Knowledge (XXG)

Impulse excitation technique

Source 📝

239:
damage accumulated during a thermal shock treatment can be determined for refractory materials. This can be an advantage in understanding the physical properties of certain materials. Finally, the technique can be used to check the quality of systems. In this case, a reference piece is required to obtain a reference frequency spectrum. Engine blocks for example can be tested by tapping them and comparing the recorded signal with a pre-recorded signal of a reference engine block. By using simple cluster analysis algorithms or principal component analysis, sample's pattern recognition is also achievable with a set of pre-recorded signals.
1631:(also called "Mixed numerical experimental method"). The non destructive Resonalyser procedure allows a fast and accurate simultaneous identification of the 4 Engineering constants E1, E2, G12 and v12 for orthotropic materials. For the identification of the four orthotropic material constants, the first three natural frequencies of a rectangular test plate with constant thickness and the first natural frequency of two test beams with rectangular cross section must be measured. One test beam is cut along the longitudinal direction 1, the other one cut along the transversal direction 2 (see Figure on the right). 1663: 1653: 1658: 67:. To optimize the results a microphone or a laser vibrometer can be used as there is no contact between the test-piece and the sensor. Laser vibrometers are preferred to measure signals in vacuum. Afterwards, the acquired vibration signal in the time domain is converted to the frequency domain by a 1595:
The figure above shows some examples of common orthotropic materials: layered uni-directionally reinforced composites with fiber directions parallel to the plate edges, layered bi-directionally reinforced composites, short fiber reinforced composites with preference directions (like wooden particle
83:
Different resonant frequencies can be excited dependent on the position of the support wires, the mechanical impulse and the microphone. The two most important resonant frequencies are the flexural which is controlled by the Young's modulus of the sample and the torsional which is controlled by the
181:
Material damping or internal friction is characterized by the decay of the vibration amplitude of the sample in free vibration as the logarithmic decrement. The damping behaviour originates from anelastic processes occurring in a strained solid i.e. thermoelastic damping, magnetic damping, viscous
1647:
This ratio yields a so-called "Poisson plate". The interesting property of a Freely suspended Poisson plate is that the modal shapes that are associated with the 3 first resonance frequencies are fixed: the first resonance frequency is associated with a torsional modal shape, the second resonance
1612:
require two tensile, bending of IET tests, one on a beam cut along the 1-direction and one on a beam cut along the 2-direction. Major and minor Poisson's ratios can be identified if also the transverse strains are measured during the tensile tests. The identification of the in-plane shear modulus
238:
tool to study the transitions as function of time and temperature. A detailed insight into the material crystal structure can be obtained by studying the elastic and damping properties. For example, the interaction of dislocations and point defects in carbon steels are studied. Also the material
224:
The most important parameters to define the measurement uncertainty are the mass and dimensions of the sample. Therefore, each parameter has to be measured (and prepared) to a level of accuracy of 0.1%. Especially, the sample thickness is most critical (third power in the equation for Young's
1971:
Germany, GHI/RWTH-Aachen, Aachen, Germany, Institute of Mineral Engineering – Department of Ceramics and Refractory Materials, Aachen (2015-01-01). "Estimation of Damage in Refractory Materials after Progressive Thermal Shocks with Resonant Frequency Damping Analysis".
1617: 1671:
The question is now how to extract the orthotropic Engineering constants from the frequencies measured with IET on the beams and Poisson plate. This problem can be solved by an inverse method (also called" Mixed numerical/experimental method") based on a
793: 233:
The impulse excitation technique can be used in a wide range of applications. Nowadays, IET equipment can perform measurements between −50 °C and 1700 °C in different atmospheres (air, inert, vacuum). IET is mostly used in research and as
1533: 351: 207:
and impulse excitation technique) provide an advantage over static methods because the measurements are relatively quick and simple and involve small elastic strains. Therefore, IET is very suitable for porous and brittle materials like
194:
Considering the importance of elastic properties for design and engineering applications, a number of experimental techniques are developed and these can be classified into 2 groups; static and dynamic methods. Statics methods (like the
164:
is a measure in which a material tends to expand in directions perpendicular to the direction of compression. After measuring the Young's modulus and the shear modulus, dedicated software determines the Poisson's ratio using
1804:
Roebben, G.; Bollen, B.; Brebels, A.; Van Humbeeck, J.; Van Der Biest, O. (1997-12-01). "Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature".
1346: 942: 1529:
when the elastic properties are symmetric with respect to a rectangular Cartesian system of axes. In case of a two dimensional state of stress, like in thin sheets, the stress-strain relations for orthotropic material
47:
of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures (up to 1700 °C) under different atmospheres.
120:. To minimize the damping of the test-piece, it has to be supported at the nodes where the vibration amplitude is zero. The test-piece is mechanically excited at one of the anti-nodes to cause maximum vibration. 1445: 1139: 152:. To minimize the damping of the test-piece, it has to be supported at the center of both axis. The mechanical excitation has to be performed in one corner in order to twist the beam rather than flexing it. 1010: 87:
For predefined shapes like rectangular bars, discs, rods and grinding wheels, dedicated software calculates the sample's elastic properties using the sample dimensions, weight and resonant frequency (ASTM
414: 1234: 533: 112:
mode. This induced vibration is also referred as the out-of-plane vibration mode. The in-plane vibration will be excited by turning the sample 90° on the axis parallel to its length. The
1590: 1679:
In an inverse method, the material properties in the finite element model are updated in such a way that the computed resonance frequencies match the measured resonance frequencies.
544: 1848:
Roebben, G; Basu, B; Vleugels, J; Van Humbeeck, J; Van der Biest, O (2000-09-28). "The innovative impulse excitation technique for high-temperature mechanical spectroscopy".
2015:"IETeasy: An open source and low-cost instrument for impulse excitation technique, applied to materials classification by acoustical and mechanical properties assessment" 1877:"IETeasy: An open source and low-cost instrument for impulse excitation technique, applied to materials classification by acoustical and mechanical properties assessment" 2137: 1999: 260: 1668:
So, without the necessity to do an investigation to the nature of the modal shapes, the IET on a Poisson plate reveals the vibrational behaviour of a Poisson plate.
2192:
Material Identification Using Mixed Numerical Experimental Methods : Proceedings of the EUROMECH Colloquium held in Kerkrade, the Netherlands, 7-9 April 1997
1480:
v. For isotropic materials the relation between strains and stresses in any point of flat sheets is given by the flexibility matrix in the following expression:
1673: 1485: 27:) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. It measures the 1518:. The orientation of the axes 1 and 2 in the above figure is arbitrary. This means that the values for E, G and v are the same in any material direction. 1770:
ISO 12680-1:2005 - Methods of test for refractory products -- Part 1: Determination of dynamic Young's modulus (MOE) by impulse excitation of vibration
2063:
Non-destructive testing : proceedings of the First Joint Belgian-Hellenic Conference on Non-Destructive Testing, Patras, Greece, 22-23 May 1995
1641: 1261: 124: 92: 2199: 863: 1376: 216:. The technique can also be easily modified for high temperature experiments and only a small amount of material needs to be available. 1684: 1070: 1760:
ASTM E1876 - 15 Standard Test Method for Dynamic Youngs Modulus, Shear Modulus, and Poissons Ratio by Impulse Excitation of Vibration
2070: 186:, vacancies, ...) can contribute to an increase in the internal friction between the vibrating defects and the neighboring regions. 1926:"Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel" 1746:
the knowledge of the modal shapes of a Poisson plate can be used to generate very good starting values using a virtual field method
1676:(FE) computer model of the Poisson plate. A FE model allows computing resonance frequencies for a given set of material properties 1248: 51:
The measurement principle is based on tapping the sample with a small projectile and recording the induced vibration signal with a
1634:
The Young's modulus of the test beams can be found using the bending IET formula for test beams with a rectangular cross section.
1749:
and the first 3 natural frequencies of a Poisson plate are sensitive for variations of all the orthotropic Engineering constants.
1721:· The computed frequencies in the FE model of the Poisson plate must be sensitive for variations of all the material parameters 1648:
frequency is associated with a saddle modal shape and the third resonance frequency is associated with a breathing modal shape.
1244:
The induced vibration signal (in the time domain) is fitted as a sum of exponentially damped sinusoidal functions according to:
72: 2229: 953: 71:. Dedicated software will determine the resonant frequency with high accuracy to calculate the elastic properties based on the 362: 1729:
if only the Poisson's ratio v12 and the in-plane shear modulus G12 are taken as variable parameters in the FE-model, the
1187: 2244: 1769: 1725:
In the case the Young's moduli (obtained by IET) are fixed (as non variable parameters) in the inverse method procedure
1718:· The starting values must be close enough to the final solution to avoid a local minimum (instead of a global minimum) 2239: 2094: 474: 1780:
DIN EN 843-2:2007 Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature"
2234: 196: 60: 788:{\displaystyle R=\left\left-0.060\left({\frac {b}{L}}\right)^{\frac {3}{2}}\left({\frac {b}{t}}-1\right)^{2}} 204: 203:) are based on direct measurements of stresses and strains during mechanical tests. Dynamic methods (like 68: 1993: 1181:
If the Young's modulus and shear modulus are known, the Poisson's ratio can be calculated according to:
28: 2151:
Lauwagie, Tom; Sol, Hugo; Roebben, Gert; Heylen, Ward; Shi, Yinming; Van der Biest, Omer (2003-10-01).
2152: 1814: 1526: 52: 1484: 225:
modulus). In that case, an overall accuracy of 1% can be obtained practically in most applications.
1779: 209: 141: 128: 2088: 1953: 1563: 1547: 1477: 1469: 346:{\displaystyle E=0.9465\left({\frac {mf_{f}^{2}}{b}}\right)\left({\frac {L^{3}}{t^{3}}}\right)T} 161: 117: 40: 32: 2153:"Mixed numerical–experimental identification of elastic properties of orthotropic metal plates" 2205: 2195: 2172: 2131: 2076: 2066: 2044: 1945: 1906: 1830: 1640: 145: 123: 113: 91: 2164: 2034: 2026: 1981: 1937: 1896: 1888: 1857: 1822: 2013:
Massara, Nazareno; Boccaleri, Enrico; Milanesio, Marco; Lopresti, Mattia (1 October 2021).
1875:
Massara, Nazareno; Boccaleri, Enrico; Milanesio, Marco; Lopresti, Mattia (1 October 2021).
235: 200: 1637:
The ratio Width/Length of the test plate must be cut according to the following formula:
1521:
More complex material behaviour like orthotropic material behaviour can be identified by
1818: 1743:
a FE of a plate can be made very accurate by selecting a sufficiently fine element grid,
2065:. Hemelrijck, Danny van., Anastassopoulos, Athanassios. Rotterdam: A.A. Balkema. 1996. 2039: 2014: 1901: 1876: 166: 2168: 1861: 1852:. Intern. Conf. Internal Friction and Ultrasonic Attentuation in Solids (ICIFUAS-12). 1662: 2223: 2123: 1957: 1596:
boards), plastics with preference orientation, rolled metal sheets, and much more...
1555: 1473: 149: 64: 36: 2124:"Validation_of_the_Resonalyser_method_an_inverse_method_for_material_identification" 1589: 1925: 1652: 1616: 1515: 1657: 183: 1740:
IET yields very accurate resonance frequencies, even with non-expert equipment,
2030: 1941: 1892: 213: 56: 2209: 2176: 1949: 1834: 2080: 1683: 1461: 1341:{\displaystyle x\left(t\right)=\sum Ae^{-kt}\sin \left(2\pi ft+\phi \right)} 2048: 1985: 1910: 1759: 1698:· Are the parameters converging to the correct physical solution? 170: 44: 1532: 1247: 937:{\displaystyle E=1.6067\left({\frac {L^{3}}{d^{4}}}\right)mf_{f}^{2}T'} 182:
damping, defect damping, ... For example, different materials defects (
109: 96: 2108: 1826: 1695:· The need of good starting values for the material properties 1440:{\displaystyle Q^{-1}={\frac {\Delta W}{2\pi W}}={\frac {k}{\pi f}}} 140:
The second figure gives an example of a test-piece vibrating in the
1604:
Standard methods for the identification of the two Young's moduli E
108:
The first figure gives an example of a test-piece vibrating in the
1246: 122: 116:
of this flexural vibration mode is characteristic for the dynamic
90: 1134:{\displaystyle G=16\left({\frac {L}{\pi d^{2}}}\right)mf_{t}^{2}} 1924:
Jung, Il-Chan; Kang, Deok-Gu; Cooman, Bruno C. De (2013-11-26).
1252: 1573:
is symmetric. The minor Poisson's ratio can hence be found if E
2122:
T. Lauwagie, H. Sol, G. Roebben, W. Heylen and Y. Shi (2002).
1639: 1615: 1005:{\displaystyle T'=1+4.939\left({\frac {d}{L}}\right)^{2}} 409:{\displaystyle T=1+6.585\left({\frac {t}{L}}\right)^{2}} 2109:"Theoretical Background of the Resonalyser Procedure" 1715:· The IET measurements must be sufficiently accurate 1570:
is the minor Poisson's ratio. The flexibility matrix
1468:
using the above described empirical formulas for the
1379: 1264: 1190: 1073: 956: 866: 547: 477: 365: 263: 2194:. Oomens, C. W. J. Dordrecht: Springer Netherlands. 1229:{\displaystyle \nu =\left({\frac {E}{2G}}\right)-1} 461:
The correction factor can only be used if L/t ≥ 20!
1498:are normal strains in the 1- and 2-direction and Υ 1439: 1340: 1228: 1133: 1004: 936: 787: 527: 408: 345: 1452:Extended IET applications: the Resonalyser Method 173:materials according to the different standards. 1613:requires an additional in plane shearing test. 1600:Extended IET for orthotropic material behaviour 1457:Isotropic versus orthotropic material behaviour 1712:· The FE-model must be sufficiently accurate 528:{\displaystyle G={\frac {4Lmf_{t}^{2}}{bt}}R} 8: 2136:: CS1 maint: multiple names: authors list ( 1998:: CS1 maint: multiple names: authors list ( 148:of this vibration is characteristic for the 1930:Metallurgical and Materials Transactions A 2038: 1974:Journal of Ceramic Science and Technology 1900: 1422: 1396: 1384: 1378: 1292: 1263: 1201: 1189: 1125: 1120: 1100: 1087: 1072: 1054:The correction factor can only be used if 996: 982: 955: 920: 915: 896: 886: 880: 865: 779: 758: 741: 727: 703: 692: 682: 638: 634: 624: 603: 586: 572: 558: 546: 505: 500: 484: 476: 400: 386: 364: 328: 318: 312: 292: 287: 277: 262: 1796: 84:shear modulus for isotropic materials. 2129: 2086: 1991: 1627:" is an extension of the IET using an 7: 1464:elastic properties can be found by 1733:satisfies all above requirements. 1399: 14: 1701:· Is the solution unique? 1807:Review of Scientific Instruments 1682: 1661: 1656: 1651: 1588: 1531: 1483: 16:Method to characterize materials 1850:Journal of Alloys and Compounds 1550:in the 1- and 2-direction and G 1447:with W the energy of the system 1: 2169:10.1016/S0963-8695(03)00048-3 1862:10.1016/S0925-8388(00)00966-X 1510:are the normal stresses and τ 169:which can only be applied to 1708:to obtain good results are: 799:Note that we assume that b≥t 127:Test-piece vibrating in the 21:impulse excitation technique 177:Internal friction / Damping 69:fast Fourier transformation 2261: 1692:with inverse methods are: 190:Dynamic vs. static methods 31:in order to calculate the 2157:NDT & E International 2031:10.1016/j.ohx.2021.e00231 1942:10.1007/s11661-013-2122-z 1893:10.1016/j.ohx.2021.e00231 1364:the logarithmic decrement 855: 243:Experimental correlations 220:Accuracy and uncertainty 95:Test-piece vibrating in 1525:. A material is called 1523:extended IET procedures 1154:the torsional frequency 816:the torsional frequency 252: 205:ultrasound spectroscopy 197:four-point bending test 2230:Nondestructive testing 2093:: CS1 maint: others ( 1986:10.4416/jcst2015-00080 1644: 1620: 1502:is the shear strain. σ 1441: 1342: 1255: 1230: 1135: 1032:the flexural frequency 1006: 938: 789: 529: 436:the flexural frequency 410: 347: 132: 100: 1731:Resonalyser procedure 1643: 1625:Resonalyser procedure 1619: 1564:major Poisson's ratio 1490:In this expression, ε 1442: 1358:the natural frequency 1343: 1250: 1231: 1136: 1050:the correction factor 1007: 939: 846:the correction factor 790: 530: 457:the correction factor 411: 348: 155: 126: 94: 73:classical beam theory 1377: 1262: 1188: 1071: 954: 864: 545: 475: 363: 261: 53:piezoelectric sensor 29:resonant frequencies 2245:Continuum mechanics 1819:1997RScI...68.4511R 1369:damping parameter Q 1240:Damping coefficient 1130: 1017:the Young's modulus 925: 510: 421:the Young's modulus 297: 1645: 1621: 1437: 1371:can be defined as: 1367:In this case, the 1338: 1256: 1226: 1131: 1116: 1002: 934: 911: 806:the shear modulus 785: 525: 496: 406: 343: 283: 133: 101: 79:Elastic properties 2240:Materials science 2201:978-94-009-1471-1 1827:10.1063/1.1148422 1813:(12): 4511–4515. 1784:webstore.ansi.org 1435: 1417: 1214: 1107: 990: 902: 766: 749: 735: 709: 665: 657: 646: 611: 580: 520: 394: 334: 302: 146:natural frequency 114:natural frequency 45:internal friction 2252: 2214: 2213: 2190:Sol, H. (1997). 2187: 2181: 2180: 2148: 2142: 2141: 2135: 2127: 2119: 2113: 2112: 2105: 2099: 2098: 2092: 2084: 2059: 2053: 2052: 2042: 2010: 2004: 2003: 1997: 1989: 1968: 1962: 1961: 1936:(4): 1962–1978. 1921: 1915: 1914: 1904: 1872: 1866: 1865: 1856:(1–2): 284–287. 1845: 1839: 1838: 1801: 1686: 1665: 1660: 1655: 1592: 1554:is the in-plane 1535: 1487: 1446: 1444: 1443: 1438: 1436: 1434: 1423: 1418: 1416: 1405: 1397: 1392: 1391: 1347: 1345: 1344: 1339: 1337: 1333: 1303: 1302: 1278: 1235: 1233: 1232: 1227: 1219: 1215: 1213: 1202: 1140: 1138: 1137: 1132: 1129: 1124: 1112: 1108: 1106: 1105: 1104: 1088: 1011: 1009: 1008: 1003: 1001: 1000: 995: 991: 983: 964: 943: 941: 940: 935: 933: 924: 919: 907: 903: 901: 900: 891: 890: 881: 794: 792: 791: 786: 784: 783: 778: 774: 767: 759: 751: 750: 742: 740: 736: 728: 715: 711: 710: 708: 707: 698: 697: 696: 683: 670: 666: 664: 663: 659: 658: 656: 649: 648: 647: 639: 625: 612: 604: 592: 591: 590: 585: 581: 573: 559: 534: 532: 531: 526: 521: 519: 511: 509: 504: 485: 415: 413: 412: 407: 405: 404: 399: 395: 387: 352: 350: 349: 344: 339: 335: 333: 332: 323: 322: 313: 307: 303: 298: 296: 291: 278: 61:laser vibrometer 2260: 2259: 2255: 2254: 2253: 2251: 2250: 2249: 2235:Quality control 2220: 2219: 2218: 2217: 2202: 2189: 2188: 2184: 2150: 2149: 2145: 2128: 2121: 2120: 2116: 2107: 2106: 2102: 2085: 2073: 2061: 2060: 2056: 2012: 2011: 2007: 1990: 1970: 1969: 1965: 1923: 1922: 1918: 1874: 1873: 1869: 1847: 1846: 1842: 1803: 1802: 1798: 1793: 1756: 1666: 1611: 1607: 1602: 1584: 1580: 1576: 1569: 1561: 1553: 1545: 1541: 1513: 1509: 1505: 1501: 1497: 1493: 1478:Poisson's ratio 1470:Young's modulus 1459: 1454: 1427: 1406: 1398: 1380: 1375: 1374: 1363: 1357: 1314: 1310: 1288: 1268: 1260: 1259: 1242: 1206: 1197: 1186: 1185: 1179: 1171: 1165: 1159: 1153: 1152: 1096: 1092: 1083: 1069: 1068: 1065: 1043: 1037: 1031: 1030: 1022: 1016: 978: 977: 957: 952: 951: 926: 892: 882: 876: 862: 861: 858: 856:Young's modulus 853: 851:Cylindrical rod 839: 833: 827: 821: 815: 814: 757: 753: 752: 723: 722: 699: 688: 684: 675: 671: 630: 629: 617: 613: 593: 568: 567: 560: 554: 543: 542: 512: 486: 473: 472: 469: 450: 444: 435: 434: 426: 420: 382: 381: 361: 360: 324: 314: 308: 279: 273: 259: 258: 255: 253:Young's modulus 250: 248:Rectangular bar 245: 236:quality control 231: 222: 201:nanoindentation 192: 179: 162:Poisson's ratio 158: 156:Poisson's ratio 138: 118:Young's modulus 106: 81: 41:Poisson's ratio 33:Young's modulus 17: 12: 11: 5: 2258: 2256: 2248: 2247: 2242: 2237: 2232: 2222: 2221: 2216: 2215: 2200: 2182: 2163:(7): 487–495. 2143: 2114: 2100: 2071: 2054: 2005: 1963: 1916: 1867: 1840: 1795: 1794: 1792: 1789: 1788: 1787: 1777: 1767: 1755: 1752: 1751: 1750: 1747: 1744: 1741: 1723: 1722: 1719: 1716: 1713: 1674:finite element 1650: 1629:inverse method 1609: 1605: 1601: 1598: 1582: 1578: 1574: 1567: 1559: 1551: 1548:Young's moduli 1543: 1539: 1511: 1507: 1503: 1499: 1495: 1491: 1458: 1455: 1453: 1450: 1449: 1448: 1433: 1430: 1426: 1421: 1415: 1412: 1409: 1404: 1401: 1395: 1390: 1387: 1383: 1372: 1365: 1361: 1359: 1355: 1349: 1348: 1336: 1332: 1329: 1326: 1323: 1320: 1317: 1313: 1309: 1306: 1301: 1298: 1295: 1291: 1287: 1284: 1281: 1277: 1274: 1271: 1267: 1241: 1238: 1237: 1236: 1225: 1222: 1218: 1212: 1209: 1205: 1200: 1196: 1193: 1178: 1175: 1174: 1173: 1169: 1167: 1163: 1161: 1157: 1155: 1150: 1148: 1142: 1141: 1128: 1123: 1119: 1115: 1111: 1103: 1099: 1095: 1091: 1086: 1082: 1079: 1076: 1064: 1061: 1060: 1059: 1051: 1045: 1041: 1039: 1035: 1033: 1028: 1026: 1024: 1020: 1018: 1014: 1012: 999: 994: 989: 986: 981: 976: 973: 970: 967: 963: 960: 945: 944: 932: 929: 923: 918: 914: 910: 906: 899: 895: 889: 885: 879: 875: 872: 869: 857: 854: 852: 849: 848: 847: 841: 837: 835: 831: 829: 825: 823: 819: 817: 812: 810: 801: 800: 796: 795: 782: 777: 773: 770: 765: 762: 756: 748: 745: 739: 734: 731: 726: 721: 718: 714: 706: 702: 695: 691: 687: 681: 678: 674: 669: 662: 655: 652: 645: 642: 637: 633: 628: 623: 620: 616: 610: 607: 602: 599: 596: 589: 584: 579: 576: 571: 566: 563: 557: 553: 550: 536: 535: 524: 518: 515: 508: 503: 499: 495: 492: 489: 483: 480: 468: 465: 464: 463: 458: 452: 448: 446: 442: 440: 437: 432: 430: 428: 424: 422: 418: 416: 403: 398: 393: 390: 385: 380: 377: 374: 371: 368: 354: 353: 342: 338: 331: 327: 321: 317: 311: 306: 301: 295: 290: 286: 282: 276: 272: 269: 266: 254: 251: 249: 246: 244: 241: 230: 227: 221: 218: 191: 188: 178: 175: 157: 154: 137: 134: 105: 102: 80: 77: 15: 13: 10: 9: 6: 4: 3: 2: 2257: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2227: 2225: 2211: 2207: 2203: 2197: 2193: 2186: 2183: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2147: 2144: 2139: 2133: 2125: 2118: 2115: 2110: 2104: 2101: 2096: 2090: 2082: 2078: 2074: 2072:90-5410-595-X 2068: 2064: 2058: 2055: 2050: 2046: 2041: 2036: 2032: 2028: 2024: 2020: 2016: 2009: 2006: 2001: 1995: 1987: 1983: 1979: 1975: 1967: 1964: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1920: 1917: 1912: 1908: 1903: 1898: 1894: 1890: 1886: 1882: 1878: 1871: 1868: 1863: 1859: 1855: 1851: 1844: 1841: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1800: 1797: 1790: 1785: 1781: 1778: 1775: 1771: 1768: 1765: 1761: 1758: 1757: 1753: 1748: 1745: 1742: 1739: 1738: 1737: 1734: 1732: 1728: 1720: 1717: 1714: 1711: 1710: 1709: 1707: 1702: 1699: 1696: 1693: 1691: 1687: 1685: 1680: 1677: 1675: 1669: 1664: 1659: 1654: 1649: 1642: 1638: 1635: 1632: 1630: 1626: 1618: 1614: 1599: 1597: 1593: 1591: 1586: 1572: 1565: 1557: 1556:shear modulus 1549: 1536: 1534: 1528: 1524: 1519: 1517: 1488: 1486: 1481: 1479: 1475: 1474:shear modulus 1471: 1467: 1463: 1456: 1451: 1431: 1428: 1424: 1419: 1413: 1410: 1407: 1402: 1393: 1388: 1385: 1381: 1373: 1370: 1366: 1360: 1354: 1353: 1352: 1334: 1330: 1327: 1324: 1321: 1318: 1315: 1311: 1307: 1304: 1299: 1296: 1293: 1289: 1285: 1282: 1279: 1275: 1272: 1269: 1265: 1258: 1257: 1254: 1249: 1245: 1239: 1223: 1220: 1216: 1210: 1207: 1203: 1198: 1194: 1191: 1184: 1183: 1182: 1177:Poisson ratio 1176: 1168: 1162: 1156: 1147: 1146: 1145: 1126: 1121: 1117: 1113: 1109: 1101: 1097: 1093: 1089: 1084: 1080: 1077: 1074: 1067: 1066: 1063:Shear modulus 1062: 1058: 1055: 1052: 1049: 1046: 1040: 1034: 1025: 1019: 1013: 997: 992: 987: 984: 979: 974: 971: 968: 965: 961: 958: 950: 949: 948: 930: 927: 921: 916: 912: 908: 904: 897: 893: 887: 883: 877: 873: 870: 867: 860: 859: 850: 845: 842: 840:the thickness 836: 830: 824: 818: 809: 808: 807: 805: 798: 797: 780: 775: 771: 768: 763: 760: 754: 746: 743: 737: 732: 729: 724: 719: 716: 712: 704: 700: 693: 689: 685: 679: 676: 672: 667: 660: 653: 650: 643: 640: 635: 631: 626: 621: 618: 614: 608: 605: 600: 597: 594: 587: 582: 577: 574: 569: 564: 561: 555: 551: 548: 541: 540: 539: 522: 516: 513: 506: 501: 497: 493: 490: 487: 481: 478: 471: 470: 467:Shear modulus 466: 462: 459: 456: 453: 451:the thickness 447: 441: 438: 429: 423: 417: 401: 396: 391: 388: 383: 378: 375: 372: 369: 366: 359: 358: 357: 340: 336: 329: 325: 319: 315: 309: 304: 299: 293: 288: 284: 280: 274: 270: 267: 264: 257: 256: 247: 242: 240: 237: 228: 226: 219: 217: 215: 211: 206: 202: 198: 189: 187: 185: 176: 174: 172: 168: 163: 153: 151: 150:shear modulus 147: 143: 135: 130: 125: 121: 119: 115: 111: 103: 98: 93: 89: 85: 78: 76: 74: 70: 66: 65:accelerometer 62: 58: 54: 49: 46: 42: 38: 37:shear modulus 34: 30: 26: 22: 2191: 2185: 2160: 2156: 2146: 2117: 2103: 2062: 2057: 2022: 2018: 2008: 1994:cite journal 1977: 1973: 1966: 1933: 1929: 1919: 1884: 1880: 1870: 1853: 1849: 1843: 1810: 1806: 1799: 1783: 1773: 1764:www.astm.org 1763: 1735: 1730: 1726: 1724: 1706:requirements 1705: 1703: 1700: 1697: 1694: 1689: 1688: 1681: 1678: 1670: 1667: 1646: 1636: 1633: 1628: 1624: 1622: 1603: 1594: 1587: 1571: 1537: 1522: 1520: 1516:shear stress 1489: 1482: 1465: 1460: 1368: 1350: 1243: 1180: 1166:the diameter 1143: 1056: 1053: 1047: 1038:the diameter 946: 843: 803: 802: 537: 460: 454: 355: 232: 229:Applications 223: 214:refractories 193: 184:dislocations 180: 159: 139: 136:Torsion mode 107: 104:Flexure mode 86: 82: 50: 24: 20: 18: 1585:are known. 1527:orthotropic 439:b the width 167:Hooke's law 2224:Categories 2025:: e00231. 1887:: e00231. 1791:References 1172:the length 1044:the length 834:the length 445:the length 144:mode. The 88:E1876-15). 57:microphone 2210:851370715 2177:0963-8695 2089:cite book 2019:HardwareX 1958:136855858 1950:1073-5623 1881:HardwareX 1835:0034-6748 1754:Standards 1462:Isotropic 1429:π 1411:π 1400:Δ 1386:− 1331:ϕ 1319:π 1308:⁡ 1294:− 1283:∑ 1221:− 1192:ν 1094:π 1057:L/d ≥ 20! 828:the width 769:− 717:− 636:π 622:− 598:− 171:isotropic 2132:cite web 2081:35306088 2049:35607698 1911:35607698 1736:Indeed, 1690:Problems 1546:are the 1160:the mass 1023:the mass 962:′ 931:′ 822:the mass 427:the mass 210:ceramics 2040:9123443 1902:9123443 1815:Bibcode 1562:is the 1530:become: 1514:is the 1472:E, the 1251:Damped 686:0.00851 142:torsion 129:torsion 110:flexure 97:flexure 2208:  2198:  2175:  2079:  2069:  2047:  2037:  1956:  1948:  1909:  1899:  1833:  1476:G and 1362:δ = kt 874:1.6067 271:0.9465 1980:(2). 1954:S2CID 1623:The " 1608:and E 1581:and v 1566:and v 1542:and E 1506:and σ 1494:and ε 1351:with 1144:with 975:4.939 947:with 720:0.060 627:1.991 601:2.521 538:with 379:6.585 356:with 2206:OCLC 2196:ISBN 2173:ISSN 2138:link 2095:link 2077:OCLC 2067:ISBN 2045:PMID 2000:link 1946:ISSN 1907:PMID 1831:ISSN 1704:The 1253:sine 212:and 199:and 160:The 131:mode 99:mode 43:and 19:The 2165:doi 2035:PMC 2027:doi 1982:doi 1938:doi 1897:PMC 1889:doi 1858:doi 1854:310 1823:doi 1774:ISO 1727:and 1577:, E 1558:. v 1466:IET 1305:sin 63:or 25:IET 2226:: 2204:. 2171:. 2161:36 2159:. 2155:. 2134:}} 2130:{{ 2091:}} 2087:{{ 2075:. 2043:. 2033:. 2023:10 2021:. 2017:. 1996:}} 1992:{{ 1976:. 1952:. 1944:. 1934:45 1932:. 1928:. 1905:. 1895:. 1885:10 1883:. 1879:. 1829:. 1821:. 1811:68 1809:. 1782:. 1772:. 1762:. 1583:12 1568:21 1560:12 1552:12 1512:12 1500:12 1081:16 1048:T' 75:. 59:, 55:, 39:, 35:, 2212:. 2179:. 2167:: 2140:) 2126:. 2111:. 2097:) 2083:. 2051:. 2029:: 2002:) 1988:. 1984:: 1978:7 1960:. 1940:: 1913:. 1891:: 1864:. 1860:: 1837:. 1825:: 1817:: 1786:. 1776:. 1766:. 1610:2 1606:1 1579:2 1575:1 1544:2 1540:1 1538:E 1508:2 1504:1 1496:2 1492:1 1432:f 1425:k 1420:= 1414:W 1408:2 1403:W 1394:= 1389:1 1382:Q 1356:f 1335:) 1328:+ 1325:t 1322:f 1316:2 1312:( 1300:t 1297:k 1290:e 1286:A 1280:= 1276:) 1273:t 1270:( 1266:x 1224:1 1217:) 1211:G 1208:2 1204:E 1199:( 1195:= 1170:L 1164:d 1158:m 1151:t 1149:f 1127:2 1122:t 1118:f 1114:m 1110:) 1102:2 1098:d 1090:L 1085:( 1078:= 1075:G 1042:L 1036:d 1029:f 1027:f 1021:m 1015:E 998:2 993:) 988:L 985:d 980:( 972:+ 969:1 966:= 959:T 928:T 922:2 917:f 913:f 909:m 905:) 898:4 894:d 888:3 884:L 878:( 871:= 868:E 844:R 838:t 832:L 826:b 820:m 813:t 811:f 804:G 781:2 776:) 772:1 764:t 761:b 755:( 747:2 744:3 738:) 733:L 730:b 725:( 713:] 705:2 701:L 694:2 690:b 680:+ 677:1 673:[ 668:] 661:) 654:1 651:+ 644:t 641:b 632:e 619:1 615:( 609:b 606:t 595:4 588:2 583:) 578:t 575:b 570:( 565:+ 562:1 556:[ 552:= 549:R 523:R 517:t 514:b 507:2 502:t 498:f 494:m 491:L 488:4 482:= 479:G 455:T 449:t 443:L 433:f 431:f 425:m 419:E 402:2 397:) 392:L 389:t 384:( 376:+ 373:1 370:= 367:T 341:T 337:) 330:3 326:t 320:3 316:L 310:( 305:) 300:b 294:2 289:f 285:f 281:m 275:( 268:= 265:E 23:(

Index

resonant frequencies
Young's modulus
shear modulus
Poisson's ratio
internal friction
piezoelectric sensor
microphone
laser vibrometer
accelerometer
fast Fourier transformation
classical beam theory

flexure
flexure
natural frequency
Young's modulus

torsion
torsion
natural frequency
shear modulus
Poisson's ratio
Hooke's law
isotropic
dislocations
four-point bending test
nanoindentation
ultrasound spectroscopy
ceramics
refractories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.