Knowledge

Poincaré duality

Source 📝

714: 2707: 2385: 3542: 3848:
is a version of Poincaré duality which provides an isomorphism between the homology of an abelian covering space of a manifold and the corresponding cohomology with compact supports. It is used to get basic structural results about the
3433: 2271: 2080: 3058: 184:, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation. 2543: 3902:
could be replaced by other theories, once the products on manifolds were constructed; and there are now textbook treatments in generality. More specifically, there is a general Poincaré duality theorem for a
2554: 2146:
is smooth, the intersection product is computed by perturbing the homology classes to be transverse and computing their oriented intersection number. For the torsion linking form, one computes the pairing of
572: 666: 355: 3144: 3330: 1992: 3673: 2964: 1062: 3789: 1543: 1410: 480:
Here, homology and cohomology are integral, but the isomorphism remains valid over any coefficient ring. In the case where an oriented manifold is not compact, one has to replace homology by
759: 2118:
is the quotient of the rationals by the integers, taken as an additive group. Notice that in the torsion linking form, there is a −1 in the dimension, so the paired dimensions add up to
1908: 2116: 175: 2446: 469:
Homology and cohomology groups are defined to be zero for negative degrees, so Poincaré duality in particular implies that the homology and cohomology groups of orientable closed
429: 1114: 676:
Given a triangulated manifold, there is a corresponding dual polyhedral decomposition. The dual polyhedral decomposition is a cell decomposition of the manifold such that the
3979:
of a manifold, notably satisfying Poincaré duality on its homology groups, with respect to a distinguished element (corresponding to the fundamental class). These are used in
2861: 1254: 3709: 2282: 1452: 872: 464: 3900: 2816: 1798: 3598: 2783: 3810:, given a Künneth theorem and a Thom isomorphism for that homology theory. A Thom isomorphism theorem for a homology theory is now viewed as the generalized notion of 3440: 1217: 1181: 2744: 1326: 912: 892: 835: 803: 1835: 3568: 1698: 1600: 1573: 1289: 1141: 990: 704: 3215: 1746: 1718: 1671: 1643: 1620: 932: 387: 3340: 1219:
are the cellular homologies and cohomologies of the dual polyhedral/CW decomposition the manifold respectively. The fact that this is an isomorphism of
3831: 2184: 2003: 4274: 2990: 3911:. The Thom isomorphism theorem in this regard can be considered as the germinal idea for Poincaré duality for generalized homology theories. 4214: 3987:
is one whose singular chain complex is a Poincaré complex. These are not all manifolds, but their failure to be manifolds can be measured by
2702:{\displaystyle \tau H^{n-i}M\equiv \mathrm {Ext} (H_{n-i-1}M;\mathbb {Z} )\equiv \mathrm {Hom} (\tau H_{n-i-1}M;\mathbb {Q} /\mathbb {Z} )} 2462: 489: 586: 280: 4132: 4048: 3934: 3080: 578: 3261: 1931: 3605: 3149:
The resulting groups, while not a single group with a bilinear form, are a simple chain complex and are studied in algebraic
1223:
is a proof of Poincaré duality. Roughly speaking, this amounts to the fact that the boundary relation for the triangulation
2909: 1007: 2453: 3945:, such as real or complex algebraic varieties, precisely so as to generalise Poincaré duality to such stratified spaces. 3720: 1479: 1338: 3965: 3907:
which requires a notion of orientation with respect to a homology theory, and is formulated in terms of a generalized
3904: 3807: 3839: 4160:
Blanchfield, Richard C. (1957), "Intersection theory of manifolds with operators with applications to knot theory",
4202: 4040: 719: 4269: 2163:. The form then takes the value equal to the fraction whose numerator is the transverse intersection number of 1843: 481: 4259: 2089: 113: 2399: 3976: 1416: 226: 43: 392: 4162: 3930: 1292: 1067: 4072: 3162: 2380:{\displaystyle \tau H_{i}M\to \mathrm {Hom} _{\mathbb {Z} }(\tau H_{n-i-1}M,\mathbb {Q} /\mathbb {Z} )} 4000: 3926: 3850: 3834:
is a generalisation for manifolds with boundary. In the non-orientable case, taking into account the
3240: 3182: 3165:
and Akira Yasuhara to give an elementary homotopy and diffeomorphism classification of 3-dimensional
3063:
However, there is also a pairing between the free part of the homology in the lower middle dimension
2821: 1230: 3682: 1425: 848: 437: 4077: 3972: 3854: 3835: 2883: 2134: 1761: 245:
Poincaré duality did not take on its modern form until the advent of cohomology in the 1930s, when
231: 50: 4264: 4179: 4102: 3988: 3949: 3918: 3537:{\displaystyle H_{*}\left(M\times M,(M\times M)\setminus V\right)\to H_{*}(\nu M,\partial \nu M)} 2788: 1770: 181: 3796: 3333: 269:
The modern statement of the Poincaré duality theorem is in terms of homology and cohomology: if
3806:
This formulation of Poincaré duality has become popular as it defines Poincaré duality for any
3577: 2749: 4210: 4198: 4128: 4044: 4005: 3984: 3957: 3953: 1918: 1804: 1329: 1186: 1150: 362: 193: 85: 39: 2716: 1298: 897: 877: 820: 788: 4171: 4086: 3942: 3875: 3544: 1810: 4224: 4191: 4142: 4098: 4058: 3550: 1917:
part – all homology groups taken with integer coefficients in this section. Then there are
1676: 1578: 1551: 1267: 1119: 4220: 4187: 4138: 4094: 4054: 3914: 3861: 3838:
of local orientations, one can give a statement that is independent of orientability: see
1922: 1465:-manifolds which is compatible with orientation, i.e. which maps the fundamental class of 707: 250: 69: 1227:
is the incidence relation for the dual polyhedral decomposition under the correspondence
969: 683: 238:
led him to realize that his proof was seriously flawed. In the first two complements to
3980: 3922: 3815: 3200: 3185:
zero, which in turn gives that any manifold that bounds has even Euler characteristic.
2785:
are isomorphic, although there is no natural map giving the isomorphism, and similarly
1731: 1703: 1656: 1628: 1605: 1458: 917: 372: 246: 4034: 3795:, generalizing the intersection product discussed above. A similar argument with the 3428:{\displaystyle H_{*}(M\times M)\to H_{*}\left(M\times M,(M\times M)\setminus V\right)} 3177:
An immediate result from Poincaré duality is that any closed odd-dimensional manifold
680:-cells of the dual polyhedral decomposition are in bijective correspondence with the ( 4253: 4124: 4030: 3961: 3811: 3571: 2876: 1220: 235: 73: 66: 4237: 4106: 3938: 197: 2178:
The statement that the pairings are duality pairings means that the adjoint maps
4075:; Yasuhara, Akira (2003), "Symmetry of links and classification of lens spaces", 2980:, which is less commonly discussed, it is most simply the lower middle dimension 2266:{\displaystyle fH_{i}M\to \mathrm {Hom} _{\mathbb {Z} }(fH_{n-i}M,\mathbb {Z} )} 432: 258: 254: 224:
concept was at that time about 40 years from being clarified. In his 1895 paper
31: 17: 4243: 2075:{\displaystyle \tau H_{i}M\otimes \tau H_{n-i-1}M\to \mathbb {Q} /\mathbb {Z} } 4090: 4010: 3908: 3676: 3194: 3166: 1914: 47: 2984:, and there is a form on the torsion part of the homology in that dimension: 216:
th Betti numbers of a closed (i.e., compact and without boundary) orientable
3053:{\displaystyle \tau H_{k}M\otimes \tau H_{k}M\to \mathbb {Q} /\mathbb {Z} .} 2889:
What is meant by "middle dimension" depends on parity. For even dimension
3865: 3819: 3150: 54: 2875:
between different homology groups, in the middle dimension it induces a
761:– a picture of the parts of the dual-cells in a top-dimensional simplex. 4183: 713: 2538:{\displaystyle fH^{n-i}M\equiv \mathrm {Hom} (H_{n-i}M;\mathbb {Z} )} 27:
Connects homology and cohomology groups for oriented closed manifolds
4175: 389:
is oriented. Then the isomorphism is defined by mapping an element
712: 567:{\displaystyle H^{i}(X){\stackrel {\cong }{\to }}H_{n-i}^{BM}(X),} 3679:. This map is well-defined as there is a standard identification 661:{\displaystyle H_{c}^{i}(X){\stackrel {\cong }{\to }}H_{n-i}(X).} 350:{\displaystyle H^{k}(M,\mathbb {Z} )\to H_{n-k}(M,\mathbb {Z} )} 2903:, and there is a form on the free part of the middle homology: 2899:, which is more common, this is literally the middle dimension 2871:
While for most dimensions, Poincaré duality induces a bilinear
192:
A form of Poincaré duality was first stated, without proof, by
3711:
which is an oriented bundle, so the Thom isomorphism applies.
242:, Poincaré gave a new proof in terms of dual triangulations. 3872:
theories from about 1955, it was realised that the homology
1653:. Naturality does not hold for an arbitrary continuous map 277:-manifold, then there is a canonically defined isomorphism 3818:
on a manifold is a precise analog of an orientation within
4123:. Springer Monographs in Mathematics. With a foreword by 3139:{\displaystyle fH_{k}M\otimes fH_{k+1}M\to \mathbb {Z} .} 706:)-cells of the triangulation, generalizing the notion of 3325:{\displaystyle H_{*}M\otimes H_{*}M\to H_{*}(M\times M)} 1987:{\displaystyle fH_{i}M\otimes fH_{n-i}M\to \mathbb {Z} } 1720:
is a covering map then it maps the fundamental class of
230:, Poincaré tried to prove the theorem using topological 3668:{\displaystyle H_{*}(\nu M,\partial \nu M)\to H_{*-n}M} 2959:{\displaystyle fH_{k}M\otimes fH_{k}M\to \mathbb {Z} } 1057:{\displaystyle C_{i}M\otimes C_{n-i}M\to \mathbb {Z} } 361:. To define such an isomorphism, one chooses a fixed 3975:, which is an algebraic object that behaves like the 3971:
More algebraically, one can abstract the notion of a
3878: 3723: 3685: 3608: 3580: 3553: 3443: 3343: 3264: 3203: 3083: 2993: 2912: 2824: 2791: 2752: 2719: 2557: 2465: 2402: 2285: 2187: 2092: 2006: 1934: 1846: 1813: 1773: 1734: 1706: 1679: 1659: 1631: 1608: 1581: 1554: 1482: 1428: 1341: 1301: 1270: 1233: 1189: 1153: 1122: 1070: 1064:
given by taking intersections induces an isomorphism
1010: 972: 920: 900: 894:
of the barycentres of all subsets of the vertices of
880: 851: 823: 791: 722: 686: 589: 492: 440: 395: 375: 283: 116: 1700:
is not an injection on cohomology. For example, if
261:
and formulated Poincaré duality in these new terms.
3948:There are many other forms of geometric duality in 3894: 3784:{\displaystyle H_{i}M\otimes H_{j}M\to H_{i+j-n}M} 3783: 3703: 3667: 3592: 3562: 3536: 3427: 3324: 3209: 3138: 3052: 2958: 2855: 2810: 2777: 2738: 2701: 2537: 2440: 2393:This result is an application of Poincaré duality 2379: 2265: 2110: 2074: 1986: 1902: 1829: 1792: 1740: 1712: 1692: 1665: 1637: 1614: 1594: 1567: 1538:{\displaystyle D_{N}=f_{*}\circ D_{M}\circ f^{*},} 1537: 1446: 1405:{\displaystyle D_{M}\colon H^{k}(M)\to H_{n-k}(M)} 1404: 1320: 1283: 1248: 1211: 1175: 1135: 1108: 1056: 984: 926: 906: 886: 866: 829: 797: 753: 698: 660: 566: 458: 423: 381: 349: 234:, which he had invented. Criticism of his work by 169: 1625:Note the very strong and crucial hypothesis that 958:-dimensional cell. Moreover, the dual cells to 3917:is the appropriate generalization to (possibly 3161:This approach to Poincaré duality was used by 1143:is the cellular homology of the triangulation 4121:On Thom spectra, orientability, and cobordism 3983:to algebraicize questions about manifolds. A 8: 754:{\displaystyle \cup _{S\in T}\Delta \cap DS} 473:-manifolds are zero for degrees bigger than 42:, is a basic result on the structure of the 4209:, Wiley Classics Library, New York: Wiley, 3193:Poincaré duality is closely related to the 2886:is a very important topological invariant. 2863:are also isomorphic, though not naturally. 992:)-dimensional dual cell that intersects an 180:Poincaré duality holds for any coefficient 2882:on a single homology group. The resulting 1903:{\displaystyle fH_{i}M=H_{i}M/\tau H_{i}M} 1728:. This multiple is the degree of the map 1724:to a multiple of the fundamental class of 1622:in homology and cohomology, respectively. 3883: 3877: 3760: 3744: 3728: 3722: 3684: 3650: 3613: 3607: 3579: 3552: 3504: 3448: 3442: 3376: 3348: 3342: 3301: 3285: 3269: 3263: 3202: 3129: 3128: 3110: 3091: 3082: 3043: 3042: 3037: 3033: 3032: 3020: 3001: 2992: 2952: 2951: 2939: 2920: 2911: 2832: 2823: 2799: 2790: 2760: 2751: 2727: 2718: 2692: 2691: 2686: 2682: 2681: 2657: 2636: 2626: 2625: 2601: 2583: 2565: 2556: 2528: 2527: 2509: 2491: 2473: 2464: 2423: 2407: 2401: 2370: 2369: 2364: 2360: 2359: 2335: 2319: 2318: 2317: 2306: 2293: 2284: 2256: 2255: 2237: 2221: 2220: 2219: 2208: 2195: 2186: 2111:{\displaystyle \mathbb {Q} /\mathbb {Z} } 2104: 2103: 2098: 2094: 2093: 2091: 2068: 2067: 2062: 2058: 2057: 2033: 2014: 2005: 1980: 1979: 1961: 1942: 1933: 1891: 1879: 1870: 1854: 1845: 1818: 1812: 1781: 1772: 1733: 1705: 1684: 1678: 1658: 1630: 1607: 1586: 1580: 1559: 1553: 1526: 1513: 1500: 1487: 1481: 1427: 1381: 1359: 1346: 1340: 1306: 1300: 1275: 1269: 1232: 1194: 1188: 1158: 1152: 1127: 1121: 1091: 1075: 1069: 1050: 1049: 1031: 1015: 1009: 971: 919: 899: 879: 850: 822: 790: 727: 721: 685: 634: 622: 617: 615: 614: 599: 594: 588: 543: 532: 520: 515: 513: 512: 497: 491: 439: 406: 394: 374: 340: 339: 318: 304: 303: 288: 282: 170:{\displaystyle H^{k}(M)\cong H_{n-k}(M).} 143: 121: 115: 4022: 3486: 3414: 2132:The first form is typically called the 2441:{\displaystyle H_{i}M\simeq H^{n-i}M} 7: 3217:be a compact, boundaryless oriented 3173:Application to Euler Characteristics 3826:Generalizations and related results 424:{\displaystyle \alpha \in H^{k}(M)} 196:in 1893. It was stated in terms of 3832:Poincaré–Lefschetz duality theorem 3631: 3522: 3067:and in the upper middle dimension 2643: 2640: 2637: 2590: 2587: 2584: 2498: 2495: 2492: 2313: 2310: 2307: 2215: 2212: 2209: 1109:{\displaystyle C_{i}M\to C^{n-i}M} 901: 881: 852: 824: 792: 739: 25: 3814:for that theory. For example, a 2713:Thus, Poincaré duality says that 2456:, which gives an identification 4207:Principles of algebraic geometry 805:be a top-dimensional simplex of 76:and without boundary), then the 2969:By contrast, for odd dimension 2856:{\displaystyle \tau H_{n-i-1}M} 1249:{\displaystyle S\longmapsto DS} 817:as a subset of the vertices of 579:cohomology with compact support 4275:Theorems in algebraic geometry 3853:and can be used to define the 3753: 3704:{\displaystyle \nu M\equiv TM} 3643: 3640: 3619: 3531: 3510: 3497: 3483: 3471: 3411: 3399: 3369: 3366: 3354: 3319: 3307: 3294: 3125: 3029: 2948: 2696: 2647: 2630: 2594: 2532: 2502: 2374: 2325: 2302: 2260: 2227: 2204: 2159:as the boundary of some class 2054: 1976: 1760:is compact, boundaryless, and 1645:maps the fundamental class of 1447:{\displaystyle f\colon M\to N} 1438: 1399: 1393: 1374: 1371: 1365: 1237: 1084: 1046: 867:{\displaystyle \Delta \cap DS} 652: 646: 618: 611: 605: 558: 552: 516: 509: 503: 459:{\displaystyle \frown \alpha } 447: 441: 418: 412: 344: 330: 311: 308: 294: 161: 155: 133: 127: 1: 3921:) geometric objects, such as 2454:universal coefficient theorem 1752:Bilinear pairings formulation 1332:. The family of isomorphisms 3820:complex topological k-theory 3189:Thom isomorphism formulation 2390:are isomorphisms of groups. 1649:to the fundamental class of 1469:to the fundamental class of 4127:. Berlin: Springer-Verlag. 4039:(1st ed.). Cambridge: 3905:generalized homology theory 3808:generalized homology theory 3717:Combined, this gives a map 2811:{\displaystyle \tau H_{i}M} 2171:, and whose denominator is 1793:{\displaystyle \tau H_{i}M} 1419:in the following sense: if 962:form a CW-decomposition of 4291: 4041:Cambridge University Press 3593:{\displaystyle M\times M} 2778:{\displaystyle fH_{n-i}M} 2142:. Assuming the manifold 934:. One can check that if 769:be a triangulation of an 577:or replace cohomology by 220:-manifold are equal. The 3909:Thom isomorphism theorem 3860:With the development of 3840:twisted Poincaré duality 3195:Thom isomorphism theorem 1602:are the maps induced by 1212:{\displaystyle C^{n-i}M} 1176:{\displaystyle C_{n-i}M} 4091:10.1023/A:1024008222682 2739:{\displaystyle fH_{i}M} 1321:{\displaystyle H_{n-k}} 907:{\displaystyle \Delta } 887:{\displaystyle \Delta } 837:. Define the dual cell 830:{\displaystyle \Delta } 798:{\displaystyle \Delta } 80:th cohomology group of 3977:singular chain complex 3896: 3895:{\displaystyle H'_{*}} 3785: 3705: 3669: 3594: 3564: 3538: 3429: 3334:Homology cross product 3326: 3211: 3140: 3054: 2960: 2857: 2812: 2779: 2740: 2703: 2539: 2442: 2381: 2267: 2112: 2076: 1988: 1904: 1831: 1830:{\displaystyle H_{i}M} 1794: 1756:Assuming the manifold 1742: 1714: 1694: 1667: 1639: 1616: 1596: 1569: 1539: 1448: 1406: 1322: 1285: 1250: 1213: 1177: 1137: 1110: 1058: 986: 928: 908: 888: 874:is the convex hull in 868: 831: 799: 762: 755: 700: 662: 568: 460: 425: 383: 369:, which will exist if 351: 171: 4246:at the Manifold Atlas 4240:at the Manifold Atlas 4163:Annals of Mathematics 4119:Rudyak, Yuli (1998). 3931:intersection homology 3897: 3786: 3706: 3670: 3595: 3565: 3563:{\displaystyle \nu M} 3539: 3430: 3327: 3253:. Consider the maps: 3241:tubular neighbourhood 3212: 3141: 3055: 2961: 2858: 2813: 2780: 2741: 2704: 2540: 2443: 2382: 2268: 2113: 2077: 1989: 1905: 1832: 1795: 1743: 1715: 1695: 1693:{\displaystyle f^{*}} 1668: 1640: 1617: 1597: 1595:{\displaystyle f^{*}} 1570: 1568:{\displaystyle f_{*}} 1540: 1461:between two oriented 1449: 1407: 1323: 1293:contravariant functor 1286: 1284:{\displaystyle H^{k}} 1251: 1214: 1178: 1138: 1136:{\displaystyle C_{i}} 1111: 1059: 987: 929: 909: 889: 869: 832: 813:, so we can think of 800: 756: 716: 701: 663: 569: 461: 426: 384: 352: 273:is a closed oriented 172: 100:th homology group of 57:. It states that if 38:theorem, named after 4001:Bruhat decomposition 3876: 3855:signatures of a knot 3801:torsion linking form 3793:intersection product 3721: 3683: 3606: 3578: 3551: 3441: 3341: 3262: 3201: 3183:Euler characteristic 3081: 2991: 2910: 2822: 2789: 2750: 2717: 2555: 2463: 2400: 2283: 2185: 2140:torsion linking form 2135:intersection product 2090: 2004: 1932: 1844: 1811: 1771: 1732: 1704: 1677: 1657: 1629: 1606: 1579: 1552: 1480: 1426: 1339: 1299: 1268: 1231: 1187: 1151: 1120: 1068: 1008: 1004:. Thus the pairing 970: 918: 898: 878: 849: 821: 789: 720: 684: 672:Dual cell structures 587: 490: 482:Borel–Moore homology 438: 393: 373: 281: 114: 4078:Geometriae Dedicata 4073:Przytycki, Józef H. 3891: 3846:Blanchfield duality 3574:of the diagonal in 3243:of the diagonal in 1925:(explained below). 1673:, since in general 985:{\displaystyle n-i} 942:-dimensional, then 699:{\displaystyle n-k} 604: 551: 232:intersection theory 104:, for all integers 4199:Griffiths, Phillip 4036:Algebraic Topology 3989:obstruction theory 3950:algebraic topology 3892: 3879: 3781: 3701: 3665: 3590: 3572:normal disc bundle 3560: 3534: 3425: 3322: 3207: 3136: 3050: 2956: 2853: 2808: 2775: 2736: 2699: 2535: 2452:together with the 2438: 2377: 2263: 2108: 2072: 1984: 1900: 1827: 1790: 1738: 1710: 1690: 1663: 1635: 1612: 1592: 1565: 1535: 1444: 1402: 1318: 1281: 1246: 1209: 1173: 1133: 1106: 1054: 982: 924: 904: 884: 864: 827: 795: 763: 751: 696: 658: 590: 564: 528: 456: 421: 379: 347: 265:Modern formulation 167: 4238:Intersection form 4216:978-0-471-05059-9 4006:Fundamental class 3958:Alexander duality 3954:Lefschetz duality 3943:stratified spaces 3935:Robert MacPherson 3933:was developed by 3235:with itself. Let 3210:{\displaystyle M} 2884:intersection form 2125:, rather than to 1741:{\displaystyle f} 1713:{\displaystyle f} 1666:{\displaystyle f} 1638:{\displaystyle f} 1615:{\displaystyle f} 927:{\displaystyle S} 841:corresponding to 627: 525: 382:{\displaystyle M} 363:fundamental class 16:(Redirected from 4282: 4270:Duality theories 4227: 4194: 4147: 4146: 4116: 4110: 4109: 4069: 4063: 4062: 4027: 3973:Poincaré complex 3901: 3899: 3898: 3893: 3887: 3851:Alexander module 3790: 3788: 3787: 3782: 3777: 3776: 3749: 3748: 3733: 3732: 3710: 3708: 3707: 3702: 3677:Thom isomorphism 3674: 3672: 3671: 3666: 3661: 3660: 3618: 3617: 3599: 3597: 3596: 3591: 3569: 3567: 3566: 3561: 3543: 3541: 3540: 3535: 3509: 3508: 3496: 3492: 3453: 3452: 3434: 3432: 3431: 3426: 3424: 3420: 3381: 3380: 3353: 3352: 3331: 3329: 3328: 3323: 3306: 3305: 3290: 3289: 3274: 3273: 3252: 3230: 3216: 3214: 3213: 3208: 3145: 3143: 3142: 3137: 3132: 3121: 3120: 3096: 3095: 3073: 3059: 3057: 3056: 3051: 3046: 3041: 3036: 3025: 3024: 3006: 3005: 2979: 2965: 2963: 2962: 2957: 2955: 2944: 2943: 2925: 2924: 2898: 2867:Middle dimension 2862: 2860: 2859: 2854: 2849: 2848: 2817: 2815: 2814: 2809: 2804: 2803: 2784: 2782: 2781: 2776: 2771: 2770: 2745: 2743: 2742: 2737: 2732: 2731: 2708: 2706: 2705: 2700: 2695: 2690: 2685: 2674: 2673: 2646: 2629: 2618: 2617: 2593: 2576: 2575: 2544: 2542: 2541: 2536: 2531: 2520: 2519: 2501: 2484: 2483: 2447: 2445: 2444: 2439: 2434: 2433: 2412: 2411: 2386: 2384: 2383: 2378: 2373: 2368: 2363: 2352: 2351: 2324: 2323: 2322: 2316: 2298: 2297: 2272: 2270: 2269: 2264: 2259: 2248: 2247: 2226: 2225: 2224: 2218: 2200: 2199: 2138:and the 2nd the 2124: 2117: 2115: 2114: 2109: 2107: 2102: 2097: 2081: 2079: 2078: 2073: 2071: 2066: 2061: 2050: 2049: 2019: 2018: 1993: 1991: 1990: 1985: 1983: 1972: 1971: 1947: 1946: 1923:duality pairings 1909: 1907: 1906: 1901: 1896: 1895: 1883: 1875: 1874: 1859: 1858: 1836: 1834: 1833: 1828: 1823: 1822: 1799: 1797: 1796: 1791: 1786: 1785: 1747: 1745: 1744: 1739: 1719: 1717: 1716: 1711: 1699: 1697: 1696: 1691: 1689: 1688: 1672: 1670: 1669: 1664: 1644: 1642: 1641: 1636: 1621: 1619: 1618: 1613: 1601: 1599: 1598: 1593: 1591: 1590: 1574: 1572: 1571: 1566: 1564: 1563: 1544: 1542: 1541: 1536: 1531: 1530: 1518: 1517: 1505: 1504: 1492: 1491: 1453: 1451: 1450: 1445: 1411: 1409: 1408: 1403: 1392: 1391: 1364: 1363: 1351: 1350: 1327: 1325: 1324: 1319: 1317: 1316: 1290: 1288: 1287: 1282: 1280: 1279: 1255: 1253: 1252: 1247: 1218: 1216: 1215: 1210: 1205: 1204: 1182: 1180: 1179: 1174: 1169: 1168: 1142: 1140: 1139: 1134: 1132: 1131: 1115: 1113: 1112: 1107: 1102: 1101: 1080: 1079: 1063: 1061: 1060: 1055: 1053: 1042: 1041: 1020: 1019: 991: 989: 988: 983: 966:, and the only ( 957: 933: 931: 930: 925: 913: 911: 910: 905: 893: 891: 890: 885: 873: 871: 870: 865: 836: 834: 833: 828: 804: 802: 801: 796: 781:be a simplex of 760: 758: 757: 752: 738: 737: 705: 703: 702: 697: 667: 665: 664: 659: 645: 644: 629: 628: 626: 621: 616: 603: 598: 573: 571: 570: 565: 550: 542: 527: 526: 524: 519: 514: 502: 501: 465: 463: 462: 457: 430: 428: 427: 422: 411: 410: 388: 386: 385: 380: 357:for any integer 356: 354: 353: 348: 343: 329: 328: 307: 293: 292: 215: 176: 174: 173: 168: 154: 153: 126: 125: 99: 36:Poincaré duality 21: 18:Poincare duality 4290: 4289: 4285: 4284: 4283: 4281: 4280: 4279: 4260:Homology theory 4250: 4249: 4234: 4217: 4197: 4176:10.2307/1969966 4159: 4156: 4154:Further reading 4151: 4150: 4135: 4118: 4117: 4113: 4071: 4070: 4066: 4051: 4029: 4028: 4024: 4019: 3997: 3923:analytic spaces 3915:Verdier duality 3874: 3873: 3862:homology theory 3828: 3797:Künneth theorem 3791:, which is the 3756: 3740: 3724: 3719: 3718: 3681: 3680: 3646: 3609: 3604: 3603: 3576: 3575: 3549: 3548: 3500: 3458: 3454: 3444: 3439: 3438: 3386: 3382: 3372: 3344: 3339: 3338: 3297: 3281: 3265: 3260: 3259: 3244: 3231:the product of 3222: 3221:-manifold, and 3199: 3198: 3191: 3175: 3163:Józef Przytycki 3106: 3087: 3079: 3078: 3068: 3016: 2997: 2989: 2988: 2970: 2935: 2916: 2908: 2907: 2890: 2828: 2820: 2819: 2795: 2787: 2786: 2756: 2748: 2747: 2723: 2715: 2714: 2653: 2597: 2561: 2553: 2552: 2505: 2469: 2461: 2460: 2419: 2403: 2398: 2397: 2331: 2305: 2289: 2281: 2280: 2233: 2207: 2191: 2183: 2182: 2119: 2088: 2087: 2029: 2010: 2002: 2001: 1957: 1938: 1930: 1929: 1887: 1866: 1850: 1842: 1841: 1814: 1809: 1808: 1777: 1769: 1768: 1754: 1730: 1729: 1702: 1701: 1680: 1675: 1674: 1655: 1654: 1627: 1626: 1604: 1603: 1582: 1577: 1576: 1555: 1550: 1549: 1522: 1509: 1496: 1483: 1478: 1477: 1424: 1423: 1377: 1355: 1342: 1337: 1336: 1302: 1297: 1296: 1271: 1266: 1265: 1262: 1229: 1228: 1221:chain complexes 1190: 1185: 1184: 1154: 1149: 1148: 1123: 1118: 1117: 1087: 1071: 1066: 1065: 1027: 1011: 1006: 1005: 968: 967: 947: 916: 915: 896: 895: 876: 875: 847: 846: 819: 818: 787: 786: 765:Precisely, let 723: 718: 717: 682: 681: 674: 630: 585: 584: 493: 488: 487: 436: 435: 402: 391: 390: 371: 370: 314: 284: 279: 278: 267: 251:Hassler Whitney 205: 190: 139: 117: 112: 111: 89: 70:closed manifold 28: 23: 22: 15: 12: 11: 5: 4288: 4286: 4278: 4277: 4272: 4267: 4262: 4252: 4251: 4248: 4247: 4241: 4233: 4232:External links 4230: 4229: 4228: 4215: 4203:Harris, Joseph 4195: 4170:(2): 340–356, 4155: 4152: 4149: 4148: 4133: 4111: 4064: 4049: 4031:Hatcher, Allen 4021: 4020: 4018: 4015: 4014: 4013: 4008: 4003: 3996: 3993: 3985:Poincaré space 3981:surgery theory 3890: 3886: 3882: 3827: 3824: 3816:spin-structure 3780: 3775: 3772: 3769: 3766: 3763: 3759: 3755: 3752: 3747: 3743: 3739: 3736: 3731: 3727: 3715: 3714: 3713: 3712: 3700: 3697: 3694: 3691: 3688: 3664: 3659: 3656: 3653: 3649: 3645: 3642: 3639: 3636: 3633: 3630: 3627: 3624: 3621: 3616: 3612: 3601: 3589: 3586: 3583: 3559: 3556: 3533: 3530: 3527: 3524: 3521: 3518: 3515: 3512: 3507: 3503: 3499: 3495: 3491: 3488: 3485: 3482: 3479: 3476: 3473: 3470: 3467: 3464: 3461: 3457: 3451: 3447: 3436: 3423: 3419: 3416: 3413: 3410: 3407: 3404: 3401: 3398: 3395: 3392: 3389: 3385: 3379: 3375: 3371: 3368: 3365: 3362: 3359: 3356: 3351: 3347: 3336: 3321: 3318: 3315: 3312: 3309: 3304: 3300: 3296: 3293: 3288: 3284: 3280: 3277: 3272: 3268: 3206: 3190: 3187: 3174: 3171: 3159: 3158: 3147: 3146: 3135: 3131: 3127: 3124: 3119: 3116: 3113: 3109: 3105: 3102: 3099: 3094: 3090: 3086: 3061: 3060: 3049: 3045: 3040: 3035: 3031: 3028: 3023: 3019: 3015: 3012: 3009: 3004: 3000: 2996: 2967: 2966: 2954: 2950: 2947: 2942: 2938: 2934: 2931: 2928: 2923: 2919: 2915: 2869: 2868: 2852: 2847: 2844: 2841: 2838: 2835: 2831: 2827: 2807: 2802: 2798: 2794: 2774: 2769: 2766: 2763: 2759: 2755: 2735: 2730: 2726: 2722: 2711: 2710: 2698: 2694: 2689: 2684: 2680: 2677: 2672: 2669: 2666: 2663: 2660: 2656: 2652: 2649: 2645: 2642: 2639: 2635: 2632: 2628: 2624: 2621: 2616: 2613: 2610: 2607: 2604: 2600: 2596: 2592: 2589: 2586: 2582: 2579: 2574: 2571: 2568: 2564: 2560: 2546: 2545: 2534: 2530: 2526: 2523: 2518: 2515: 2512: 2508: 2504: 2500: 2497: 2494: 2490: 2487: 2482: 2479: 2476: 2472: 2468: 2450: 2449: 2437: 2432: 2429: 2426: 2422: 2418: 2415: 2410: 2406: 2388: 2387: 2376: 2372: 2367: 2362: 2358: 2355: 2350: 2347: 2344: 2341: 2338: 2334: 2330: 2327: 2321: 2315: 2312: 2309: 2304: 2301: 2296: 2292: 2288: 2274: 2273: 2262: 2258: 2254: 2251: 2246: 2243: 2240: 2236: 2232: 2229: 2223: 2217: 2214: 2211: 2206: 2203: 2198: 2194: 2190: 2106: 2101: 2096: 2084: 2083: 2070: 2065: 2060: 2056: 2053: 2048: 2045: 2042: 2039: 2036: 2032: 2028: 2025: 2022: 2017: 2013: 2009: 1995: 1994: 1982: 1978: 1975: 1970: 1967: 1964: 1960: 1956: 1953: 1950: 1945: 1941: 1937: 1911: 1910: 1899: 1894: 1890: 1886: 1882: 1878: 1873: 1869: 1865: 1862: 1857: 1853: 1849: 1826: 1821: 1817: 1801: 1800: 1789: 1784: 1780: 1776: 1753: 1750: 1737: 1709: 1687: 1683: 1662: 1634: 1611: 1589: 1585: 1562: 1558: 1546: 1545: 1534: 1529: 1525: 1521: 1516: 1512: 1508: 1503: 1499: 1495: 1490: 1486: 1459:continuous map 1455: 1454: 1443: 1440: 1437: 1434: 1431: 1413: 1412: 1401: 1398: 1395: 1390: 1387: 1384: 1380: 1376: 1373: 1370: 1367: 1362: 1358: 1354: 1349: 1345: 1315: 1312: 1309: 1305: 1278: 1274: 1261: 1258: 1245: 1242: 1239: 1236: 1208: 1203: 1200: 1197: 1193: 1172: 1167: 1164: 1161: 1157: 1130: 1126: 1105: 1100: 1097: 1094: 1090: 1086: 1083: 1078: 1074: 1052: 1048: 1045: 1040: 1037: 1034: 1030: 1026: 1023: 1018: 1014: 981: 978: 975: 923: 903: 883: 863: 860: 857: 854: 826: 794: 750: 747: 744: 741: 736: 733: 730: 726: 708:dual polyhedra 695: 692: 689: 673: 670: 669: 668: 657: 654: 651: 648: 643: 640: 637: 633: 625: 620: 613: 610: 607: 602: 597: 593: 575: 574: 563: 560: 557: 554: 549: 546: 541: 538: 535: 531: 523: 518: 511: 508: 505: 500: 496: 455: 452: 449: 446: 443: 420: 417: 414: 409: 405: 401: 398: 378: 346: 342: 338: 335: 332: 327: 324: 321: 317: 313: 310: 306: 302: 299: 296: 291: 287: 266: 263: 240:Analysis Situs 227:Analysis Situs 194:Henri Poincaré 189: 186: 178: 177: 166: 163: 160: 157: 152: 149: 146: 142: 138: 135: 132: 129: 124: 120: 40:Henri Poincaré 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4287: 4276: 4273: 4271: 4268: 4266: 4263: 4261: 4258: 4257: 4255: 4245: 4242: 4239: 4236: 4235: 4231: 4226: 4222: 4218: 4212: 4208: 4204: 4200: 4196: 4193: 4189: 4185: 4181: 4177: 4173: 4169: 4165: 4164: 4158: 4157: 4153: 4144: 4140: 4136: 4134:3-540-62043-5 4130: 4126: 4125:Haynes Miller 4122: 4115: 4112: 4108: 4104: 4100: 4096: 4092: 4088: 4084: 4080: 4079: 4074: 4068: 4065: 4060: 4056: 4052: 4050:9780521795401 4046: 4042: 4038: 4037: 4032: 4026: 4023: 4016: 4012: 4009: 4007: 4004: 4002: 3999: 3998: 3994: 3992: 3990: 3986: 3982: 3978: 3974: 3969: 3967: 3963: 3962:Hodge duality 3959: 3955: 3951: 3946: 3944: 3940: 3936: 3932: 3928: 3924: 3920: 3916: 3912: 3910: 3906: 3888: 3884: 3880: 3871: 3870:extraordinary 3867: 3863: 3858: 3856: 3852: 3847: 3843: 3841: 3837: 3833: 3825: 3823: 3821: 3817: 3813: 3812:orientability 3809: 3804: 3802: 3798: 3794: 3778: 3773: 3770: 3767: 3764: 3761: 3757: 3750: 3745: 3741: 3737: 3734: 3729: 3725: 3698: 3695: 3692: 3689: 3686: 3678: 3662: 3657: 3654: 3651: 3647: 3637: 3634: 3628: 3625: 3622: 3614: 3610: 3602: 3587: 3584: 3581: 3573: 3557: 3554: 3546: 3528: 3525: 3519: 3516: 3513: 3505: 3501: 3493: 3489: 3480: 3477: 3474: 3468: 3465: 3462: 3459: 3455: 3449: 3445: 3437: 3421: 3417: 3408: 3405: 3402: 3396: 3393: 3390: 3387: 3383: 3377: 3373: 3363: 3360: 3357: 3349: 3345: 3337: 3335: 3316: 3313: 3310: 3302: 3298: 3291: 3286: 3282: 3278: 3275: 3270: 3266: 3258: 3257: 3256: 3255: 3254: 3251: 3247: 3242: 3238: 3234: 3229: 3225: 3220: 3204: 3196: 3188: 3186: 3184: 3180: 3172: 3170: 3168: 3164: 3156: 3155: 3154: 3152: 3133: 3122: 3117: 3114: 3111: 3107: 3103: 3100: 3097: 3092: 3088: 3084: 3077: 3076: 3075: 3071: 3066: 3047: 3038: 3026: 3021: 3017: 3013: 3010: 3007: 3002: 2998: 2994: 2987: 2986: 2985: 2983: 2977: 2973: 2945: 2940: 2936: 2932: 2929: 2926: 2921: 2917: 2913: 2906: 2905: 2904: 2902: 2897: 2893: 2887: 2885: 2881: 2880: 2874: 2866: 2865: 2864: 2850: 2845: 2842: 2839: 2836: 2833: 2829: 2825: 2805: 2800: 2796: 2792: 2772: 2767: 2764: 2761: 2757: 2753: 2733: 2728: 2724: 2720: 2687: 2678: 2675: 2670: 2667: 2664: 2661: 2658: 2654: 2650: 2633: 2622: 2619: 2614: 2611: 2608: 2605: 2602: 2598: 2580: 2577: 2572: 2569: 2566: 2562: 2558: 2551: 2550: 2549: 2524: 2521: 2516: 2513: 2510: 2506: 2488: 2485: 2480: 2477: 2474: 2470: 2466: 2459: 2458: 2457: 2455: 2435: 2430: 2427: 2424: 2420: 2416: 2413: 2408: 2404: 2396: 2395: 2394: 2391: 2365: 2356: 2353: 2348: 2345: 2342: 2339: 2336: 2332: 2328: 2299: 2294: 2290: 2286: 2279: 2278: 2277: 2252: 2249: 2244: 2241: 2238: 2234: 2230: 2201: 2196: 2192: 2188: 2181: 2180: 2179: 2176: 2174: 2170: 2166: 2162: 2158: 2155:by realizing 2154: 2150: 2145: 2141: 2137: 2136: 2130: 2128: 2122: 2099: 2063: 2051: 2046: 2043: 2040: 2037: 2034: 2030: 2026: 2023: 2020: 2015: 2011: 2007: 2000: 1999: 1998: 1973: 1968: 1965: 1962: 1958: 1954: 1951: 1948: 1943: 1939: 1935: 1928: 1927: 1926: 1924: 1920: 1919:bilinear maps 1916: 1897: 1892: 1888: 1884: 1880: 1876: 1871: 1867: 1863: 1860: 1855: 1851: 1847: 1840: 1839: 1838: 1824: 1819: 1815: 1806: 1787: 1782: 1778: 1774: 1767: 1766: 1765: 1763: 1759: 1751: 1749: 1735: 1727: 1723: 1707: 1685: 1681: 1660: 1652: 1648: 1632: 1623: 1609: 1587: 1583: 1560: 1556: 1532: 1527: 1523: 1519: 1514: 1510: 1506: 1501: 1497: 1493: 1488: 1484: 1476: 1475: 1474: 1472: 1468: 1464: 1460: 1441: 1435: 1432: 1429: 1422: 1421: 1420: 1418: 1396: 1388: 1385: 1382: 1378: 1368: 1360: 1356: 1352: 1347: 1343: 1335: 1334: 1333: 1331: 1313: 1310: 1307: 1303: 1294: 1276: 1272: 1259: 1257: 1243: 1240: 1234: 1226: 1222: 1206: 1201: 1198: 1195: 1191: 1170: 1165: 1162: 1159: 1155: 1146: 1128: 1124: 1103: 1098: 1095: 1092: 1088: 1081: 1076: 1072: 1043: 1038: 1035: 1032: 1028: 1024: 1021: 1016: 1012: 1003: 999: 995: 979: 976: 973: 965: 961: 955: 951: 945: 941: 937: 921: 914:that contain 861: 858: 855: 844: 840: 816: 812: 808: 784: 780: 776: 772: 768: 748: 745: 742: 734: 731: 728: 724: 715: 711: 709: 693: 690: 687: 679: 671: 655: 649: 641: 638: 635: 631: 623: 608: 600: 595: 591: 583: 582: 581: 580: 561: 555: 547: 544: 539: 536: 533: 529: 521: 506: 498: 494: 486: 485: 484: 483: 478: 476: 472: 467: 453: 450: 444: 434: 415: 407: 403: 399: 396: 376: 368: 364: 360: 336: 333: 325: 322: 319: 315: 300: 297: 289: 285: 276: 272: 264: 262: 260: 256: 253:invented the 252: 248: 243: 241: 237: 236:Poul Heegaard 233: 229: 228: 223: 219: 213: 209: 203: 199: 198:Betti numbers 195: 187: 185: 183: 164: 158: 150: 147: 144: 140: 136: 130: 122: 118: 110: 109: 108: 107: 103: 97: 93: 87: 83: 79: 75: 71: 68: 65:-dimensional 64: 60: 56: 52: 49: 45: 41: 37: 33: 19: 4244:Linking form 4206: 4167: 4161: 4120: 4114: 4085:(1): 57–61, 4082: 4076: 4067: 4035: 4025: 3970: 3952:, including 3947: 3939:Mark Goresky 3913: 3869: 3859: 3845: 3844: 3829: 3805: 3800: 3792: 3716: 3545:excision map 3249: 3245: 3236: 3232: 3227: 3223: 3218: 3192: 3178: 3176: 3160: 3157:Applications 3148: 3069: 3064: 3062: 2981: 2975: 2971: 2968: 2900: 2895: 2891: 2888: 2878: 2872: 2870: 2712: 2547: 2451: 2392: 2389: 2275: 2177: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2143: 2139: 2133: 2131: 2126: 2120: 2085: 1996: 1912: 1807:subgroup of 1802: 1757: 1755: 1725: 1721: 1650: 1646: 1624: 1547: 1470: 1466: 1462: 1456: 1414: 1263: 1224: 1144: 1001: 997: 993: 963: 959: 953: 949: 943: 939: 935: 842: 838: 814: 810: 806: 782: 778: 774: 770: 766: 764: 677: 675: 576: 479: 474: 470: 468: 366: 358: 274: 270: 268: 259:cap products 244: 239: 225: 221: 217: 211: 207: 201: 191: 179: 105: 101: 95: 91: 81: 77: 62: 58: 35: 29: 3864:to include 3239:be an open 3167:lens spaces 1803:denote the 809:containing 433:cap product 247:Eduard Čech 32:mathematics 4254:Categories 4017:References 4011:Weyl group 3868:and other 3799:gives the 3435:inclusion. 1921:which are 1762:orientable 1264:Note that 1260:Naturality 773:-manifold 222:cohomology 86:isomorphic 48:cohomology 4265:Manifolds 3966:S-duality 3885:∗ 3771:− 3754:→ 3738:⊗ 3693:≡ 3687:ν 3655:− 3652:∗ 3644:→ 3635:ν 3632:∂ 3623:ν 3615:∗ 3585:× 3555:ν 3526:ν 3523:∂ 3514:ν 3506:∗ 3498:→ 3487:∖ 3478:× 3463:× 3450:∗ 3415:∖ 3406:× 3391:× 3378:∗ 3370:→ 3361:× 3350:∗ 3314:× 3303:∗ 3295:→ 3287:∗ 3279:⊗ 3271:∗ 3126:→ 3101:⊗ 3030:→ 3014:τ 3011:⊗ 2995:τ 2949:→ 2930:⊗ 2877:bilinear 2843:− 2837:− 2826:τ 2793:τ 2765:− 2668:− 2662:− 2651:τ 2634:≡ 2612:− 2606:− 2581:≡ 2570:− 2559:τ 2514:− 2489:≡ 2478:− 2428:− 2417:≃ 2346:− 2340:− 2329:τ 2303:→ 2287:τ 2242:− 2205:→ 2055:→ 2044:− 2038:− 2027:τ 2024:⊗ 2008:τ 1977:→ 1966:− 1952:⊗ 1885:τ 1775:τ 1686:∗ 1588:∗ 1561:∗ 1528:∗ 1520:∘ 1507:∘ 1502:∗ 1439:→ 1433:: 1386:− 1375:→ 1353:: 1330:covariant 1311:− 1238:⟼ 1199:− 1163:− 1096:− 1085:→ 1047:→ 1036:− 1025:⊗ 977:− 902:Δ 882:Δ 856:∩ 853:Δ 825:Δ 793:Δ 743:∩ 740:Δ 732:∈ 725:∪ 691:− 639:− 624:≅ 619:→ 537:− 522:≅ 517:→ 454:α 451:⌢ 400:∈ 397:α 323:− 312:→ 148:− 137:≅ 55:manifolds 4205:(1994), 4107:14601373 4033:(2002). 3995:See also 3929:, while 3919:singular 3889:′ 3866:K-theory 3151:L-theory 1837:and let 1116:, where 845:so that 67:oriented 44:homology 4225:1288523 4192:0085512 4184:1969966 4143:1627486 4099:1988423 4059:1867354 3927:schemes 3570:is the 2873:pairing 1913:be the 1805:torsion 1473:, then 1417:natural 785:. Let 777:. Let 431:to the 204:th and 188:History 88:to the 74:compact 4223:  4213:  4190:  4182:  4141:  4131:  4105:  4097:  4057:  4047:  3964:, and 3547:where 3197:. Let 1764:, let 1548:where 1295:while 1147:, and 996:-cell 946:is an 200:: The 61:is an 51:groups 34:, the 4180:JSTOR 4103:S2CID 3836:sheaf 2548:and 2167:with 2086:Here 1457:is a 1291:is a 4211:ISBN 4129:ISBN 4045:ISBN 3941:for 3937:and 3830:The 3675:the 3332:the 3181:has 2879:form 2818:and 2746:and 2276:and 2151:and 1997:and 1915:free 1575:and 1183:and 257:and 249:and 182:ring 46:and 4172:doi 4087:doi 3925:or 3072:+ 1 2978:+ 1 2974:= 2 2894:= 2 2123:− 1 1415:is 1328:is 1000:is 938:is 365:of 255:cup 84:is 53:of 30:In 4256:: 4221:MR 4219:, 4201:; 4188:MR 4186:, 4178:, 4168:65 4166:, 4139:MR 4137:. 4101:, 4095:MR 4093:, 4083:98 4081:, 4055:MR 4053:. 4043:. 3991:. 3968:. 3960:, 3956:, 3857:. 3842:. 3822:. 3803:. 3248:× 3226:× 3169:. 3153:. 3074:: 2175:. 2157:nx 2129:. 1748:. 1256:. 1002:DS 952:− 944:DS 839:DS 710:. 477:. 466:. 210:− 94:− 4174:: 4145:. 4089:: 4061:. 3881:H 3779:M 3774:n 3768:j 3765:+ 3762:i 3758:H 3751:M 3746:j 3742:H 3735:M 3730:i 3726:H 3699:M 3696:T 3690:M 3663:M 3658:n 3648:H 3641:) 3638:M 3629:, 3626:M 3620:( 3611:H 3600:. 3588:M 3582:M 3558:M 3532:) 3529:M 3520:, 3517:M 3511:( 3502:H 3494:) 3490:V 3484:) 3481:M 3475:M 3472:( 3469:, 3466:M 3460:M 3456:( 3446:H 3422:) 3418:V 3412:) 3409:M 3403:M 3400:( 3397:, 3394:M 3388:M 3384:( 3374:H 3367:) 3364:M 3358:M 3355:( 3346:H 3320:) 3317:M 3311:M 3308:( 3299:H 3292:M 3283:H 3276:M 3267:H 3250:M 3246:M 3237:V 3233:M 3228:M 3224:M 3219:n 3205:M 3179:M 3134:. 3130:Z 3123:M 3118:1 3115:+ 3112:k 3108:H 3104:f 3098:M 3093:k 3089:H 3085:f 3070:k 3065:k 3048:. 3044:Z 3039:/ 3034:Q 3027:M 3022:k 3018:H 3008:M 3003:k 2999:H 2982:k 2976:k 2972:n 2953:Z 2946:M 2941:k 2937:H 2933:f 2927:M 2922:k 2918:H 2914:f 2901:k 2896:k 2892:n 2851:M 2846:1 2840:i 2834:n 2830:H 2806:M 2801:i 2797:H 2773:M 2768:i 2762:n 2758:H 2754:f 2734:M 2729:i 2725:H 2721:f 2709:. 2697:) 2693:Z 2688:/ 2683:Q 2679:; 2676:M 2671:1 2665:i 2659:n 2655:H 2648:( 2644:m 2641:o 2638:H 2631:) 2627:Z 2623:; 2620:M 2615:1 2609:i 2603:n 2599:H 2595:( 2591:t 2588:x 2585:E 2578:M 2573:i 2567:n 2563:H 2533:) 2529:Z 2525:; 2522:M 2517:i 2511:n 2507:H 2503:( 2499:m 2496:o 2493:H 2486:M 2481:i 2475:n 2471:H 2467:f 2448:, 2436:M 2431:i 2425:n 2421:H 2414:M 2409:i 2405:H 2375:) 2371:Z 2366:/ 2361:Q 2357:, 2354:M 2349:1 2343:i 2337:n 2333:H 2326:( 2320:Z 2314:m 2311:o 2308:H 2300:M 2295:i 2291:H 2261:) 2257:Z 2253:, 2250:M 2245:i 2239:n 2235:H 2231:f 2228:( 2222:Z 2216:m 2213:o 2210:H 2202:M 2197:i 2193:H 2189:f 2173:n 2169:y 2165:z 2161:z 2153:y 2149:x 2144:M 2127:n 2121:n 2105:Z 2100:/ 2095:Q 2082:. 2069:Z 2064:/ 2059:Q 2052:M 2047:1 2041:i 2035:n 2031:H 2021:M 2016:i 2012:H 1981:Z 1974:M 1969:i 1963:n 1959:H 1955:f 1949:M 1944:i 1940:H 1936:f 1898:M 1893:i 1889:H 1881:/ 1877:M 1872:i 1868:H 1864:= 1861:M 1856:i 1852:H 1848:f 1825:M 1820:i 1816:H 1788:M 1783:i 1779:H 1758:M 1736:f 1726:N 1722:M 1708:f 1682:f 1661:f 1651:N 1647:M 1633:f 1610:f 1584:f 1557:f 1533:, 1524:f 1515:M 1511:D 1498:f 1494:= 1489:N 1485:D 1471:N 1467:M 1463:n 1442:N 1436:M 1430:f 1400:) 1397:M 1394:( 1389:k 1383:n 1379:H 1372:) 1369:M 1366:( 1361:k 1357:H 1348:M 1344:D 1314:k 1308:n 1304:H 1277:k 1273:H 1244:S 1241:D 1235:S 1225:T 1207:M 1202:i 1196:n 1192:C 1171:M 1166:i 1160:n 1156:C 1145:T 1129:i 1125:C 1104:M 1099:i 1093:n 1089:C 1082:M 1077:i 1073:C 1051:Z 1044:M 1039:i 1033:n 1029:C 1022:M 1017:i 1013:C 998:S 994:i 980:i 974:n 964:M 960:T 956:) 954:i 950:n 948:( 940:i 936:S 922:S 862:S 859:D 843:S 815:S 811:S 807:T 783:T 779:S 775:M 771:n 767:T 749:S 746:D 735:T 729:S 694:k 688:n 678:k 656:. 653:) 650:X 647:( 642:i 636:n 632:H 612:) 609:X 606:( 601:i 596:c 592:H 562:, 559:) 556:X 553:( 548:M 545:B 540:i 534:n 530:H 510:) 507:X 504:( 499:i 495:H 475:n 471:n 448:] 445:M 442:[ 419:) 416:M 413:( 408:k 404:H 377:M 367:M 359:k 345:) 341:Z 337:, 334:M 331:( 326:k 320:n 316:H 309:) 305:Z 301:, 298:M 295:( 290:k 286:H 275:n 271:M 218:n 214:) 212:k 208:n 206:( 202:k 165:. 162:) 159:M 156:( 151:k 145:n 141:H 134:) 131:M 128:( 123:k 119:H 106:k 102:M 98:) 96:k 92:n 90:( 82:M 78:k 72:( 63:n 59:M 20:)

Index

Poincare duality
mathematics
Henri Poincaré
homology
cohomology
groups
manifolds
oriented
closed manifold
compact
isomorphic
ring
Henri Poincaré
Betti numbers
Analysis Situs
intersection theory
Poul Heegaard
Eduard Čech
Hassler Whitney
cup
cap products
fundamental class
cap product
Borel–Moore homology
cohomology with compact support
dual polyhedra

chain complexes
contravariant functor
covariant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.