:
Iwasawa, Kenkichi (1959), "On Γ-extensions of algebraic number fields",
1135: 1092: 675:
is a finitely generated torsion module over the Iwasawa algebra and
302:, a formal power series given by the product of the power series 255:
of a finitely generated module is the number of times the module
1045:-modules are classified up to so-called pseudo-null modules. 885:{\displaystyle \Lambda (G):=\varprojlim _{H}\mathbf {Z} _{p}} 1244:; Schmidt, Alexander; Wingberg, Kay (2000), "Chapter 5", 1123:"Ring-theoretic properties of Iwasawa algebras: a survey" 179:. The isomorphism is given by identifying 1 +  1022: 973: 944: 909: 817: 701: 573: 524: 352: 141:is isomorphic to the additive group of the ring of 628:{\displaystyle \lambda =\sum _{j}m_{j}\deg(f_{j}).} 1037: 1002: 959: 930: 884: 745: 627: 553: 497: 111:, and non-commutative Iwasawa algebras of compact 90:. Commutative Iwasawa algebras were introduced by 458: 448: 388: 378: 804:Higher rank and non-commutative Iwasawa algebras 903:-adic Lie group. The case above corresponds to 808:More general Iwasawa algebras are of the form 772:. Iwasawa's original argument was ad hoc, and 1170:Bulletin of the American Mathematical Society 967:up to pseudo-isomorphism is possible in case 8: 779:In particular this applies to the case when 746:{\displaystyle e_{n}=\mu p^{n}+\lambda n+c} 223:), and the ideals generated by irreducible 1182: 1134: 1091: 1021: 991: 986: 981: 972: 943: 922: 917: 908: 871: 859: 854: 844: 834: 816: 722: 706: 700: 613: 594: 584: 572: 545: 535: 523: 484: 479: 474: 462: 439: 434: 427: 409: 404: 392: 369: 364: 357: 351: 1054: 1003:{\displaystyle G=\mathbf {Z} _{p}^{n}.} 668: 95: 46:coefficients that take the topology of 554:{\displaystyle \mu =\sum _{i}\mu _{i}} 119: 773: 7: 1214:Publications Mathématiques de l'IHÉS 760:sufficiently large, where μ, λ, and 646:at which that minimum first occurs. 515:are distinguished polynomials, then 938:. A classification of modules over 158:) is isomorphic to the ring of the 1121:Ardakov, K.; Brown, K. A. (2006), 1023: 945: 931:{\displaystyle G=\mathbf {Z} _{p}} 818: 14: 982: 918: 855: 435: 365: 183:with a topological generator of 50:into account. More precisely, Λ( 1209:"Groupes analytiques p-adiques" 1184:10.1090/S0002-9904-1959-10317-7 206:Weierstrass preparation theorem 187:. This ring is a 2-dimensional 1293:Société Mathématique de France 1032: 1026: 954: 948: 879: 865: 827: 821: 800:states that μ=0 in this case. 619: 606: 492: 467: 459: 455: 449: 445: 417: 397: 389: 385: 379: 375: 1: 234:Height 2: the maximal ideal ( 134:In the special case when the 1246:Cohomology of Number Fields 1038:{\displaystyle \Lambda (G)} 960:{\displaystyle \Lambda (G)} 300:characteristic power series 199:unique factorization domain 1333: 1288:Séminaire Bourbaki, Vol. 5 1068:, Theorems 4, 5, §VII.4.4. 1062:Bourbaki, Nicolas (1972), 798:Ferrero–Washington theorem 247:Finitely generated modules 1102:10.1017/S1474748003000045 225:distinguished polynomials 216:Height 0: the zero ideal. 788:is the largest power of 154:, the Iwasawa algebra Λ( 79:  runs through the 1207:Lazard, Michel (1965), 656: 170:] in one variable over 126:Iwasawa algebra of the 1080:J. Inst. Math. Jussieu 1039: 1004: 961: 932: 886: 747: 629: 555: 499: 197:, and in particular a 31:is a variation of the 1127:Documenta Mathematica 1040: 1005: 962: 933: 887: 748: 630: 556: 500: 219:Height 1: the ideal ( 116:-adic analytic groups 1020: 1012:For non-commutative 971: 942: 907: 815: 699: 571: 522: 350: 308:characteristic ideal 204:It follows from the 16:In mathematics, the 1145:2005math.....11345A 1064:Commutative Algebra 996: 491: 160:formal power series 118:were introduced by 58:of the group rings 1295:, pp. 83–93, 1283:Serre, Jean-Pierre 1035: 1000: 980: 957: 928: 882: 849: 842: 743: 625: 589: 551: 540: 495: 470: 432: 362: 195:regular local ring 98:) in his study of 1259:978-3-540-66671-4 835: 833: 671:) showed that if 657:Iwasawa's theorem 580: 531: 423: 353: 1324: 1303: 1278: 1242:Neukirch, Jürgen 1237: 1203: 1186: 1163: 1138: 1113: 1112: 1095: 1075: 1069: 1067: 1066:, Paris: Hermann 1059: 1044: 1042: 1041: 1036: 1009: 1007: 1006: 1001: 995: 990: 985: 966: 964: 963: 958: 937: 935: 934: 929: 927: 926: 921: 891: 889: 888: 883: 875: 864: 863: 858: 848: 843: 752: 750: 749: 744: 727: 726: 711: 710: 634: 632: 631: 626: 618: 617: 599: 598: 588: 560: 558: 557: 552: 550: 549: 539: 504: 502: 501: 496: 490: 489: 488: 478: 466: 444: 443: 438: 431: 416: 415: 414: 413: 396: 374: 373: 368: 361: 84:normal subgroups 1332: 1331: 1327: 1326: 1325: 1323: 1322: 1321: 1307: 1306: 1281: 1260: 1250:Springer-Verlag 1240: 1221:(26): 389–603, 1206: 1166: 1120: 1117: 1116: 1077: 1076: 1072: 1061: 1060: 1056: 1051: 1018: 1017: 969: 968: 940: 939: 916: 905: 904: 853: 813: 812: 806: 787: 764:depend only on 718: 702: 697: 696: 684: 666: 659: 609: 590: 569: 568: 541: 520: 519: 513: 480: 433: 405: 400: 363: 348: 347: 338: 325: 293: 276: 263: 249: 178: 169: 153: 145:-adic integers 136:profinite group 132: 106: 66: 26:profinite group 18:Iwasawa algebra 12: 11: 5: 1330: 1328: 1320: 1319: 1309: 1308: 1305: 1304: 1279: 1258: 1238: 1204: 1177:(4): 183–226, 1164: 1115: 1114: 1070: 1053: 1052: 1050: 1047: 1034: 1031: 1028: 1025: 999: 994: 989: 984: 979: 976: 956: 953: 950: 947: 925: 920: 915: 912: 893: 892: 881: 878: 874: 870: 867: 862: 857: 852: 847: 841: 838: 832: 829: 826: 823: 820: 805: 802: 783: 754: 753: 742: 739: 736: 733: 730: 725: 721: 717: 714: 709: 705: 680: 662: 658: 655: 636: 635: 624: 621: 616: 612: 608: 605: 602: 597: 593: 587: 583: 579: 576: 562: 561: 548: 544: 538: 534: 530: 527: 511: 506: 505: 494: 487: 483: 477: 473: 469: 465: 461: 457: 454: 451: 447: 442: 437: 430: 426: 422: 419: 412: 408: 403: 399: 395: 391: 387: 384: 381: 377: 372: 367: 360: 356: 334: 321: 289: 272: 259: 248: 245: 244: 243: 232: 217: 174: 165: 149: 131: 130:-adic integers 124: 109:Iwasawa theory 107:extensions in 102: 62: 13: 10: 9: 6: 4: 3: 2: 1329: 1318: 1317:Number theory 1315: 1314: 1312: 1302: 1298: 1294: 1290: 1289: 1284: 1280: 1277: 1273: 1269: 1265: 1261: 1255: 1251: 1247: 1243: 1239: 1236: 1232: 1228: 1224: 1220: 1216: 1215: 1210: 1205: 1202: 1198: 1194: 1190: 1185: 1180: 1176: 1172: 1171: 1165: 1162: 1158: 1154: 1150: 1146: 1142: 1137: 1132: 1128: 1124: 1119: 1118: 1111: 1107: 1103: 1099: 1094: 1089: 1086:(1): 73–108, 1085: 1081: 1074: 1071: 1065: 1058: 1055: 1048: 1046: 1029: 1015: 1010: 997: 992: 987: 977: 974: 951: 923: 913: 910: 902: 899:is a compact 898: 876: 872: 868: 860: 850: 845: 839: 836: 830: 824: 811: 810: 809: 803: 801: 799: 795: 791: 786: 782: 777: 775: 771: 767: 763: 759: 740: 737: 734: 731: 728: 723: 719: 715: 712: 707: 703: 695: 694: 693: 691: 687: 683: 678: 674: 670: 665: 654: 652: 647: 645: 641: 622: 614: 610: 603: 600: 595: 591: 585: 581: 577: 574: 567: 566: 565: 546: 542: 536: 532: 528: 525: 518: 517: 516: 514: 485: 481: 475: 471: 463: 452: 440: 428: 424: 420: 410: 406: 401: 393: 382: 370: 358: 354: 346: 345: 344: 342: 337: 333: 329: 324: 320: 316: 311: 309: 305: 301: 297: 292: 288: 284: 280: 275: 271: 265: 262: 258: 254: 246: 241: 237: 233: 230: 226: 222: 218: 215: 214: 213: 211: 207: 202: 200: 196: 193: 190: 186: 182: 177: 173: 168: 164: 161: 157: 152: 148: 144: 140: 137: 129: 125: 123: 121: 120:Lazard (1965) 117: 115: 110: 105: 101: 97: 93: 89: 85: 82: 78: 74: 70: 65: 61: 57: 56:inverse limit 53: 49: 45: 43: 38: 34: 30: 27: 23: 19: 1287: 1245: 1218: 1212: 1174: 1168: 1136:math/0511345 1126: 1093:math/0110342 1083: 1079: 1073: 1063: 1057: 1013: 1011: 900: 896: 894: 807: 793: 789: 784: 780: 778: 774:Serre (1958) 769: 765: 761: 757: 755: 689: 685: 681: 676: 672: 663: 660: 650: 648: 643: 639: 637: 563: 509: 507: 340: 335: 331: 327: 322: 318: 314: 312: 307: 303: 299: 295: 290: 286: 282: 278: 273: 269: 266: 260: 256: 252: 250: 239: 235: 228: 220: 210:power series 203: 184: 180: 175: 171: 166: 162: 155: 150: 146: 142: 138: 133: 127: 113: 103: 99: 87: 76: 72: 68: 63: 59: 51: 47: 41: 36: 28: 21: 17: 15: 768:and not on 341:λ-invariant 315:μ-invariant 208:for formal 1276:0948.11001 1110:1061.11060 1049:References 688:has order 508:where the 192:Noetherian 33:group ring 1291:, Paris: 1227:1618-1913 1193:0002-9904 1153:1431-0635 1024:Λ 946:Λ 851:⁡ 840:← 819:Λ 732:λ 716:μ 604:⁡ 582:∑ 575:λ 543:μ 533:∑ 526:μ 425:⨁ 421:⊕ 407:μ 355:⨁ 54:) is the 1311:Category 1129:: 7–33, 281:) where 189:complete 1301:1603459 1268:1737196 1235:0209286 1201:0124316 1161:2290583 1141:Bibcode 661:Write ν 94: ( 92:Iwasawa 24:) of a 1299:  1274:  1266:  1256:  1233:  1225:  1199:  1191:  1159:  1151:  1108:  895:where 796:. The 339:. The 1131:arXiv 1088:arXiv 692:then 75:) as 44:-adic 39:with 1254:ISBN 1223:ISSN 1189:ISSN 1149:ISSN 756:for 669:1959 564:and 313:The 253:rank 251:The 96:1959 81:open 1272:Zbl 1179:doi 1106:Zbl 1098:doi 837:lim 601:deg 326:]/( 294:]/( 277:]/( 86:of 35:of 1313:: 1297:MR 1270:, 1264:MR 1262:, 1252:, 1231:MR 1229:, 1219:26 1217:, 1211:, 1197:MR 1195:, 1187:, 1175:65 1173:, 1157:MR 1155:, 1147:, 1139:, 1125:, 1104:, 1096:, 1082:, 1016:, 831::= 679:/ν 242:). 231:). 201:. 122:. 20:Λ( 1181:: 1143:: 1133:: 1100:: 1090:: 1084:2 1033:) 1030:G 1027:( 1014:G 998:. 993:n 988:p 983:Z 978:= 975:G 955:) 952:G 949:( 924:p 919:Z 914:= 911:G 901:p 897:G 880:] 877:H 873:/ 869:G 866:[ 861:p 856:Z 846:H 828:) 825:G 822:( 794:p 790:p 785:n 781:e 770:n 766:X 762:c 758:n 741:c 738:+ 735:n 729:+ 724:n 720:p 713:= 708:n 704:e 690:p 686:X 682:n 677:X 673:X 664:n 651:p 644:T 640:p 623:. 620:) 615:j 611:f 607:( 596:j 592:m 586:j 578:= 547:i 537:i 529:= 512:j 510:f 493:) 486:j 482:m 476:j 472:f 468:( 464:/ 460:] 456:] 453:T 450:[ 446:[ 441:p 436:Z 429:j 418:) 411:i 402:p 398:( 394:/ 390:] 386:] 383:T 380:[ 376:[ 371:p 366:Z 359:i 336:p 332:Z 328:p 323:p 319:Z 304:f 296:f 291:p 287:Z 283:f 279:f 274:p 270:Z 261:p 257:Z 240:T 238:, 236:p 229:p 221:p 185:G 181:T 176:p 172:Z 167:p 163:Z 156:G 151:p 147:Z 143:p 139:G 128:p 114:p 104:p 100:Z 88:G 77:H 73:H 71:/ 69:G 67:( 64:p 60:Z 52:G 48:G 42:p 37:G 29:G 22:G

Index

profinite group
group ring
p-adic
inverse limit
open
normal subgroups
Iwasawa
1959
Iwasawa theory
p-adic analytic groups
Lazard (1965)
profinite group
formal power series
complete
Noetherian
regular local ring
unique factorization domain
Weierstrass preparation theorem
power series
distinguished polynomials
1959
Serre (1958)
Ferrero–Washington theorem
arXiv
math/0110342
doi
10.1017/S1474748003000045
Zbl
1061.11060
"Ring-theoretic properties of Iwasawa algebras: a survey"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.