Knowledge (XXG)

Antifreeze protein

Source πŸ“

1115:) and Notothenioids is supported by the findings of different spacer sequences and different organization of  introns and exons as well as unmatching AFGP tripeptide sequences, which emerged from duplications of short ancestral sequences which were differently permuted (for the same tripeptide) by each group. These groups diverged approximately 7-15 million years ago. Shortly after (5-15 mya), the AFGP gene evolved from an ancestral pancreatic trypsinogen gene in Notothenioids. AFGP and trypsinogen genes split via a sequence divergence - an adaptation which occurred alongside the cooling and eventual freezing of the Antarctic Ocean. The evolution of the AFGP gene in Northern cod occurred more recently (~3.2 mya) and emerged from a noncoding sequence via tandem duplications in a Thr-Ala-Ala unit. Antarctic notothenioid fish and artic cod, Boreogadus saida, are part of two distinct orders and have very similar antifreeze glycoproteins. Although the two fish orders have similar antifreeze proteins, cod species contain arginine in AFG, while Antarctic notothenioid do not. The role of arginine as an enhancer has been investigated in Dendroides canadensis antifreeze protein (DAFP-1) by observing the effect of a chemical modification using 1-2 cyclohexanedione. Previous research has found various enhancers of this bettles' antifreeze protein including a thaumatin-like protein and polycarboxylates. Modifications of DAFP-1 with the arginine specific reagent resulted in the partial and complete loss of thermal hysteresis in DAFP-1, indicating that arginine plays a crucial role in enhancing its ability. Different enhancer molecules of DAFP-1 have distinct thermal hysteresis activity. Amornwittawat et al. 2008 found that the number of carboxylate groups in a molecules influence the enhancing ability of DAFP-1. Optimum activity in TH is correlated with high concentration of enhancer molecules. Li et al. 1998 investigated the effects of pH and solute on thermal hysteresis in Antifreeze proteins from Dendrioides canadensis. TH activity of DAFP-4 was not affected by pH unless the there was a low solute concentration (pH 1) in which TH decreased. The effect of five solutes; succinate, citrate, malate, malonate, and acetate, on TH activity was reported. Among the five solutes, citrate was shown to have the greatest enhancing effect. 944:, but the disulfide-braced beta-solenoid is formed from shorter 10 amino-acids repeats, and instead of threonine, the ice-binding surface consists of a single row of tyrosine residues. Springtails (Collembola) are not insects, but like insects, they are arthropods with six legs. A species found in Canada, which is often called a "snow flea", produces hyperactive AFPs. Although they are also repetitive and have a flat ice-binding surface, the similarity ends there. Around 50% of the residues are glycine (Gly), with repeats of Gly-Gly- X or Gly-X-X, where X is any amino acid. Each 3-amino-acid repeat forms one turn of a polyproline type II helix. The helices then fold together, to form a bundle that is two helices thick, with an ice-binding face dominated by small hydrophobic residues like alanine, rather than threonine. Other insects, such as an Alaskan beetle, produce hyperactive antifreezes that are even less similar, as they are polymers of sugars ( 1190:
studies on type I AFP, ice and AFP were initially thought to interact through hydrogen bonding (Raymond and DeVries, 1977). However, when parts of the protein thought to facilitate this hydrogen bonding were mutated, the hypothesized decrease in antifreeze activity was not observed. Recent data suggest hydrophobic interactions could be the main contributor. It is difficult to discern the exact mechanism of binding because of the complex water-ice interface. Currently, attempts to uncover the precise mechanism are being made through use of
2054: 1161:). Ice antifreeze proteins have been reported in diatom species to help decrease the freezing point of organism's proteins. Bayer-Giraldi et al. 2010 found 30 species from distinct taxa with homologues of ice antifreeze proteins. The diversity is consistent with previous research that has observed the presence of these genes in crustaceans, insects, bacteria, and fungi. Horizontal gene transfer is responsible for the presence of ice antifreeze proteins in two sea diatom species, F. cylindrus and F. curta. 1291:
to isolate the antifreeze protein through his investigation of Antarctic fish. These proteins were later called antifreeze glycoproteins (AFGPs) or antifreeze glycopeptides to distinguish them from newly discovered nonglycoprotein biological antifreeze agents (AFPs). DeVries worked with Robert Feeney (1970) to characterize the chemical and physical properties of antifreeze proteins. In 1992, Griffith
842:. They exhibit similar overall hydrophobicity at ice binding surfaces to type I AFPs. They are approximately 6kD in size. Type III AFPs likely evolved from a sialic acid synthase (SAS) gene present in Antarctic eelpout. Through a gene duplication event, this geneβ€”which has been shown to exhibit some ice-binding activity of its ownβ€”evolved into an effective AFP gene by loss of the N-terminal part. 734:: These species are able to survive body fluid freezing. Some freeze tolerant species are thought to use AFPs as cryoprotectants to prevent the damage of freezing, but not freezing altogether. The exact mechanism is still unknown. However, it is thought AFPs may inhibit recrystallization and stabilize cell membranes to prevent damage by ice. They may work in conjunction with ice 191: 44: 835:. If the AFP gene were present in the most recent common ancestor of these lineages, it is peculiar that the gene is scattered throughout those lineages, present in some orders and absent in others. It has been suggested that lateral gene transfer could be attributed to this discrepancy, such that the smelt acquired the type II AFP gene from the herring. 931:) have longer repeats without internal disulfide bonds that form a compressed beta-solenoid (beta sandwich) with four rows of threonine residus, and this AFP is structurally similar to that modelled for the non-homologous AFP from the pale beauty moth. In contrast, the AFP from the spruce budworm moth is a solenoid that superficially resembles the 759: 706:. Organisms differ in their values of thermal hysteresis. The maximum level of thermal hysteresis shown by fish AFP is approximately βˆ’3.5 Β°C (Sheikh Mahatabuddin et al., SciRep)(29.3 Β°F). In contrast, aquatic organisms are exposed only to βˆ’1 to βˆ’2 Β°C below freezing. During the extreme winter months, the 1290:
In the 1950s, Norwegian scientist Scholander set out to explain how Arctic fish can survive in water colder than the freezing point of their blood. His experiments led him to believe there was β€œantifreeze” in the blood of Arctic fish. Then in the late 1960s, animal biologist Arthur DeVries was able
803:
Type I-hyp AFP (where hyp stands for hyperactive) are found in several righteye flounders. It is approximately 32 kD (two 17 kD dimeric molecules). The protein was isolated from the blood plasma of winter flounder. It is considerably better at depressing freezing temperature than most fish AFPs. The
698:
AFPs create a difference between the melting point and freezing point (busting temperature of AFP bound ice crystal) known as thermal hysteresis. The addition of AFPs at the interface between solid ice and liquid water inhibits the thermodynamically favored growth of the ice crystal. Ice growth is
926:
beetles are homologous and each 12–13 amino-acid repeat is stabilized by an internal disulfide bond. Isoforms have between 6 and 10 of these repeats that form a coil, or beta-solenoid. One side of the solenoid has a flat ice-binding surface that consists of a double row of threonine residues. Other
1189:
Normally, ice crystals grown in solution only exhibit the basal (0001) and prism faces (1010), and appear as round and flat discs. However, it appears the presence of AFPs exposes other faces. It now appears the ice surface 2021 is the preferred binding surface, at least for AFP type I. Through
1103:
occurring 1–2 million years ago in the Northern hemisphere and 10-30 million years ago in Antarctica. Data collected from deep sea ocean drilling has revealed that the development of the Antarctic Circumpolar Current was formed over 30 million years ago. The cooling of Antarctic imposed from this
1121:
In fishes, horizontal gene transfer is responsible for the presence of Type II AFP proteins in some groups without a recently shared phylogeny. In Herring and smelt, up to 98% of introns for this gene are shared; the method of transfer is assumed to occur during mating via sperm cells exposed to
917:
beetles, spruce budworm and pale beauty moths, and midges (same order as flies). Insect AFPs share certain similarities, with most having higher activity (i.e. greater thermal hysteresis value, termed hyperactive) and a repetitive structure with a flat ice-binding surface. Those from the closely
1376:(GMOs) who believe that antifreeze proteins may cause inflammation. Intake of AFPs in diet is likely substantial in most northerly and temperate regions already. Given the known historic consumption of AFPs, it is safe to conclude their functional properties do not impart any toxicologic or 713:
The rate of cooling can influence the thermal hysteresis value of AFPs. Rapid cooling can substantially decrease the nonequilibrium freezing point, and hence the thermal hysteresis value. Consequently, organisms cannot necessarily adapt to their subzero environment if the temperature drops
800:. It is the best documented AFP because it was the first to have its three-dimensional structure determined. Type I AFP consists of a single, long, amphipathic alpha helix, about 3.3-4.5 kD in size. There are three faces to the 3D structure: the hydrophobic, hydrophilic, and Thr-Asx face. 1433:
A 2010 study demonstrated the stability of superheated water ice crystals in an AFP solution, showing that while the proteins can inhibit freezing, they can also inhibit melting. In 2021, EPFL and Warwick scientists have found an artificial imitation of antifreeze proteins.
1414:
Light Double Churned ice cream bars. In ice cream, AFPs allow the production of very creamy, dense, reduced fat ice cream with fewer additives. They control ice crystal growth brought on by thawing on the loading dock or kitchen table, which reduces texture quality.
948:) rather than polymers of amino acids (proteins). Taken together, this suggests that most of the AFPs and antifreezes arose after the lineages that gave rise to these various insects diverged. The similarities they do share are the result of convergent evolution. 1295:
documented their discovery of AFP in winter rye leaves. Around the same time, Urrutia, Duman and Knight (1992) documented thermal hysteresis protein in angiosperms. The next year, Duman and Olsen noted AFPs had also been discovered in over 23 species of
1148:
Antifreeze glycoprotein activity has been observed across several ray-finned species including eelpouts, sculpins, and cod species. Fish species that possess the antifreeze glycoprotein express different levels of protein activity. Polar cod
1104:
current caused a mass extinction of teleost species that were unable to withstand freezing temperatures. Notothenioids species with the antifreeze gylcoprotein were able to survive the glaciation event and diversify into new niches.
851:) are found in longhorn sculpins. They are alpha helical proteins rich in glutamate and glutamine. This protein is approximately 12KDa in size and consists of a 4-helix bundle. Its only posttranslational modification is a 1308:
Recent attempts have been made to relabel antifreeze proteins as ice structuring proteins to more accurately represent their function and to dispose of any assumed negative relation between AFPs and automotive antifreeze,
1048:
IBP) is enough for the total inhibition of ice re-crystallization in –7.4 Β°C temperature. This ice-recrystallization inhibition ability helps bacteria to tolerate ice rather than preventing the formation of ice.
4470:
Haymet AD, Ward LG, Harding MM (1999). "Winter Flounder 'anti-freeze' proteins: Synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen bonding interactions".
665:
of ice that would otherwise be fatal. There is also increasing evidence that AFPs interact with mammalian cell membranes to protect them from cold damage. This work suggests the involvement of AFPs in cold
1395:
are produced using this technology. The process does not impact the product; it merely makes production more efficient and prevents the death of fish that would otherwise be killed to extract the protein.
935:
protein, with a similar ice-binding surface, but it has a triangular cross-section, with longer repeats that lack the internal disulfide bonds. The AFP from midges is structurally similar to those from
2915:
Do H, Kim SJ, Kim HJ, Lee JH (April 2014). "Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1".
728:: These species are able to prevent their body fluids from freezing altogether. Generally, the AFP function may be overcome at extremely cold temperatures, leading to rapid ice growth and death. 1118:
This is an example of a proto-ORF model, a rare occurrence where new genes pre exist as a formed open reading frame before the existence of the regulatory element needed to activate them.
1365:
One recent, successful business endeavor has been the introduction of AFPs into ice cream and yogurt products. This ingredient, labelled ice-structuring protein, has been approved by the
686:
manner. This phenomenon allows them to act as an antifreeze at concentrations 1/300th to 1/500th of those of other dissolved solutes. Their low concentration minimizes their effect on
2955:
Mangiagalli M, Bar-Dolev M, Tedesco P, Natalello A, Kaleda A, Brocca S, et al. (January 2017). "Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria".
878:
The classification of AFPs became more complicated when antifreeze proteins from plants were discovered. Plant AFPs are rather different from the other AFPs in the following aspects:
1357:
yeast to produce antifreeze proteins from fish for use in ice cream production. They are labeled "ISP" or ice structuring protein on the label, instead of AFP or antifreeze protein.
1122:
foreign DNA. The direction of transfer is known to be from herring to smelt as herring have 8 times the copies of AFP gene as smelt (1) and the segments of the gene in smelt house
971:
play a key role in polar sea ice communities, dominating the assemblages of both platelet layer and within pack ice. AFPs are widespread in these species, and the presence of AFP
3688:"Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis: Antifreeze protein from ascomycetous fungus" 784:. They are 2.6-3.3 kD. AFGPs evolved separately in notothenioids and northern cod. In notothenioids, the AFGP gene arose from an ancestral trypsinogen-like serine protease gene. 1216:, the antifreeze mechanism of the type-I AFP molecule was shown to be due to the binding to an ice nucleation structure in a zipper-like fashion through hydrogen bonding of the 2625:
Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (April 2010). "Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis".
2067:
Kelley JL, Aagaard JE, MacCoss MJ, Swanson WJ (August 2010). "Functional diversification and evolution of antifreeze proteins in the antarctic fish Lycodichthys dearborni".
690:. The unusual properties of AFPs are attributed to their selective affinity for specific crystalline ice forms and the resulting blockade of the ice-nucleation process. 1133:
Although ice is uniformly composed of water molecules, it has many different surfaces exposed for binding. Different types of AFPs may interact with different surfaces.
594: 296: 149: 1820:
Duman JG, de Vries AL (1976). "Isolation, characterization, and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus".
1419: 1321:
Numerous fields would be able to benefit from the protection of tissue damage by freezing. Businesses are currently investigating the use of these proteins in:
1274:
residue (or any other polar amino acid residue whose side-chain can form a hydrogen bond with water) in an 11-amino-acid period along the sequence concerned, and
4242: 1261: 1177:
of ice, inhibiting thermodynamically-favored ice growth. The presence of a flat, rigid surface in some AFPs seems to facilitate its interaction with ice via
1890:
Graham LA, Marshall CB, Lin FH, Campbell RL, Davies PL (February 2008). "Hyperactive antifreeze protein from fish contains multiple ice-binding sites".
1266:
The above mechanism can be used to elucidate the structure-function relationship of other antifreeze proteins with the following two common features:
1966:
Ewart KV, Rubinsky B, Fletcher GL (May 1992). "Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins".
2804:
Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (December 2003). "Antifreeze proteins from snow mold fungi".
2358:
Lin FH, Davies PL, Graham LA (May 2011). "The Thr- and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like Ξ²-helix".
2868:"Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences" 2256:
Liou YC, Tocilj A, Davies PL, Jia Z (July 2000). "Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein".
4562: 481: 427: 361: 244: 97: 1855:
Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (October 2006). "The basis for hyperactivity of antifreeze proteins".
3166:
Wang, Sen; Amornwittawat, Natapol; Juwita, Vonny; Kao, Yu; Duman, John G.; Pascal, Tod A.; Goddard, William A.; Wen, Xin (2009-10-13).
831:. Type II AFPs likely evolved from calcium dependent (c-type) lectins. Sea ravens, smelt, and herring are quite divergent lineages of 4309: 3621: 1450:
Daley ME, Spyracopoulos L, Jia Z, Davies PL, Sykes BD (April 2002). "Structure and dynamics of a beta-helical antifreeze protein".
1263:
direction in ice lattice, subsequently stopping or retarding the growth of ice pyramidal planes so as to depress the freeze point.
1053:
IBP produces also thermal hysteresis gap, but this ability is not as efficient as the ice-recrystallization inhibition ability.
2395:"Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity" 1030:
that form a flat ice-binding surface. Unlike the other AFPs, there is not a singular sequence motif for the ice-binding site.
614: 316: 169: 4570: 3686:
Xiao, Nan; Suzuki, Keita; Nishimiya, Yoshiyuki; Kondo, Hidemasa; Miura, Ai; Tsuda, Sakae; Hoshino, Tamotsu (January 2010).
1532: 4611: 1373: 885:
Their physiological function is likely in inhibiting the recrystallization of ice rather than in preventing ice formation.
3008:
Barker PF, Thomas E (June 2004). "Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current".
2553:"A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides" 2501:"X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers" 1366: 1099:
The remarkable diversity and distribution of AFPs suggest the different types evolved recently in response to sea level
3225:"A thaumatin-like protein from larvae of the beetle Dendroides canadensis enhances the activity of antifreeze proteins" 983:
belong to an AFP family which is represented in different taxa and can be found in other organisms related to sea ice (
1927:"Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins" 4500:
Sicheri F, Yang DS (June 1995). "Ice-binding structure and mechanism of an antifreeze protein from winter flounder".
1718:
Crevel RW, Fedyk JK, Spurgeon MJ (July 2002). "Antifreeze proteins: characteristics, occurrence and human exposure".
1140:
of amino acids, when each folds into a functioning protein they may share similarities in their three-dimensional or
2730:
Raymond JA, Christner BC, Schuster SC (September 2008). "A bacterial ice-binding protein from the Vostok ice core".
2125:"Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis" 4271: 3600:
Feeney RE, Yeh Y (1978-01-01). Anfinsen CB, Edsall JT, Richards FM (eds.). "Antifreeze proteins from fish bloods".
2695:
Kiko R (April 2010). "Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer?".
3853:"Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm" 1058: 3168:"Arginine, a Key Residue for the Enhancing Ability of an Antifreeze Protein of the Beetle Dendroides canadensis" 4360:"Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass" 197: 4290: 1129:
There are two reasons why many types of AFPs are able to carry out the same function despite their diversity:
602: 304: 157: 2221:
Griffith M, Yaish MW (August 2004). "Antifreeze proteins in overwintering plants: a tale of two activities".
2660:
Raymond JA, Fritsen C, Shen K (August 2007). "An ice-binding protein from an Antarctic sea ice bacterium".
2053: 4214:
Clarke CJ, Buckley SL, Lindner N (2002). "Ice structuring proteins - a new name for antifreeze proteins".
3647:"Cold survival in freeze-intolerant insects: The structure and function of Ξ²-helical antifreeze proteins" 3509:
Raymond JA, Lin Y, DeVries AL (July 1975). "Glycoprotein and protein antifreezes in two Alaskan fishes".
4452: 1369:. The proteins are isolated from fish and replicated, on a larger scale, in genetically modified yeast. 1019: 1007: 3687: 1487:"A beta-helical antifreeze protein isoform with increased activity. Structural and functional insights" 1313:. These two things are completely separate entities, and show loose similarity only in their function. 598: 300: 153: 4019:
Chou KC (January 1992). "Energy-optimized structure of antifreeze protein and its binding mechanism".
1422:
published the discovery of a molecule in an Alaskan beetle that behaves like AFPs, but is composed of
4616: 4509: 4412: 4063: 3921: 3864: 3805: 3746: 3553: 3463: 3117: 3017: 2564: 2265: 2076: 2014: 1771: 1354: 1123: 1108: 747: 494: 440: 374: 257: 110: 4107:"Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes" 2499:
Pentelute BL, Gates ZP, Tereshko V, Dashnau JL, Vanderkooi JM, Kossiakoff AA, Kent SB (July 2008).
1191: 1178: 703: 1760:"Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish" 657:
that permit their survival in temperatures below the freezing point of water. AFPs bind to small
4543: 4087: 3996: 3715: 3577: 3432: 3083: 2990: 2897: 2755: 2712: 2600: 2481: 2470: 2424: 2289: 2100: 1353:
has obtained UK, US, EU, Mexico, China, Philippines, Australia and New Zealand approval to use a
1199: 1195: 1141: 3452:"Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod" 3106:"Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod" 2774: 1057:
IBP helps to protect both purified proteins and whole bacterial cells in freezing temperatures.
1300:, including ones eaten by humans. They reported their presence in fungi and bacteria as well. 1040:
and psychrophilic bacteria has an efficient ice re-crystallization inhibition ability. 1 ΞΌM of
4581: 4535: 4488: 4381: 4223: 4163: 4128: 4079: 4036: 3988: 3947: 3890: 3833: 3774: 3707: 3668: 3627: 3617: 3569: 3526: 3491: 3424: 3416: 3372: 3364: 3316: 3298: 3252: 3244: 3205: 3187: 3145: 3075: 3033: 2982: 2932: 2889: 2848: 2831:
Raymond JA, Janech MG (April 2009). "Ice-binding proteins from enoki and shiitake mushrooms".
2747: 2677: 2642: 2592: 2530: 2462: 2416: 2375: 2340: 2281: 2238: 2198: 2146: 2092: 2042: 1983: 1948: 1907: 1872: 1837: 1799: 1735: 1693: 1653: 1597: 1508: 1467: 1325:
Increasing freeze tolerance of crop plants and extending the harvest season in cooler climates
1137: 1002: 797: 682:, AFPs do not lower freezing point in proportion to concentration. Rather, they work in a non 589: 291: 144: 4525: 4517: 4480: 4420: 4371: 4194: 4183:"Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants" 4155: 4118: 4071: 4028: 3978: 3937: 3929: 3880: 3872: 3823: 3813: 3764: 3754: 3699: 3658: 3609: 3561: 3518: 3481: 3471: 3406: 3354: 3306: 3290: 3236: 3195: 3179: 3135: 3125: 3067: 3025: 2972: 2964: 2924: 2879: 2840: 2813: 2786: 2739: 2704: 2669: 2634: 2582: 2572: 2520: 2512: 2454: 2406: 2367: 2330: 2320: 2273: 2230: 2188: 2180: 2136: 2084: 2032: 2022: 1975: 1938: 1899: 1864: 1829: 1789: 1779: 1727: 1685: 1643: 1635: 1589: 1540: 1498: 1459: 1404: 1067: 1013: 793: 687: 50: 1126:
which are otherwise characteristic of and common in herring but not found in other fishes.
581: 283: 136: 4574: 4376: 4359: 1310: 1212: 1026:
Several structures for sea ice AFPs have been solved. This family of proteins fold into a
789: 679: 667: 662: 4340: 4317: 2445:
Graham LA, Davies PL (October 2005). "Glycine-rich antifreeze proteins from snow fleas".
4513: 4416: 4067: 4054:
DeVries AL, Wohlschlag DE (March 1969). "Freezing resistance in some Antarctic fishes".
3967:"Valine substituted winter flounder 'antifreeze': preservation of ice growth hysteresis" 3925: 3910:"Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes" 3868: 3809: 3750: 3557: 3467: 3121: 3021: 2568: 2309:"Crystal structure of an insect antifreeze protein and its implications for ice binding" 2269: 2080: 2018: 1775: 3942: 3909: 3885: 3852: 3311: 3278: 3200: 3167: 2587: 2552: 2525: 2500: 2335: 2308: 2193: 2168: 2037: 2002: 1648: 1623: 1217: 828: 707: 4123: 4106: 3983: 3966: 3933: 3876: 3828: 3793: 3769: 3734: 3613: 2141: 2124: 1979: 1943: 1926: 1731: 1227: 4605: 4590: 4249: 4159: 4032: 3703: 3663: 3646: 3486: 3451: 3436: 3140: 3105: 2673: 2638: 2482:"New Antifreeze Protein Found In Fleas May Allow Longer Storage Of Transplant Organs" 1833: 1794: 1759: 1689: 1593: 852: 770: 486: 432: 415: 366: 249: 102: 4091: 4000: 3581: 3343:"Enhancement of insect antifreeze protein activity by solutes of low molecular mass" 3029: 2994: 2716: 2604: 2474: 2428: 2307:
Hakim A, Nguyen JB, Basu K, Zhu DF, Thakral D, Davies PL, et al. (April 2013).
2104: 1676:
Duman JG (2001). "Antifreeze and ice nucleator proteins in terrestrial arthropods".
543: 225: 78: 3719: 3087: 2901: 2844: 2293: 1868: 1544: 1423: 889: 820: 777: 658: 638: 577: 279: 132: 4547: 4075: 2775:"Antifreeze activities of various fungi and Stramenopila isolated from Antarctica" 2759: 2234: 804:
ability is partially derived from its many repeats of the Type I ice-binding site.
4146:
Urrutia ME, Duman JG, Knight CA (May 1992). "Plant thermal hysteresis proteins".
3565: 3294: 2027: 1624:"Theoretical study of interaction of winter flounder antifreeze protein with ice" 1485:
Leinala EK, Davies PL, Doucet D, Tyshenko MG, Walker VK, Jia Z (September 2002).
699:
kinetically inhibited by the AFPs covering the water-accessible surfaces of ice.
555: 507: 474: 408: 354: 237: 90: 4567: 4148:
Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology
3851:
Yang DS, Hon WC, Bubanko S, Xue Y, Seetharaman J, Hew CL, Sicheri F (May 1998).
1580:
Fletcher GL, Hew CL, Davies PL (2001). "Antifreeze proteins of teleost fishes".
1548: 1335: 1297: 1174: 1091:. Also, all the ice-binding polar residues are at the same site of the protein. 1088: 683: 4425: 4400: 3798:
Proceedings of the National Academy of Sciences of the United States of America
3739:
Proceedings of the National Academy of Sciences of the United States of America
3456:
Proceedings of the National Academy of Sciences of the United States of America
3110:
Proceedings of the National Academy of Sciences of the United States of America
2557:
Proceedings of the National Academy of Sciences of the United States of America
1764:
Proceedings of the National Academy of Sciences of the United States of America
1061:
is functional after several cycles of freezing and melting when incubated with
3411: 3394: 3071: 2928: 2790: 2743: 2708: 2088: 1427: 1384: 1377: 1170: 1100: 1084: 1027: 945: 882:
They have much weaker thermal hysteresis activity when compared to other AFPs.
860: 774: 735: 4492: 3735:"Adsorption inhibition as a mechanism of freezing resistance in polar fishes" 3420: 3368: 3302: 3277:
Amornwittawat, Natapol; Wang, Sen; Duman, John G.; Wen, Xin (December 2008).
3248: 3191: 3079: 3037: 2773:
Xiao N, Inaba S, Tojo M, Degawa Y, Fujiu S, Kudoh S, Hoshino T (2010-12-22).
1210:
According to the structure and function study on the antifreeze protein from
4433: 3359: 3342: 3224: 3055: 2577: 2458: 2325: 1271: 1221: 985: 893: 856: 816: 4385: 4227: 4199: 4182: 3759: 3711: 3672: 3573: 3522: 3476: 3428: 3320: 3256: 3209: 3130: 2986: 2936: 2893: 2852: 2751: 2681: 2646: 2596: 2534: 2466: 2420: 2379: 2344: 2285: 2242: 2202: 2096: 2046: 1911: 1876: 1784: 1739: 1697: 1657: 1601: 1512: 1503: 1486: 1471: 1340:
Enhancing preservation of tissues for transplant or transfusion in medicine
975:
as a multigene family indicates the importance of this group for the genus
738:
proteins (INPs) to control the rate of ice propagation following freezing.
4539: 4167: 4132: 4083: 4040: 3992: 3951: 3894: 3837: 3818: 3530: 3495: 3376: 3149: 2150: 1987: 1952: 1841: 1803: 1387:
process of ice structuring proteins production is widely used in society.
1153:
exhibit similar protein activity and properties to the Antarctic species,
490: 436: 370: 253: 190: 106: 43: 3778: 3631: 2184: 1400: 1350: 873: 847: 811: 654: 550: 502: 469: 403: 349: 232: 85: 2977: 2551:
Walters KR, Serianni AS, Sformo T, Barnes BM, Duman JG (December 2009).
1639: 4595: 4585: 2968: 2884: 2867: 2411: 2394: 1411: 1407: 1388: 1278: 1112: 1034: 957: 839: 832: 824: 781: 4530: 4484: 3240: 3183: 2516: 2393:
Basu K, Wasserman SS, Jeronimo PS, Graham LA, Davies PL (April 2016).
2371: 1903: 1463: 1107:
This independent development of similar adaptations is referred to as
4521: 2277: 2003:"Lateral transfer of a lectin-like antifreeze protein gene in fishes" 1403:
incorporates AFPs into some of its American products, including some
1392: 961: 642: 609: 311: 164: 17: 3794:"Inhibition of growth of nonbasal planes in ice by fish antifreezes" 2817: 1822:
Comparative Biochemistry and Physiology. B, Comparative Biochemistry
4399:
Celik Y, Graham LA, Mok YF, Bar M, Davies PL, Braslavsky I (2010).
972: 905:
There are a number of AFPs found in insects, including those from
758: 650: 646: 420: 3544:
Hargens AR (April 1972). "Freezing resistance in polar fishes".
2866:
Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H (August 2014).
571: 538: 273: 220: 126: 73: 2169:"Antifreeze protein produced endogenously in winter rye leaves" 2167:
Griffith M, Ala P, Yang DS, Hon WC, Moffatt BA (October 1992).
1157:. Both species have higher protein activity than saffron cod ( 27:
Class of peptides which help cells survive freezing conditions
4401:"Superheating of Ice in the Presence of Ice Binding Proteins" 3283:
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
3279:"Polycarboxylates Enhance Beetle Antifreeze Protein Activity" 2917:
Acta Crystallographica. Section D, Biological Crystallography
4580:
Overview of all the structural information available in the
827:. They are cysteine-rich globular proteins containing five 1071:
survives longer periods in 0 Β°C temperature when the
710:
resists freezing at temperatures approaching βˆ’30 Β°C.
4243:"Gelato OGM. Ma quando mai! Anche il formaggio allora..." 2216: 2214: 2212: 2001:
Graham LA, Lougheed SC, Ewart KV, Davies PL (July 2008).
4434:"Antifreeze proteins can stop ice melt, new study finds" 702:
Thermal hysteresis is easily measured in the lab with a
3965:
Haymet AD, Ward LG, Harding MM, Knight CA (July 1998).
3395:"Horizontal Gene Transfer in Vertebrates: A Fishy Tale" 1815: 1813: 1083:
IBP has a typical AFP structure consisting of multiple
4563:
Cold, Hard Fact: Fish Antifreeze Produced in Pancreas
3341:
Li, N.; Andorfer, C. A.; Duman, J. G. (August 1998).
1230: 1111:. Evidence for convergent evolution in Northern cod ( 3645:
Graether, Steffen P.; Sykes, Brian D. (2004-07-14).
1968:
Biochemical and Biophysical Research Communications
608: 588: 570: 565: 549: 537: 529: 524: 519: 480: 468: 460: 455: 450: 426: 414: 402: 394: 389: 384: 360: 348: 340: 335: 330: 310: 290: 272: 267: 243: 231: 219: 211: 206: 183: 163: 143: 125: 120: 96: 84: 72: 64: 59: 32: 4594:(Thermal hysteresis or Antifreeze protein) at the 3792:Raymond JA, Wilson P, DeVries AL (February 1989). 2950: 2948: 2946: 1255: 3908:Knight CA, Cheng CC, DeVries AL (February 1991). 3056:"The nature of the diversity of Antarctic fishes" 1328:Improving farm fish production in cooler climates 960:possess AFPs that belong to a single family. The 4341:"Creamy, Healthier Ice Cream? What's the Catch?" 1144:that facilitates the same interactions with ice. 1136:Although the five types of AFPs differ in their 201:(spruce budworm) beta-helical antifreeze protein 4105:DeVries AL, Komatsu SK, Feeney RE (June 1970). 3049: 3047: 2620: 2618: 2616: 2614: 2546: 2544: 2440: 2438: 2162: 2160: 2123:Deng G, Andrews DW, Laursen RA (January 1997). 1537:The Scripps Research Institute and the RCSB PDB 1420:Proceedings of the National Academy of Sciences 1372:There is concern from organizations opposed to 999:Stephos longipes and Leucosporidium antarcticum 4453:"Des virus pour imiter les protΓ©ines antigel/" 3388: 3386: 1575: 1573: 1571: 1569: 1567: 1565: 678:Unlike the widely used automotive antifreeze, 1169:AFPs are thought to inhibit ice growth by an 722:Species containing AFPs may be classified as 8: 1713: 1711: 1709: 1707: 1533:"Molecule of the Month: Antifreeze Proteins" 1526: 1524: 1522: 4577:, by David Goodsell, RCSB Protein Data Bank 3450:Chen L, DeVries AL, Cheng CH (April 1997). 3104:Chen L, DeVries AL, Cheng CH (April 1997). 2118: 2116: 2114: 1758:Chen L, DeVries AL, Cheng CH (April 1997). 1753: 1751: 1749: 1671: 1669: 1667: 1617: 1615: 1613: 1611: 520:Ice-binding protein-like (sea ice organism) 4568:Antifreeze Proteins: Molecule of the Month 562: 264: 189: 117: 42: 4529: 4424: 4375: 4198: 4122: 3982: 3941: 3884: 3827: 3817: 3768: 3758: 3662: 3485: 3475: 3410: 3358: 3310: 3199: 3139: 3129: 2976: 2883: 2586: 2576: 2524: 2410: 2334: 2324: 2192: 2140: 2036: 2026: 1942: 1793: 1783: 1647: 1622:Jorov A, Zhorov BS, Yang DS (June 2004). 1502: 1237: 1229: 1206:Binding mechanism and antifreeze function 1173:–inhibition mechanism. They adsorb to non 4473:Journal of the American Chemical Society 3223:Wang, Lei; Duman, John G. (2006-01-31). 2505:Journal of the American Chemical Society 757: 718:Freeze tolerance versus freeze avoidance 4310:"Fishy GM yeast used to make ice-cream" 4014: 4012: 4010: 1442: 892:-related proteins, sometimes retaining 3595: 3593: 3591: 1331:Lengthening shelf life of frozen foods 1005:), as well as in cold-tolerant fungi ( 516: 447: 381: 327: 180: 29: 4291:"Can ice cream be tasty and healthy?" 3336: 3334: 3332: 3330: 3272: 3270: 3268: 3266: 3161: 3159: 3099: 3097: 1033:AFP found from the metagenome of the 1001:) and Antarctic inland ice bacteria ( 838:Type III AFPs are found in Antarctic 7: 3733:Raymond JA, DeVries AL (June 1977). 4272:"Unilever protein gets UK go ahead" 4111:The Journal of Biological Chemistry 3511:The Journal of Experimental Zoology 3347:The Journal of Experimental Biology 2313:The Journal of Biological Chemistry 1931:The Journal of Biological Chemistry 1491:The Journal of Biological Chemistry 1317:Commercial and medical applications 4358:Regand A, Goff HD (January 2006). 4289:Thorington R (18 September 2014). 3393:Graham LA, Davies PL (June 2021). 1224:residues to the oxygens along the 25: 4377:10.3168/jds.S0022-0302(06)72068-9 1346:Human Cryopreservation (Cryonics) 451:Fish antifreeze protein, type III 184:Insect antifreeze protein (CfAFP) 3704:10.1111/j.1742-4658.2009.07490.x 3664:10.1111/j.1432-1033.2004.04256.x 3651:European Journal of Biochemistry 2674:10.1111/j.1574-6941.2007.00345.x 2639:10.1111/j.1462-2920.2009.02149.x 2052: 1690:10.1146/annurev.physiol.63.1.327 1594:10.1146/annurev.physiol.63.1.359 1044:consortium ice-binding protein ( 385:Fish antifreeze protein, type II 3030:10.1016/j.earscirev.2003.10.003 765:. The three faces of Type I AFP 331:Fish antifreeze protein, type I 54:beta-helical antifreeze protein 2845:10.1016/j.cryobiol.2008.11.009 2069:Journal of Molecular Evolution 1869:10.1016/j.cryobiol.2006.06.006 1374:genetically modified organisms 1250: 1231: 956:Many microorganisms living in 1: 4124:10.1016/S0021-9258(18)63073-X 4076:10.1126/science.163.3871.1073 3984:10.1016/S0014-5793(98)00652-8 3934:10.1016/S0006-3495(91)82234-2 3877:10.1016/S0006-3495(98)77923-8 3614:10.1016/s0065-3233(08)60576-8 3602:Advances in Protein Chemistry 2235:10.1016/j.tplants.2004.06.007 2142:10.1016/S0014-5793(96)01466-4 1980:10.1016/s0006-291x(05)90005-3 1944:10.1016/S0021-9258(18)41967-9 1925:Ng NF, Hew CL (August 1992). 1732:10.1016/S0278-6915(02)00042-X 1213:Pseudopleuronectes americanus 566:Available protein structures: 268:Available protein structures: 121:Available protein structures: 4314:Network of Concerned Farmers 4160:10.1016/0167-4838(92)90355-h 4033:10.1016/0022-2836(92)90666-8 4021:Journal of Molecular Biology 3566:10.1126/science.176.4031.184 3295:10.1016/j.bbapap.2008.06.003 2028:10.1371/journal.pone.0002616 1834:10.1016/0305-0491(76)90260-1 1720:Food and Chemical Toxicology 1545:10.2210/rcsb_pdb/mom_2009_12 1531:Goodsell D (December 2009). 1367:Food and Drug Administration 1242: 4297:. University of Nottingham. 4181:Duman JG, Olsen TM (1993). 3608:. Academic Press: 191–282. 3054:Eastman JT (January 2005). 1678:Annual Review of Physiology 1582:Annual Review of Physiology 33:Insect antifreeze protein, 4633: 4426:10.1016/j.bpj.2009.12.1331 4270:Merrett N (31 July 2007). 2806:Canadian Journal of Botany 2627:Environmental Microbiology 1281:residue component therein. 871: 674:Non-colligative properties 661:to inhibit the growth and 4339:Moskin J (26 July 2006). 3412:10.1016/j.tig.2021.02.006 3072:10.1007/s00300-004-0667-4 2929:10.1107/S1399004714000996 2791:10.2509/naf2010.005.00514 2744:10.1007/s00792-008-0178-2 2709:10.1007/s00300-009-0732-0 2662:FEMS Microbiology Ecology 2089:10.1007/s00239-010-9367-6 1181:surface complementarity. 1059:Green fluorescent protein 888:Most of them are evolved 561: 501:See also the SAF domain ( 500: 263: 188: 116: 41: 4364:Journal of Dairy Science 1277:a high percentage of an 965:Fragilariopsis cylindrus 635:ice structuring proteins 198:Choristoneura fumiferana 4451:Marc C (24 June 2021). 3360:10.1242/jeb.201.15.2243 2578:10.1073/pnas.0909872106 2459:10.1126/science.1115145 2326:10.1074/jbc.M113.450973 2223:Trends in Plant Science 1343:Therapy for hypothermia 788:Type I AFP is found in 4200:10.1006/cryo.1993.1031 3760:10.1073/pnas.74.6.2589 3523:10.1002/jez.1401930112 3477:10.1073/pnas.94.8.3817 3131:10.1073/pnas.94.8.3817 1785:10.1073/pnas.94.8.3811 1504:10.1074/jbc.M205575200 1418:In November 2009, the 1257: 995:Chaetoceros neogracile 773:or AFGPs are found in 766: 3819:10.1073/pnas.86.3.881 3010:Earth-Science Reviews 1258: 1124:transposable elements 1075:gene was inserted to 1020:Flammulina populicola 1008:Typhula ishikariensis 979:. AFPs identified in 952:Sea ice organism AFPs 761: 746:There are many known 4612:Proteins by function 3353:(Pt 15): 2243–2251. 2779:North American Fungi 2185:10.1104/pp.100.2.593 1355:genetically modified 1228: 1165:Mechanisms of action 1109:convergent evolution 855:residue, a cyclized 641:produced by certain 637:refer to a class of 4514:1995Natur.375..427S 4417:2010BpJ....98..245C 4405:Biophysical Journal 4068:1969Sci...163.1073D 3926:1991BpJ....59..409K 3914:Biophysical Journal 3869:1998BpJ....74.2142Y 3857:Biophysical Journal 3810:1989PNAS...86..881R 3751:1977PNAS...74.2589R 3558:1972Sci...176..184H 3468:1997PNAS...94.3817C 3122:1997PNAS...94.3817C 3022:2004ESRv...66..143B 2569:2009PNAS..10620210W 2488:. October 21, 2005. 2270:2000Natur.406..322L 2081:2010JMolE..71..111K 2019:2008PLoSO...3.2616G 1776:1997PNAS...94.3811C 1640:10.1110/ps.04641104 1380:effects in humans. 1192:molecular modelling 1179:Van der Waals force 809:Type II AFPs (e.g. 704:nanolitre osmometer 627:Antifreeze proteins 4573:2015-11-04 at the 4345:The New York Times 3399:Trends in Genetics 2969:10.1111/febs.13965 2885:10.1111/febs.12878 2412:10.1111/febs.13687 1410:and a new line of 1253: 1200:Monte Carlo method 1196:molecular dynamics 1142:tertiary structure 767: 694:Thermal hysteresis 4485:10.1021/ja9801341 4431:*Lay summary in: 4308:Dortch E (2006). 4246:Scienza in cucina 3657:(16): 3285–3296. 3552:(4031): 184–186. 3289:(12): 1942–1948. 3241:10.1021/bi051680r 3184:10.1021/bi901283p 3178:(40): 9696–9703. 2923:(Pt 4): 1061–73. 2517:10.1021/ja8013538 2479:*Lay summary in: 2372:10.1021/bi2003108 2319:(17): 12295–304. 1904:10.1021/bi7020316 1464:10.1021/bi0121252 1245: 1159:Eleginus gracilis 1151:Boreogadus saida) 1138:primary structure 1042:Euplotes focardii 1038:Euplotes focardii 1003:Flavobacteriaceae 798:shorthorn sculpin 663:recrystallization 624: 623: 620: 619: 615:structure summary 515: 514: 446: 445: 380: 379: 326: 325: 322: 321: 317:structure summary 179: 178: 175: 174: 170:structure summary 48:Structure of the 16:(Redirected from 4624: 4551: 4533: 4522:10.1038/375427a0 4508:(6530): 427–31. 4496: 4457: 4456: 4448: 4442: 4441: 4440:. March 1, 2010. 4430: 4428: 4396: 4390: 4389: 4379: 4355: 4349: 4348: 4336: 4330: 4329: 4327: 4325: 4316:. Archived from 4305: 4299: 4298: 4286: 4280: 4279: 4267: 4261: 4260: 4258: 4256: 4238: 4232: 4231: 4211: 4205: 4204: 4202: 4178: 4172: 4171: 4154:(1–2): 199–206. 4143: 4137: 4136: 4126: 4102: 4096: 4095: 4062:(3871): 1073–5. 4051: 4045: 4044: 4016: 4005: 4004: 3986: 3962: 3956: 3955: 3945: 3905: 3899: 3898: 3888: 3848: 3842: 3841: 3831: 3821: 3789: 3783: 3782: 3772: 3762: 3730: 3724: 3723: 3683: 3677: 3676: 3666: 3642: 3636: 3635: 3597: 3586: 3585: 3541: 3535: 3534: 3506: 3500: 3499: 3489: 3479: 3447: 3441: 3440: 3414: 3390: 3381: 3380: 3362: 3338: 3325: 3324: 3314: 3274: 3261: 3260: 3235:(4): 1278–1284. 3220: 3214: 3213: 3203: 3163: 3154: 3153: 3143: 3133: 3116:(8): 3817–3822. 3101: 3092: 3091: 3051: 3042: 3041: 3005: 2999: 2998: 2980: 2957:The FEBS Journal 2952: 2941: 2940: 2912: 2906: 2905: 2887: 2872:The FEBS Journal 2863: 2857: 2856: 2828: 2822: 2821: 2801: 2795: 2794: 2770: 2764: 2763: 2727: 2721: 2720: 2692: 2686: 2685: 2657: 2651: 2650: 2622: 2609: 2608: 2590: 2580: 2548: 2539: 2538: 2528: 2511:(30): 9695–701. 2496: 2490: 2489: 2478: 2442: 2433: 2432: 2414: 2399:The FEBS Journal 2390: 2384: 2383: 2355: 2349: 2348: 2338: 2328: 2304: 2298: 2297: 2278:10.1038/35018604 2253: 2247: 2246: 2218: 2207: 2206: 2196: 2173:Plant Physiology 2164: 2155: 2154: 2144: 2120: 2109: 2108: 2064: 2058: 2057: 2056: 2050: 2040: 2030: 1998: 1992: 1991: 1963: 1957: 1956: 1946: 1937:(23): 16069–75. 1922: 1916: 1915: 1887: 1881: 1880: 1852: 1846: 1845: 1817: 1808: 1807: 1797: 1787: 1755: 1744: 1743: 1715: 1702: 1701: 1673: 1662: 1661: 1651: 1619: 1606: 1605: 1577: 1560: 1559: 1557: 1556: 1547:. Archived from 1528: 1517: 1516: 1506: 1497:(36): 33349–52. 1482: 1476: 1475: 1447: 1270:recurrence of a 1262: 1260: 1259: 1256:{\displaystyle } 1254: 1246: 1238: 1155:T. borchgrevinki 1068:Escherichia coli 1014:Lentinula edodes 991:Navicula glaciei 850: 814: 794:longhorn sculpin 688:osmotic pressure 563: 517: 448: 382: 328: 265: 193: 181: 118: 51:Tenebrio molitor 46: 30: 21: 4632: 4631: 4627: 4626: 4625: 4623: 4622: 4621: 4602: 4601: 4575:Wayback Machine 4559: 4554: 4499: 4469: 4465: 4463:Further reading 4460: 4450: 4449: 4445: 4432: 4398: 4397: 4393: 4357: 4356: 4352: 4338: 4337: 4333: 4323: 4321: 4320:on 14 July 2011 4307: 4306: 4302: 4295:Impact Magazine 4288: 4287: 4283: 4269: 4268: 4264: 4254: 4252: 4240: 4239: 4235: 4213: 4212: 4208: 4180: 4179: 4175: 4145: 4144: 4140: 4104: 4103: 4099: 4053: 4052: 4048: 4018: 4017: 4008: 3964: 3963: 3959: 3907: 3906: 3902: 3850: 3849: 3845: 3791: 3790: 3786: 3732: 3731: 3727: 3685: 3684: 3680: 3644: 3643: 3639: 3624: 3599: 3598: 3589: 3543: 3542: 3538: 3508: 3507: 3503: 3449: 3448: 3444: 3392: 3391: 3384: 3340: 3339: 3328: 3276: 3275: 3264: 3222: 3221: 3217: 3165: 3164: 3157: 3103: 3102: 3095: 3053: 3052: 3045: 3007: 3006: 3002: 2954: 2953: 2944: 2914: 2913: 2909: 2878:(16): 3576–90. 2865: 2864: 2860: 2830: 2829: 2825: 2818:10.1139/b03-116 2812:(12): 1175–81. 2803: 2802: 2798: 2772: 2771: 2767: 2729: 2728: 2724: 2694: 2693: 2689: 2659: 2658: 2654: 2624: 2623: 2612: 2563:(48): 20210–5. 2550: 2549: 2542: 2498: 2497: 2493: 2480: 2444: 2443: 2436: 2392: 2391: 2387: 2366:(21): 4467–78. 2357: 2356: 2352: 2306: 2305: 2301: 2264:(6793): 322–4. 2255: 2254: 2250: 2220: 2219: 2210: 2166: 2165: 2158: 2122: 2121: 2112: 2066: 2065: 2061: 2051: 2000: 1999: 1995: 1965: 1964: 1960: 1924: 1923: 1919: 1889: 1888: 1884: 1854: 1853: 1849: 1819: 1818: 1811: 1757: 1756: 1747: 1717: 1716: 1705: 1675: 1674: 1665: 1628:Protein Science 1621: 1620: 1609: 1579: 1578: 1563: 1554: 1552: 1530: 1529: 1520: 1484: 1483: 1479: 1458:(17): 5515–25. 1449: 1448: 1444: 1440: 1363: 1319: 1311:ethylene glycol 1306: 1288: 1226: 1225: 1218:hydroxyl groups 1208: 1187: 1167: 1097: 954: 927:beetles (genus 903: 876: 870: 859:residue at its 846: 829:disulfide bonds 815:) are found in 810: 790:winter flounder 756: 750:types of AFPs. 744: 732:Freeze tolerant 726:Freeze avoidant 720: 696: 680:ethylene glycol 676: 668:acclimatization 202: 55: 28: 23: 22: 15: 12: 11: 5: 4630: 4628: 4620: 4619: 4614: 4604: 4603: 4600: 4599: 4578: 4565: 4558: 4557:External links 4555: 4553: 4552: 4497: 4479:(5): 941–948. 4466: 4464: 4461: 4459: 4458: 4443: 4391: 4350: 4331: 4300: 4281: 4262: 4241:Bressanini D. 4233: 4206: 4193:(3): 322–328. 4173: 4138: 4117:(11): 2901–8. 4097: 4046: 4006: 3957: 3900: 3863:(5): 2142–51. 3843: 3784: 3745:(6): 2589–93. 3725: 3698:(2): 394–403. 3678: 3637: 3622: 3587: 3536: 3517:(1): 125–130. 3501: 3462:(8): 3817–22. 3442: 3405:(6): 501–503. 3382: 3326: 3262: 3215: 3155: 3093: 3043: 3016:(1): 143–162. 3000: 2963:(1): 163–177. 2942: 2907: 2858: 2823: 2796: 2765: 2722: 2687: 2652: 2633:(4): 1041–52. 2610: 2540: 2491: 2434: 2405:(8): 1504–15. 2385: 2350: 2299: 2248: 2229:(8): 399–405. 2208: 2156: 2110: 2059: 1993: 1958: 1917: 1898:(7): 2051–63. 1882: 1847: 1809: 1745: 1726:(7): 899–903. 1703: 1663: 1634:(6): 1524–37. 1607: 1561: 1518: 1477: 1441: 1439: 1436: 1362: 1359: 1348: 1347: 1344: 1341: 1338: 1332: 1329: 1326: 1318: 1315: 1305: 1302: 1287: 1284: 1283: 1282: 1275: 1252: 1249: 1244: 1241: 1236: 1233: 1207: 1204: 1186: 1185:Binding to ice 1183: 1166: 1163: 1146: 1145: 1134: 1096: 1093: 977:Fragilariopsis 953: 950: 902: 899: 898: 897: 886: 883: 872:Main article: 869: 866: 865: 864: 845:Type IV AFPs ( 843: 836: 807: 806: 805: 755: 752: 743: 740: 719: 716: 708:spruce budworm 695: 692: 675: 672: 622: 621: 618: 617: 612: 606: 605: 592: 586: 585: 575: 568: 567: 559: 558: 553: 547: 546: 541: 535: 534: 531: 527: 526: 522: 521: 513: 512: 498: 497: 484: 478: 477: 472: 466: 465: 462: 458: 457: 453: 452: 444: 443: 430: 424: 423: 418: 412: 411: 406: 400: 399: 396: 392: 391: 387: 386: 378: 377: 364: 358: 357: 352: 346: 345: 342: 338: 337: 333: 332: 324: 323: 320: 319: 314: 308: 307: 294: 288: 287: 277: 270: 269: 261: 260: 247: 241: 240: 235: 229: 228: 223: 217: 216: 213: 209: 208: 204: 203: 194: 186: 185: 177: 176: 173: 172: 167: 161: 160: 147: 141: 140: 130: 123: 122: 114: 113: 100: 94: 93: 88: 82: 81: 76: 70: 69: 66: 62: 61: 57: 56: 47: 39: 38: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4629: 4618: 4615: 4613: 4610: 4609: 4607: 4597: 4593: 4592: 4587: 4583: 4579: 4576: 4572: 4569: 4566: 4564: 4561: 4560: 4556: 4549: 4545: 4541: 4537: 4532: 4527: 4523: 4519: 4515: 4511: 4507: 4503: 4498: 4494: 4490: 4486: 4482: 4478: 4474: 4468: 4467: 4462: 4454: 4447: 4444: 4439: 4435: 4427: 4422: 4418: 4414: 4410: 4406: 4402: 4395: 4392: 4387: 4383: 4378: 4373: 4369: 4365: 4361: 4354: 4351: 4346: 4342: 4335: 4332: 4319: 4315: 4311: 4304: 4301: 4296: 4292: 4285: 4282: 4277: 4276:DairyReporter 4273: 4266: 4263: 4251: 4247: 4244: 4237: 4234: 4229: 4225: 4221: 4217: 4210: 4207: 4201: 4196: 4192: 4188: 4184: 4177: 4174: 4169: 4165: 4161: 4157: 4153: 4149: 4142: 4139: 4134: 4130: 4125: 4120: 4116: 4112: 4108: 4101: 4098: 4093: 4089: 4085: 4081: 4077: 4073: 4069: 4065: 4061: 4057: 4050: 4047: 4042: 4038: 4034: 4030: 4027:(2): 509–17. 4026: 4022: 4015: 4013: 4011: 4007: 4002: 3998: 3994: 3990: 3985: 3980: 3976: 3972: 3968: 3961: 3958: 3953: 3949: 3944: 3939: 3935: 3931: 3927: 3923: 3920:(2): 409–18. 3919: 3915: 3911: 3904: 3901: 3896: 3892: 3887: 3882: 3878: 3874: 3870: 3866: 3862: 3858: 3854: 3847: 3844: 3839: 3835: 3830: 3825: 3820: 3815: 3811: 3807: 3803: 3799: 3795: 3788: 3785: 3780: 3776: 3771: 3766: 3761: 3756: 3752: 3748: 3744: 3740: 3736: 3729: 3726: 3721: 3717: 3713: 3709: 3705: 3701: 3697: 3693: 3689: 3682: 3679: 3674: 3670: 3665: 3660: 3656: 3652: 3648: 3641: 3638: 3633: 3629: 3625: 3623:9780120342327 3619: 3615: 3611: 3607: 3603: 3596: 3594: 3592: 3588: 3583: 3579: 3575: 3571: 3567: 3563: 3559: 3555: 3551: 3547: 3540: 3537: 3532: 3528: 3524: 3520: 3516: 3512: 3505: 3502: 3497: 3493: 3488: 3483: 3478: 3473: 3469: 3465: 3461: 3457: 3453: 3446: 3443: 3438: 3434: 3430: 3426: 3422: 3418: 3413: 3408: 3404: 3400: 3396: 3389: 3387: 3383: 3378: 3374: 3370: 3366: 3361: 3356: 3352: 3348: 3344: 3337: 3335: 3333: 3331: 3327: 3322: 3318: 3313: 3308: 3304: 3300: 3296: 3292: 3288: 3284: 3280: 3273: 3271: 3269: 3267: 3263: 3258: 3254: 3250: 3246: 3242: 3238: 3234: 3230: 3226: 3219: 3216: 3211: 3207: 3202: 3197: 3193: 3189: 3185: 3181: 3177: 3173: 3169: 3162: 3160: 3156: 3151: 3147: 3142: 3137: 3132: 3127: 3123: 3119: 3115: 3111: 3107: 3100: 3098: 3094: 3089: 3085: 3081: 3077: 3073: 3069: 3066:(2): 93–107. 3065: 3061: 3060:Polar Biology 3057: 3050: 3048: 3044: 3039: 3035: 3031: 3027: 3023: 3019: 3015: 3011: 3004: 3001: 2996: 2992: 2988: 2984: 2979: 2974: 2970: 2966: 2962: 2958: 2951: 2949: 2947: 2943: 2938: 2934: 2930: 2926: 2922: 2918: 2911: 2908: 2903: 2899: 2895: 2891: 2886: 2881: 2877: 2873: 2869: 2862: 2859: 2854: 2850: 2846: 2842: 2838: 2834: 2827: 2824: 2819: 2815: 2811: 2807: 2800: 2797: 2792: 2788: 2784: 2780: 2776: 2769: 2766: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2732:Extremophiles 2726: 2723: 2718: 2714: 2710: 2706: 2703:(4): 543–56. 2702: 2698: 2697:Polar Biology 2691: 2688: 2683: 2679: 2675: 2671: 2668:(2): 214–21. 2667: 2663: 2656: 2653: 2648: 2644: 2640: 2636: 2632: 2628: 2621: 2619: 2617: 2615: 2611: 2606: 2602: 2598: 2594: 2589: 2584: 2579: 2574: 2570: 2566: 2562: 2558: 2554: 2547: 2545: 2541: 2536: 2532: 2527: 2522: 2518: 2514: 2510: 2506: 2502: 2495: 2492: 2487: 2483: 2476: 2472: 2468: 2464: 2460: 2456: 2453:(5747): 461. 2452: 2448: 2441: 2439: 2435: 2430: 2426: 2422: 2418: 2413: 2408: 2404: 2400: 2396: 2389: 2386: 2381: 2377: 2373: 2369: 2365: 2361: 2354: 2351: 2346: 2342: 2337: 2332: 2327: 2322: 2318: 2314: 2310: 2303: 2300: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2252: 2249: 2244: 2240: 2236: 2232: 2228: 2224: 2217: 2215: 2213: 2209: 2204: 2200: 2195: 2190: 2186: 2182: 2178: 2174: 2170: 2163: 2161: 2157: 2152: 2148: 2143: 2138: 2134: 2130: 2126: 2119: 2117: 2115: 2111: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2063: 2060: 2055: 2048: 2044: 2039: 2034: 2029: 2024: 2020: 2016: 2012: 2008: 2004: 1997: 1994: 1989: 1985: 1981: 1977: 1974:(1): 335–40. 1973: 1969: 1962: 1959: 1954: 1950: 1945: 1940: 1936: 1932: 1928: 1921: 1918: 1913: 1909: 1905: 1901: 1897: 1893: 1886: 1883: 1878: 1874: 1870: 1866: 1863:(2): 229–39. 1862: 1858: 1851: 1848: 1843: 1839: 1835: 1831: 1828:(3): 375–80. 1827: 1823: 1816: 1814: 1810: 1805: 1801: 1796: 1791: 1786: 1781: 1777: 1773: 1770:(8): 3811–6. 1769: 1765: 1761: 1754: 1752: 1750: 1746: 1741: 1737: 1733: 1729: 1725: 1721: 1714: 1712: 1710: 1708: 1704: 1699: 1695: 1691: 1687: 1683: 1679: 1672: 1670: 1668: 1664: 1659: 1655: 1650: 1645: 1641: 1637: 1633: 1629: 1625: 1618: 1616: 1614: 1612: 1608: 1603: 1599: 1595: 1591: 1587: 1583: 1576: 1574: 1572: 1570: 1568: 1566: 1562: 1551:on 2015-11-04 1550: 1546: 1542: 1538: 1534: 1527: 1525: 1523: 1519: 1514: 1510: 1505: 1500: 1496: 1492: 1488: 1481: 1478: 1473: 1469: 1465: 1461: 1457: 1453: 1446: 1443: 1437: 1435: 1431: 1429: 1425: 1421: 1416: 1413: 1409: 1406: 1402: 1397: 1394: 1390: 1386: 1383:As well, the 1381: 1379: 1375: 1370: 1368: 1360: 1358: 1356: 1352: 1345: 1342: 1339: 1337: 1333: 1330: 1327: 1324: 1323: 1322: 1316: 1314: 1312: 1303: 1301: 1299: 1294: 1285: 1280: 1276: 1273: 1269: 1268: 1267: 1264: 1247: 1239: 1234: 1223: 1219: 1215: 1214: 1205: 1203: 1201: 1197: 1193: 1184: 1182: 1180: 1176: 1172: 1164: 1162: 1160: 1156: 1152: 1143: 1139: 1135: 1132: 1131: 1130: 1127: 1125: 1119: 1116: 1114: 1110: 1105: 1102: 1094: 1092: 1090: 1086: 1082: 1078: 1074: 1070: 1069: 1064: 1060: 1056: 1052: 1047: 1043: 1039: 1036: 1031: 1029: 1024: 1022: 1021: 1016: 1015: 1010: 1009: 1004: 1000: 996: 992: 988: 987: 982: 978: 974: 970: 966: 963: 959: 951: 949: 947: 943: 939: 934: 930: 925: 921: 916: 912: 908: 900: 895: 891: 887: 884: 881: 880: 879: 875: 867: 862: 858: 854: 853:pyroglutamate 849: 844: 841: 837: 834: 830: 826: 822: 818: 813: 808: 802: 801: 799: 795: 791: 787: 786: 785: 783: 779: 778:notothenioids 776: 772: 771:glycoproteins 764: 760: 753: 751: 749: 748:nonhomologous 741: 739: 737: 733: 729: 727: 723: 717: 715: 711: 709: 705: 700: 693: 691: 689: 685: 681: 673: 671: 669: 664: 660: 656: 652: 648: 644: 640: 636: 632: 628: 616: 613: 611: 607: 604: 600: 596: 593: 591: 587: 583: 579: 576: 573: 569: 564: 560: 557: 554: 552: 548: 545: 542: 540: 536: 532: 528: 523: 518: 510: 509: 504: 499: 496: 492: 488: 485: 483: 479: 476: 473: 471: 467: 463: 459: 454: 449: 442: 438: 434: 431: 429: 425: 422: 419: 417: 413: 410: 407: 405: 401: 397: 393: 388: 383: 376: 372: 368: 365: 363: 359: 356: 353: 351: 347: 343: 339: 334: 329: 318: 315: 313: 309: 306: 302: 298: 295: 293: 289: 285: 281: 278: 275: 271: 266: 262: 259: 255: 251: 248: 246: 242: 239: 236: 234: 230: 227: 224: 222: 218: 214: 210: 205: 200: 199: 195:Structure of 192: 187: 182: 171: 168: 166: 162: 159: 155: 151: 148: 146: 142: 138: 134: 131: 128: 124: 119: 115: 112: 108: 104: 101: 99: 95: 92: 89: 87: 83: 80: 77: 75: 71: 67: 63: 58: 53: 52: 45: 40: 36: 31: 19: 4589: 4505: 4501: 4476: 4472: 4446: 4437: 4408: 4404: 4394: 4370:(1): 49–57. 4367: 4363: 4353: 4344: 4334: 4322:. Retrieved 4318:the original 4313: 4303: 4294: 4284: 4275: 4265: 4253:. Retrieved 4245: 4236: 4222:(2): 89–92. 4219: 4216:Cryo Letters 4215: 4209: 4190: 4186: 4176: 4151: 4147: 4141: 4114: 4110: 4100: 4059: 4055: 4049: 4024: 4020: 3977:(3): 301–6. 3974: 3971:FEBS Letters 3970: 3960: 3917: 3913: 3903: 3860: 3856: 3846: 3804:(3): 881–5. 3801: 3797: 3787: 3742: 3738: 3728: 3695: 3692:FEBS Journal 3691: 3681: 3654: 3650: 3640: 3605: 3601: 3549: 3545: 3539: 3514: 3510: 3504: 3459: 3455: 3445: 3402: 3398: 3350: 3346: 3286: 3282: 3232: 3229:Biochemistry 3228: 3218: 3175: 3172:Biochemistry 3171: 3113: 3109: 3063: 3059: 3013: 3009: 3003: 2978:11581/397803 2960: 2956: 2920: 2916: 2910: 2875: 2871: 2861: 2839:(2): 151–6. 2836: 2832: 2826: 2809: 2805: 2799: 2782: 2778: 2768: 2738:(5): 713–7. 2735: 2731: 2725: 2700: 2696: 2690: 2665: 2661: 2655: 2630: 2626: 2560: 2556: 2508: 2504: 2494: 2486:ScienceDaily 2485: 2450: 2446: 2402: 2398: 2388: 2363: 2360:Biochemistry 2359: 2353: 2316: 2312: 2302: 2261: 2257: 2251: 2226: 2222: 2179:(2): 593–6. 2176: 2172: 2135:(1): 17–20. 2132: 2129:FEBS Letters 2128: 2075:(2): 111–8. 2072: 2068: 2062: 2013:(7): e2616. 2010: 2006: 1996: 1971: 1967: 1961: 1934: 1930: 1920: 1895: 1892:Biochemistry 1891: 1885: 1860: 1856: 1850: 1825: 1821: 1767: 1763: 1723: 1719: 1681: 1677: 1631: 1627: 1585: 1581: 1553:. Retrieved 1549:the original 1536: 1494: 1490: 1480: 1455: 1452:Biochemistry 1451: 1445: 1432: 1417: 1398: 1382: 1371: 1364: 1349: 1320: 1307: 1292: 1289: 1265: 1220:of its four 1211: 1209: 1188: 1175:basal planes 1168: 1158: 1154: 1150: 1147: 1128: 1120: 1117: 1106: 1098: 1080: 1076: 1072: 1066: 1062: 1054: 1050: 1045: 1041: 1037: 1032: 1025: 1018: 1012: 1006: 998: 994: 990: 984: 981:F. cylindrus 980: 976: 968: 964: 955: 941: 937: 932: 928: 923: 919: 914: 910: 906: 904: 890:pathogenesis 877: 782:northern cod 768: 762: 745: 731: 730: 725: 724: 721: 712: 701: 697: 677: 659:ice crystals 639:polypeptides 634: 630: 626: 625: 506: 196: 49: 34: 4617:Cryobiology 4438:Physorg.com 4411:(3): 245a. 4187:Cryobiology 2833:Cryobiology 2785:: 215–220. 1857:Cryobiology 1428:fatty acids 1424:saccharides 1399:Currently, 1361:Recent news 1336:cryosurgery 1304:Name change 1298:angiosperms 1089:alpha-helix 1085:beta-sheets 901:Insect AFPs 896:properties. 769:Antifreeze 684:colligative 525:Identifiers 456:Identifiers 390:Identifiers 336:Identifiers 207:Identifiers 60:Identifiers 4606:Categories 4531:11375/7005 4250:L'Espresso 1684:: 327–57. 1588:: 359–90. 1555:2012-12-30 1438:References 1385:transgenic 1378:allergenic 1334:Improving 1194:programs ( 1171:adsorption 1101:glaciation 1028:beta helix 946:xylomannan 942:Dendroides 924:Dendroides 907:Dendroides 894:antifungal 868:Plant AFPs 861:N-terminus 736:nucleating 714:abruptly. 578:structures 280:structures 133:structures 4493:0002-7863 4324:9 October 3437:232232148 3421:0168-9525 3369:0022-0949 3303:0006-3002 3249:0006-2960 3192:0006-2960 3080:1432-2056 3038:0012-8252 1243:¯ 1095:Evolution 986:Colwellia 857:glutamine 817:sea raven 775:Antarctic 754:Fish AFPs 742:Diversity 556:IPR021884 508:IPR013974 475:IPR006013 409:IPR002353 355:IPR000104 238:IPR007928 91:IPR003460 4571:Archived 4386:16357267 4228:12050776 4092:42048517 4001:42371841 3712:20030710 3673:15291806 3582:45112534 3574:17843537 3429:33714557 3321:18620083 3257:16430224 3210:19746966 2995:43854468 2987:27860412 2937:24699650 2894:24938370 2853:19121299 2752:18622572 2717:20952951 2682:17651136 2647:20105220 2605:25741145 2597:19934038 2535:18598029 2475:30032276 2467:16239469 2429:37207016 2421:26896764 2380:21486083 2345:23486477 2286:10917536 2243:15358271 2203:16653033 2105:25737518 2097:20686757 2047:18612417 2007:PLOS ONE 1912:18225917 1877:16887111 1740:12065210 1698:11181959 1658:15152087 1602:11181960 1513:12105229 1472:11969412 1408:ice pops 1405:Popsicle 1401:Unilever 1351:Unilever 1079:genome. 969:F. curta 938:Tenebrio 933:Tenebrio 920:Tenebrio 918:related 911:Tenebrio 874:dehydrin 763:Figure 1 655:bacteria 595:RCSB PDB 551:InterPro 503:InterPro 470:InterPro 404:InterPro 350:InterPro 297:RCSB PDB 233:InterPro 150:RCSB PDB 86:InterPro 35:Tenebrio 4596:PDBe-KB 4586:UniProt 4540:7760940 4510:Bibcode 4413:Bibcode 4168:1599942 4133:5488456 4084:5764871 4064:Bibcode 4056:Science 4041:1738160 3993:9688560 3952:2009357 3943:1281157 3922:Bibcode 3895:9591641 3886:1299557 3865:Bibcode 3838:2915983 3806:Bibcode 3747:Bibcode 3720:3529668 3554:Bibcode 3546:Science 3531:1141843 3496:9108061 3464:Bibcode 3377:9662495 3312:2632549 3201:2760095 3150:9108061 3118:Bibcode 3088:1653548 3018:Bibcode 2902:8388070 2588:2787118 2565:Bibcode 2526:2719301 2447:Science 2336:3636913 2294:4385352 2266:Bibcode 2194:1075599 2151:9013849 2077:Bibcode 2038:2440524 2015:Bibcode 1988:1599470 1953:1644794 1842:1277804 1804:9108060 1772:Bibcode 1649:2279984 1412:Breyers 1389:Insulin 1286:History 1198:or the 1113:Gadidae 1087:and an 1077:E. coli 1035:ciliate 962:diatoms 958:sea ice 929:Rhagium 915:Rhagium 840:eelpout 833:teleost 825:herring 643:animals 544:PF11999 533:DUF3494 505::  226:PF05264 79:PF02420 4591:Q9GTP0 4548:758990 4546:  4538:  4502:Nature 4491:  4384:  4255:6 July 4226:  4166:  4131:  4090:  4082:  4039:  3999:  3991:  3950:  3940:  3893:  3883:  3836:  3829:286582 3826:  3779:267952 3777:  3770:432219 3767:  3718:  3710:  3671:  3632:362870 3630:  3620:  3580:  3572:  3529:  3494:  3484:  3435:  3427:  3419:  3375:  3367:  3319:  3309:  3301:  3255:  3247:  3208:  3198:  3190:  3148:  3138:  3086:  3078:  3036:  2993:  2985:  2935:  2900:  2892:  2851:  2760:505953 2758:  2750:  2715:  2680:  2645:  2603:  2595:  2585:  2533:  2523:  2473:  2465:  2427:  2419:  2378:  2343:  2333:  2292:  2284:  2258:Nature 2241:  2201:  2191:  2149:  2103:  2095:  2045:  2035:  1986:  1951:  1910:  1875:  1840:  1802:  1792:  1738:  1696:  1656:  1646:  1600:  1511:  1470:  1393:rennet 1293:et al. 1073:efcIBP 989:spp., 848:P80961 812:P05140 647:plants 610:PDBsum 584:  574:  530:Symbol 495:SUPFAM 461:Symbol 441:SUPFAM 395:Symbol 375:SUPFAM 341:Symbol 312:PDBsum 286:  276:  258:SUPFAM 212:Symbol 165:PDBsum 139:  129:  111:SUPFAM 65:Symbol 4544:S2CID 4088:S2CID 3997:S2CID 3716:S2CID 3578:S2CID 3487:20524 3433:S2CID 3141:20524 3084:S2CID 2991:S2CID 2898:S2CID 2756:S2CID 2713:S2CID 2601:S2CID 2471:S2CID 2425:S2CID 2290:S2CID 2101:S2CID 1795:20523 1065:IBP. 973:genes 821:smelt 651:fungi 633:) or 491:SCOPe 482:SCOP2 437:SCOPe 428:SCOP2 371:SCOPe 362:SCOP2 254:SCOPe 245:SCOP2 215:CfAFP 107:SCOPe 98:SCOP2 37:-type 18:I AFP 4584:for 4536:PMID 4489:ISSN 4382:PMID 4326:2006 4257:2022 4224:PMID 4164:PMID 4152:1121 4129:PMID 4080:PMID 4037:PMID 3989:PMID 3948:PMID 3891:PMID 3834:PMID 3775:PMID 3708:PMID 3669:PMID 3628:PMID 3618:ISBN 3570:PMID 3527:PMID 3492:PMID 3425:PMID 3417:ISSN 3373:PMID 3365:ISSN 3317:PMID 3299:ISSN 3287:1784 3253:PMID 3245:ISSN 3206:PMID 3188:ISSN 3146:PMID 3076:ISSN 3034:ISSN 2983:PMID 2933:PMID 2890:PMID 2849:PMID 2748:PMID 2678:PMID 2643:PMID 2593:PMID 2531:PMID 2463:PMID 2417:PMID 2376:PMID 2341:PMID 2282:PMID 2239:PMID 2199:PMID 2147:PMID 2093:PMID 2043:PMID 1984:PMID 1949:PMID 1908:PMID 1873:PMID 1838:PMID 1800:PMID 1736:PMID 1694:PMID 1654:PMID 1598:PMID 1509:PMID 1468:PMID 1426:and 1391:and 1017:and 997:and 967:and 940:and 922:and 913:and 823:and 796:and 780:and 653:and 631:AFPs 603:PDBj 599:PDBe 582:ECOD 572:Pfam 539:Pfam 487:1hg7 433:2afp 421:2py2 416:CATH 367:1wfb 305:PDBj 301:PDBe 284:ECOD 274:Pfam 250:1m8n 221:Pfam 158:PDBj 154:PDBe 137:ECOD 127:Pfam 103:1ezg 74:Pfam 4582:PDB 4526:hdl 4518:doi 4506:375 4481:doi 4477:121 4421:doi 4372:doi 4195:doi 4156:doi 4119:doi 4115:245 4072:doi 4060:163 4029:doi 4025:223 3979:doi 3975:430 3938:PMC 3930:doi 3881:PMC 3873:doi 3824:PMC 3814:doi 3765:PMC 3755:doi 3700:doi 3696:277 3659:doi 3655:271 3610:doi 3562:doi 3550:176 3519:doi 3515:193 3482:PMC 3472:doi 3407:doi 3355:doi 3351:201 3307:PMC 3291:doi 3237:doi 3196:PMC 3180:doi 3136:PMC 3126:doi 3068:doi 3026:doi 2973:hdl 2965:doi 2961:284 2925:doi 2880:doi 2876:281 2841:doi 2814:doi 2787:doi 2740:doi 2705:doi 2670:doi 2635:doi 2583:PMC 2573:doi 2561:106 2521:PMC 2513:doi 2509:130 2455:doi 2451:310 2407:doi 2403:283 2368:doi 2331:PMC 2321:doi 2317:288 2274:doi 2262:406 2231:doi 2189:PMC 2181:doi 2177:100 2137:doi 2133:402 2085:doi 2033:PMC 2023:doi 1976:doi 1972:185 1939:doi 1935:267 1900:doi 1865:doi 1830:doi 1790:PMC 1780:doi 1728:doi 1686:doi 1644:PMC 1636:doi 1590:doi 1541:doi 1499:doi 1495:277 1460:doi 1279:Ala 1272:Thr 1222:Thr 1202:). 1081:Efc 1063:Efc 1055:Efc 1051:Efc 1046:Efc 1023:). 590:PDB 292:PDB 145:PDB 68:AFP 4608:: 4588:: 4542:. 4534:. 4524:. 4516:. 4504:. 4487:. 4475:. 4436:. 4419:. 4409:98 4407:. 4403:. 4380:. 4368:89 4366:. 4362:. 4343:. 4312:. 4293:. 4274:. 4248:. 4220:23 4218:. 4191:30 4189:. 4185:. 4162:. 4150:. 4127:. 4113:. 4109:. 4086:. 4078:. 4070:. 4058:. 4035:. 4023:. 4009:^ 3995:. 3987:. 3973:. 3969:. 3946:. 3936:. 3928:. 3918:59 3916:. 3912:. 3889:. 3879:. 3871:. 3861:74 3859:. 3855:. 3832:. 3822:. 3812:. 3802:86 3800:. 3796:. 3773:. 3763:. 3753:. 3743:74 3741:. 3737:. 3714:. 3706:. 3694:. 3690:. 3667:. 3653:. 3649:. 3626:. 3616:. 3606:32 3604:. 3590:^ 3576:. 3568:. 3560:. 3548:. 3525:. 3513:. 3490:. 3480:. 3470:. 3460:94 3458:. 3454:. 3431:. 3423:. 3415:. 3403:37 3401:. 3397:. 3385:^ 3371:. 3363:. 3349:. 3345:. 3329:^ 3315:. 3305:. 3297:. 3285:. 3281:. 3265:^ 3251:. 3243:. 3233:45 3231:. 3227:. 3204:. 3194:. 3186:. 3176:48 3174:. 3170:. 3158:^ 3144:. 3134:. 3124:. 3114:94 3112:. 3108:. 3096:^ 3082:. 3074:. 3064:28 3062:. 3058:. 3046:^ 3032:. 3024:. 3014:66 3012:. 2989:. 2981:. 2971:. 2959:. 2945:^ 2931:. 2921:70 2919:. 2896:. 2888:. 2874:. 2870:. 2847:. 2837:58 2835:. 2810:81 2808:. 2781:. 2777:. 2754:. 2746:. 2736:12 2734:. 2711:. 2701:33 2699:. 2676:. 2666:61 2664:. 2641:. 2631:12 2629:. 2613:^ 2599:. 2591:. 2581:. 2571:. 2559:. 2555:. 2543:^ 2529:. 2519:. 2507:. 2503:. 2484:. 2469:. 2461:. 2449:. 2437:^ 2423:. 2415:. 2401:. 2397:. 2374:. 2364:50 2362:. 2339:. 2329:. 2315:. 2311:. 2288:. 2280:. 2272:. 2260:. 2237:. 2225:. 2211:^ 2197:. 2187:. 2175:. 2171:. 2159:^ 2145:. 2131:. 2127:. 2113:^ 2099:. 2091:. 2083:. 2073:71 2071:. 2041:. 2031:. 2021:. 2009:. 2005:. 1982:. 1970:. 1947:. 1933:. 1929:. 1906:. 1896:47 1894:. 1871:. 1861:53 1859:. 1836:. 1826:54 1824:. 1812:^ 1798:. 1788:. 1778:. 1768:94 1766:. 1762:. 1748:^ 1734:. 1724:40 1722:. 1706:^ 1692:. 1682:63 1680:. 1666:^ 1652:. 1642:. 1632:13 1630:. 1626:. 1610:^ 1596:. 1586:63 1584:. 1564:^ 1539:. 1535:. 1521:^ 1507:. 1493:. 1489:. 1466:. 1456:41 1454:. 1430:. 1235:01 1011:, 993:, 909:, 819:, 792:, 670:. 649:, 645:, 601:; 597:; 580:/ 511:). 493:/ 489:/ 439:/ 435:/ 373:/ 369:/ 303:; 299:; 282:/ 256:/ 252:/ 156:; 152:; 135:/ 109:/ 105:/ 4598:. 4550:. 4528:: 4520:: 4512:: 4495:. 4483:: 4455:. 4429:. 4423:: 4415:: 4388:. 4374:: 4347:. 4328:. 4278:. 4259:. 4230:. 4203:. 4197:: 4170:. 4158:: 4135:. 4121:: 4094:. 4074:: 4066:: 4043:. 4031:: 4003:. 3981:: 3954:. 3932:: 3924:: 3897:. 3875:: 3867:: 3840:. 3816:: 3808:: 3781:. 3757:: 3749:: 3722:. 3702:: 3675:. 3661:: 3634:. 3612:: 3584:. 3564:: 3556:: 3533:. 3521:: 3498:. 3474:: 3466:: 3439:. 3409:: 3379:. 3357:: 3323:. 3293:: 3259:. 3239:: 3212:. 3182:: 3152:. 3128:: 3120:: 3090:. 3070:: 3040:. 3028:: 3020:: 2997:. 2975:: 2967:: 2939:. 2927:: 2904:. 2882:: 2855:. 2843:: 2820:. 2816:: 2793:. 2789:: 2783:5 2762:. 2742:: 2719:. 2707:: 2684:. 2672:: 2649:. 2637:: 2607:. 2575:: 2567:: 2537:. 2515:: 2477:. 2457:: 2431:. 2409:: 2382:. 2370:: 2347:. 2323:: 2296:. 2276:: 2268:: 2245:. 2233:: 2227:9 2205:. 2183:: 2153:. 2139:: 2107:. 2087:: 2079:: 2049:. 2025:: 2017:: 2011:3 1990:. 1978:: 1955:. 1941:: 1914:. 1902:: 1879:. 1867:: 1844:. 1832:: 1806:. 1782:: 1774:: 1742:. 1730:: 1700:. 1688:: 1660:. 1638:: 1604:. 1592:: 1558:. 1543:: 1515:. 1501:: 1474:. 1462:: 1251:] 1248:2 1240:1 1232:[ 1149:( 863:. 629:( 464:? 398:? 344:? 20:)

Index

I AFP

Tenebrio molitor
Pfam
PF02420
InterPro
IPR003460
SCOP2
1ezg
SCOPe
SUPFAM
Pfam
structures
ECOD
PDB
RCSB PDB
PDBe
PDBj
PDBsum
structure summary

Choristoneura fumiferana
Pfam
PF05264
InterPro
IPR007928
SCOP2
1m8n
SCOPe
SUPFAM

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑