Knowledge (XXG)

Iron–platinum nanoparticle

Source 📝

460: 373: 595: 381: 262: 274: 520: 47: 368:
The various properties of iron-platinum nanoparticles allow them to function in multiple ways. In standard conditions, FePt NPs exist in the face-centered cubic phase with a 3 to 10 nanometer diameter. However, once heat is added the structure becomes face-centered
479:) and iron (II) chloride in water-in-oil microemulsions. In this process, the normal face-centered cubic structure is transformed to a face-centered tetragonal configuration, offering a higher density product useful for many storage media applications. 1249:
Gu, Hongwei; Ho, Pak-Leung; Tsang, Kenneth W. T.; Wang, Ling; Xu, Bing (2003). "Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration".
932:
Shah, Sachin N.; Steinmetz, Nicole F.; Aljabali, Alaa A. A.; Lomonossoff, George P.; Evans, David. J. (2009). "Environmentally benign synthesis of virus-templated, monodisperse, iron-platinum nanoparticles".
757:
Chou, Shang-Wei; Shau, Yu-Hong; Wu, Ping-Ching; Yang, Yu-Sang; Shieh, Dar-Bin; Chen, Chia-Chun (2010-09-29). "In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging".
436:
solutions containing iron and platinum to combine the two alloys. A laser beam is emitted onto a 4:1 mixture of iron (III) acetylacetonate and platinum (II) acetylacetonate dissolved in
432:
while maintaining the desirable magnetic properties. Combined, FePt nanoparticles can be synthesized for medical applications. One method of synthesis uses incident laser technology to
551:
molecules that are harmful to the kidney and survive in the body for only a short time. The superparamagnetic properties of the nanoparticles and the systematic method for conjugating
527:
Due to their superparamagnetism and controllable shape, size, and surface, iron-platinum nanoparticles have great potential for advancing medicine in many fields, including imagining,
1157: 722:
Sun, Shouheng; Anders, Simone; Thomson, Thomas; Baglin, J. E. E.; Toney, Mike F.; et al. (2003). "Controlled Synthesis and Assembly of FePt Nanoparticles".
1202:
Zhang, Li; Takahashi, Y. K.; Perumal, A.; Hono, K. (2010-09-01). "L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording".
840:
Sun, S.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A. (2000-03-17). "Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices".
83: 73: 344:, one-step thermal synthesis with metal precursors, and exchanged-coupled assembly for making FePt NPs. An important property of FePt NPs is their 304: 78: 1364: 707:
Hyie, K. M.(2010). “Synthesis of Iron-Platinum Nanoparticles in Water-in-Oil Microemulsions for High-Density Storage Media Application”. 1-9.
121: 1129:
Ma, Lei; Liu, Z. W.; Yu, H. Y.; Zhong, X. C.; Zeng, Y. P.; Zeng, D. C.; Zhong, X. P. (2011). "High Coercivity FePtSiN Films With
449: 511:
compared to common hard drives that have 5KOe coercivity. Nanoparticles have also been grown with coercivities up to 37 kOe.
215: 63: 539:
for tissue-specific delivery, providing a systematic way to customize for either technology. FePt NPs are compatible for
155: 88: 619:
Sun, S. (2006-02-17). "Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles".
297: 396:, enlarge the average radius of the FePt NPs through direct mineralization. The virus acts as a natural template to 353: 540: 441: 357: 170: 68: 459: 401: 248: 200: 1033:"Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis" 584: 190: 662:
Chen, Min; Liu, J. P.; Sun, Shouheng (2004). "One-Step Synthesis of FePt Nanoparticles with Tunable Size".
428:
activity than platinum alone. These magnetic metal additions to platinum reduce the overall sensitivity to
1293:
Xu, Chenjie; Yuan, Zhenglong; Kohler, Nathan; Kim, Jaemin; Chung, Maureen A.; Sun, Shouheng (2009-10-28).
802: 556: 504: 290: 885:"The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials" 883:
Love, Andrew J.; Makarov, Valentine; Yaminsky, Igor; Kalinina, Natalia O.; Taliansky, Michael E. (2014).
805:; Panagiotopoulos, I.; Niarchos, D. (2000). "CoPt and FePt thin films for high density recording media". 453: 205: 372: 1091: 393: 243: 165: 126: 106: 1237: 499:
FePt NPs are promising materials for ultra-high density magnetic recording media due to their high
468: 389: 333: 210: 175: 116: 579:’s intracellular environments breaks down the phospholipid bilayer. Fe catalyzed decomposition of 1184: 644: 483: 482:
For solid state applications FePt nanoparticles can be synthesised on a substrate by directly co-
349: 345: 145: 594: 1374: 1332: 1314: 1275: 1267: 1219: 1176: 1111: 1072: 1054: 1013: 995: 954: 946: 914: 906: 865: 857: 822: 783: 775: 739: 687: 679: 636: 580: 337: 278: 185: 1322: 1306: 1259: 1211: 1168: 1132: 1103: 1062: 1044: 1003: 985: 938: 896: 849: 814: 767: 731: 671: 628: 532: 336:
phase but can change to a chemically ordered face-centered tetragonal phase as a result of
17: 559:. Antibodies for the bacteria conjugated to the FePt NP bind to the bacteria and magnetic 380: 54: 1092:"L10-ordered high coercivity (FePt)Ag–C granular thin films for perpendicular recording" 1327: 1294: 1067: 1032: 1008: 973: 266: 180: 1295:"FePt Nanoparticles as an Fe Reservoir for Controlled Fe Release and Tumor Inhibition" 1369: 1358: 341: 321: 233: 224: 160: 111: 38: 1188: 648: 572: 568: 397: 261: 136: 853: 571:
iron can be delivered to specific locations and taken up with high selectivity. A
555:
to the FePt surface makes them viable vehicles for detection of pathogens such as
901: 884: 503:. Higher coercivity indicates the material cannot be demagnetized easily. After 433: 150: 1215: 1107: 848:(5460). American Association for the Advancement of Science (AAAS): 1989–1992. 1172: 519: 508: 500: 273: 1318: 1271: 1223: 1180: 1115: 1058: 999: 950: 910: 861: 826: 779: 743: 683: 640: 575:
coating of the FCC-FePt prevents Fe release. Once in the cell, the low pH of
412:
Platinum nanoparticles become more chemically stable when alloyed with iron,
425: 97: 1336: 1279: 1167:(10). Institute of Electrical and Electronics Engineers (IEEE): 3505–3508. 1076: 1031:
Noksi, S. S.; Mwakikunga, Bonex W.; Sideras-Haddad, E.; Forbes, A. (2012).
1017: 958: 918: 869: 787: 691: 632: 576: 536: 528: 437: 329: 238: 400:
nanoparticles up to 30 nanometers in diameter. The size increase of the
1049: 990: 564: 445: 1310: 1263: 771: 735: 675: 942: 818: 560: 552: 548: 417: 413: 547:. FePt NPs also provide a non-toxic, more persistent alternative to 46: 593: 588: 544: 518: 463:
Synthesis of Iron-Platinum Nanoparticles using chloroplatinic acid
458: 429: 421: 379: 371: 340:. Currently there are many synthetic methods such as water-in-oil 1090:
Zhang, Li; Takahashi, Y. K.; Perumal, A.; Hono, K. (2010-09-01).
563:
are used to detect the FePt NP-bacteria conjugate. By attaching
325: 974:"Synthesis of Bimetallic Platinum Nanoparticles for Biosensors" 467:
An alternative method of synthesis involves the coreduction of
352:
of FePt NPs has made them attractive candidates to be used as
591:
oxidation, damage to DNA and proteins, and tumor death.
360:
scanning agents and a high-density recording material.
1236:
Page for X-Ray Mass Attenuation Coefficients for Pt.
1135: 1305:(42). American Chemical Society (ACS): 15346–15351. 1258:(51). American Chemical Society (ACS): 15702–15703. 766:(38). American Chemical Society (ACS): 13270–13278. 567:
to the surface of the face-centered cubic FePt NPs,
1159:–FePt Nanoparticles Embedded in a Si-Rich Matrix". 937:(40). Royal Society of Chemistry (RSC): 8479–8480. 376:
Iron-Platinum Nanoparticle Lattice in the L10 phase
332:. Under standard conditions, FePt NPs exist in the 324:composed of an approximately equal atomic ratio of 1151: 730:(23). American Chemical Society (ACS): 5419–5425. 670:(27). American Chemical Society (ACS): 8394–8395. 404:enables a wider range of biological applications. 543:scans because of their strong ability to absorb 801:Christodoulides, J. A.; Huang, Y.; Zhang, Y.; 507:at 700 °C, the film can have up to 14KOe 298: 8: 972:Leteba, Gerard; Lang, Candace (2013-08-12). 1204:Journal of Magnetism and Magnetic Materials 1096:Journal of Magnetism and Magnetic Materials 703: 701: 305: 291: 29: 1326: 1143: 1134: 1066: 1048: 1007: 989: 900: 717: 715: 713: 614: 612: 1299:Journal of the American Chemical Society 1252:Journal of the American Chemical Society 1037:Nanotechnology, Science and Applications 760:Journal of the American Chemical Society 664:Journal of the American Chemical Society 608: 424:also have a better detection range and 223: 134: 96: 53: 37: 318:Iron–platinum nanoparticles (FePt NPs) 7: 384:Physical properties of some FePt NPs 724:The Journal of Physical Chemistry B 348:character below 10 nanometers. The 448:substrates to be characterized by 25: 535:. The NPs can be conjugated with 813:(9). AIP Publishing: 6938–6940. 450:transmission electron microscopy 272: 260: 45: 33:Part of a series of articles on 1161:IEEE Transactions on Magnetics 1: 1043:. Informa UK Limited: 27–36. 854:10.1126/science.287.5460.1989 444:are then washed and dried on 1365:Nanoparticles by composition 598:FePt-NP Antibody Application 984:(8). MDPI AG: 10358–10369. 902:10.1016/j.virol.2013.11.002 18:Iron-Platinum Nanoparticles 1391: 1216:10.1016/j.jmmm.2010.04.003 1108:10.1016/j.jmmm.2010.04.003 807:Journal of Applied Physics 1173:10.1109/tmag.2011.2147772 895:. Elsevier BV: 133–139. 402:bimetallic nanoparticles 249:Nanocrystalline material 225:Nanostructured materials 533:targeted cancer therapy 388:Plant viruses, such as 1153: 1152:{\displaystyle L1_{0}} 633:10.1002/adma.200501464 599: 557:gram-positive bacteria 524: 464: 385: 377: 1154: 627:(4). Wiley: 393–403. 597: 522: 462: 383: 375: 279:Technology portal 74:Mechanical properties 1133: 587:results in membrane 394:Tobacco mosaic virus 244:Nanoporous materials 107:Buckminsterfullerene 935:Dalton Transactions 803:Hadjipanayis, G. C. 469:chloroplatinic acid 390:Cowpea mosaic virus 334:face-centered cubic 146:Carbon quantum dots 1149: 1050:10.2147/nsa.s24419 991:10.3390/s130810358 621:Advanced Materials 600: 525: 465: 386: 378: 350:superparamagnetism 267:Science portal 79:Optical properties 1311:10.1021/ja905938a 1264:10.1021/ja0359310 1210:(18): 2658–2664. 1102:(18): 2658–2664. 772:10.1021/ja1035013 736:10.1021/jp027314o 676:10.1021/ja047648m 581:hydrogen peroxide 454:X-ray diffraction 346:superparamagnetic 338:thermal annealing 315: 314: 127:Carbon allotropes 16:(Redirected from 1382: 1341: 1340: 1330: 1290: 1284: 1283: 1246: 1240: 1234: 1228: 1227: 1199: 1193: 1192: 1158: 1156: 1155: 1150: 1148: 1147: 1126: 1120: 1119: 1087: 1081: 1080: 1070: 1052: 1028: 1022: 1021: 1011: 993: 969: 963: 962: 943:10.1039/b906847c 929: 923: 922: 904: 880: 874: 873: 837: 831: 830: 819:10.1063/1.372892 798: 792: 791: 754: 748: 747: 719: 708: 705: 696: 695: 659: 653: 652: 616: 495:Magnetic storage 307: 300: 293: 277: 276: 265: 264: 216:Titanium dioxide 55:Carbon nanotubes 49: 30: 21: 1390: 1389: 1385: 1384: 1383: 1381: 1380: 1379: 1355: 1354: 1345: 1344: 1292: 1291: 1287: 1248: 1247: 1243: 1235: 1231: 1201: 1200: 1196: 1139: 1131: 1130: 1128: 1127: 1123: 1089: 1088: 1084: 1030: 1029: 1025: 971: 970: 966: 931: 930: 926: 882: 881: 877: 839: 838: 834: 800: 799: 795: 756: 755: 751: 721: 720: 711: 706: 699: 661: 660: 656: 618: 617: 610: 605: 531:detection, and 523:FePt Coercivity 517: 497: 492: 478: 474: 420:. The platinum 410: 366: 311: 271: 259: 156:Aluminium oxide 28: 23: 22: 15: 12: 11: 5: 1388: 1386: 1378: 1377: 1372: 1367: 1357: 1356: 1353: 1352: 1350: 1348: 1343: 1342: 1285: 1241: 1229: 1194: 1146: 1142: 1138: 1121: 1082: 1023: 964: 924: 875: 832: 793: 749: 709: 697: 654: 607: 606: 604: 601: 516: 513: 496: 493: 491: 488: 476: 472: 409: 406: 365: 362: 313: 312: 310: 309: 302: 295: 287: 284: 283: 282: 281: 269: 254: 253: 252: 251: 246: 241: 236: 228: 227: 221: 220: 219: 218: 213: 208: 203: 198: 193: 188: 183: 178: 173: 168: 163: 158: 153: 148: 140: 139: 132: 131: 130: 129: 124: 119: 114: 109: 101: 100: 94: 93: 92: 91: 86: 81: 76: 71: 66: 58: 57: 51: 50: 42: 41: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1387: 1376: 1373: 1371: 1368: 1366: 1363: 1362: 1360: 1351: 1349: 1347: 1346: 1338: 1334: 1329: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1289: 1286: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1245: 1242: 1238: 1233: 1230: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1195: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1144: 1140: 1136: 1125: 1122: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1086: 1083: 1078: 1074: 1069: 1064: 1060: 1056: 1051: 1046: 1042: 1038: 1034: 1027: 1024: 1019: 1015: 1010: 1005: 1001: 997: 992: 987: 983: 979: 975: 968: 965: 960: 956: 952: 948: 944: 940: 936: 928: 925: 920: 916: 912: 908: 903: 898: 894: 890: 886: 879: 876: 871: 867: 863: 859: 855: 851: 847: 843: 836: 833: 828: 824: 820: 816: 812: 808: 804: 797: 794: 789: 785: 781: 777: 773: 769: 765: 761: 753: 750: 745: 741: 737: 733: 729: 725: 718: 716: 714: 710: 704: 702: 698: 693: 689: 685: 681: 677: 673: 669: 665: 658: 655: 650: 646: 642: 638: 634: 630: 626: 622: 615: 613: 609: 602: 596: 592: 590: 586: 582: 578: 574: 570: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 521: 514: 512: 510: 506: 502: 494: 489: 487: 485: 480: 470: 461: 457: 455: 451: 447: 443: 439: 435: 431: 427: 423: 419: 415: 407: 405: 403: 399: 395: 391: 382: 374: 370: 363: 361: 359: 355: 351: 347: 343: 342:microemulsion 339: 335: 331: 327: 323: 322:superlattices 319: 308: 303: 301: 296: 294: 289: 288: 286: 285: 280: 275: 270: 268: 263: 258: 257: 256: 255: 250: 247: 245: 242: 240: 237: 235: 234:Nanocomposite 232: 231: 230: 229: 226: 222: 217: 214: 212: 209: 207: 204: 202: 199: 197: 196:Iron–platinum 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 147: 144: 143: 142: 141: 138: 137:nanoparticles 133: 128: 125: 123: 122:Health impact 120: 118: 115: 113: 112:C70 fullerene 110: 108: 105: 104: 103: 102: 99: 95: 90: 87: 85: 82: 80: 77: 75: 72: 70: 67: 65: 62: 61: 60: 59: 56: 52: 48: 44: 43: 40: 39:Nanomaterials 36: 32: 31: 19: 1302: 1298: 1288: 1255: 1251: 1244: 1232: 1207: 1203: 1197: 1164: 1160: 1124: 1099: 1095: 1085: 1040: 1036: 1026: 981: 977: 967: 934: 927: 892: 888: 878: 845: 841: 835: 810: 806: 796: 763: 759: 752: 727: 723: 667: 663: 657: 624: 620: 573:phospholipid 526: 498: 490:Applications 481: 466: 442:precipitates 440:. The black 411: 398:monodisperse 387: 367: 317: 316: 195: 171:Cobalt oxide 151:Quantum dots 84:Applications 27:Nanomaterial 486:Fe and Pt. 369:tetragonal. 1359:Categories 603:References 537:antibodies 509:coercivity 501:coercivity 484:sputtering 452:(TEM) and 364:Properties 191:Iron oxide 98:Fullerenes 1319:0002-7863 1272:0002-7863 1224:0304-8853 1181:0018-9464 1116:0304-8853 1059:1177-8903 1000:1424-8220 951:1477-9226 911:0042-6822 862:0036-8075 827:0021-8979 780:0002-7863 744:1520-6106 684:0002-7863 641:0935-9648 569:cytotoxic 549:iodinated 505:annealing 434:irradiate 430:oxidation 426:catalytic 408:Synthesis 161:Cellulose 117:Chemistry 69:Chemistry 64:Synthesis 1375:Platinum 1337:19795861 1280:14677934 1189:25645077 1077:24198494 1018:23941910 959:19809720 919:24418546 889:Virology 870:10720318 788:20572667 692:15237993 649:55861637 577:lysosome 565:peptides 529:pathogen 515:Medicine 438:methanol 239:Nanofoam 206:Platinum 89:Timeline 1328:2791709 1068:3781719 1009:3812608 978:Sensors 842:Science 561:dipoles 553:ligands 446:silicon 320:are 3D 166:Ceramic 1335:  1325:  1317:  1278:  1270:  1222:  1187:  1179:  1114:  1075:  1065:  1057:  1016:  1006:  998:  957:  949:  917:  909:  868:  860:  825:  786:  778:  742:  690:  682:  647:  639:  545:x-rays 422:alloys 418:nickel 414:cobalt 211:Silver 176:Copper 135:Other 1185:S2CID 645:S2CID 589:lipid 583:into 416:, or 201:Lipid 1370:Iron 1333:PMID 1315:ISSN 1276:PMID 1268:ISSN 1220:ISSN 1177:ISSN 1112:ISSN 1073:PMID 1055:ISSN 1014:PMID 996:ISSN 955:PMID 947:ISSN 915:PMID 907:ISSN 866:PMID 858:ISSN 823:ISSN 784:PMID 776:ISSN 740:ISSN 688:PMID 680:ISSN 637:ISSN 585:ROSs 475:PtCl 392:and 328:and 186:Iron 181:Gold 1323:PMC 1307:doi 1303:131 1260:doi 1256:125 1212:doi 1208:322 1169:doi 1104:doi 1100:322 1063:PMC 1045:doi 1004:PMC 986:doi 939:doi 897:doi 893:449 850:doi 846:287 815:doi 768:doi 764:132 732:doi 728:107 672:doi 668:126 629:doi 354:MRI 1361:: 1331:. 1321:. 1313:. 1301:. 1297:. 1274:. 1266:. 1254:. 1218:. 1206:. 1183:. 1175:. 1165:47 1163:. 1110:. 1098:. 1094:. 1071:. 1061:. 1053:. 1039:. 1035:. 1012:. 1002:. 994:. 982:13 980:. 976:. 953:. 945:. 913:. 905:. 891:. 887:. 864:. 856:. 844:. 821:. 811:87 809:. 782:. 774:. 762:. 738:. 726:. 712:^ 700:^ 686:. 678:. 666:. 643:. 635:. 625:18 623:. 611:^ 541:CT 471:(H 456:. 358:CT 330:Pt 326:Fe 1339:. 1309:: 1282:. 1262:: 1239:. 1226:. 1214:: 1191:. 1171:: 1145:0 1141:1 1137:L 1118:. 1106:: 1079:. 1047:: 1041:5 1020:. 988:: 961:. 941:: 921:. 899:: 872:. 852:: 829:. 817:: 790:. 770:: 746:. 734:: 694:. 674:: 651:. 631:: 477:6 473:2 356:/ 306:e 299:t 292:v 20:)

Index

Iron-Platinum Nanoparticles
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum
Lipid
Platinum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.