Knowledge (XXG)

Irreversible process

Source 📝

1713:
other cold. Then dissipation would occur; the temperature distribution would become uniform with no work being done, and this would be irreversible because you couldn't add or remove heat or change the volume to return the system to its initial state. Thus, if the system is always uniform, then the process is reversible, meaning that you can return the system to its original state by either adding or removing heat, doing work on the system, or letting the system do work. As another example, to approximate the expansion in an internal combustion engine as reversible, we would be assuming that the temperature and pressure uniformly change throughout the volume after the spark. Obviously, this is not true and there is a
2101:
parts of the container is then opened, and the gas fills the whole container. The internal energy of the gas remains the same, while the volume increases. The original state cannot be recovered by simply compressing the gas to its original volume, since the internal energy will be increased by this compression. The original state can only be recovered by then cooling the re-compressed system, and thereby irreversibly heating the environment. The diagram to the right applies only if the first expansion is "free" (Joule expansion), i.e. there can be no atmospheric pressure outside the cylinder and no weight lifted.
2013: 1728:, which is any system of sufficient complexity, of interacting molecules is brought from one thermodynamic state to another, the configuration or arrangement of the atoms and molecules in the system will change in a way that is not easily predictable. Some "transformation energy" will be used as the molecules of the "working body" do work on each other when they change from one state to another. During this transformation, there will be some heat energy loss or 42: 1612: 1927:). The reversibility of thermodynamics must be statistical in nature; that is, it must be merely highly unlikely, but not impossible, that a system will lower in entropy. In other words, time reversibility is fulfilled if the process happens the same way if time were to flow in reverse or the order of states in the process is reversed (the last state becomes the first and vice versa). 2009:, the paradox of irreversibility can be explained in the errors associated with scaling from microstates to macrostates and the degrees of freedom used when making experimental observations. Sensitivity to initial conditions relating to the system and its environment at the microstate compounds into an exhibition of irreversible characteristics within the observable, physical realm. 1799: 1758: 1847: 1971:
However, a paradox arose when attempting to reconcile microanalysis of a system with observations of its macrostate. Many processes are mathematically reversible in their microstate when analyzed using classical Newtonian mechanics. This paradox clearly taints microscopic explanations of macroscopic
2100:
is an example of classical thermodynamics, as it is easy to work out the resulting increase in entropy. It occurs where a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated; the partition between the two
1712:
is irreversible because initially the system is not uniform. Initially, there is part of the system with gas in it, and part of the system with no gas. For dissipation to occur, there needs to be such a non uniformity. This is just the same as if in a system one section of the gas was hot, and the
1739:
processes that were once thought to be reversible have been found to actually be a pairing of two irreversible processes. Whereas a single enzyme was once believed to catalyze both the forward and reverse chemical changes, research has found that two separate enzymes of similar structure are
1992:
The equations of motion in abstract dynamics are perfectly reversible; any solution of these equations remains valid when the time variable t is replaced by –t. On the other hand, physical processes are irreversible: for example, the friction of solids, conduction of heat, and diffusion.
2689:
Yang, Qingling; Cong, Luping; Wang, Yujiao; Luo, Xiaoyan; Li, Hui; Wang, Huan; Zhu, Jing; Dai, Shanjun; Jin, Haixia; Yao, Guidong; Shi, Senlin; Hsueh, Aaron J.; Sun, Yingpu (20 August 2020). "Increasing ovarian NAD+ levels improve mitochondrial functions and reverse ovarian aging".
2020:: If the cylinder is a perfect insulator, the initial top-left state cannot be reached anymore after it is changed to the one on the top-right. Instead, the state on the bottom left is assumed when going back to the original pressure because energy is converted into heat. 2029:
In the physical realm, many irreversible processes are present to which the inability to achieve 100% efficiency in energy transfer can be attributed. The following is a list of spontaneous events which contribute to the irreversibility of processes.
1984:, stating that an increase of the number of possible microstates a system might be in, will increase the entropy of the system, making it less likely that the system will return to an earlier state. His formulas quantified the analysis done by 1918:
Thermodynamics defines the statistical behaviour of large numbers of entities, whose exact behavior is given by more specific laws. While the fundamental theoretical laws of physics are all time-reversible, experimentally the probability of
2733:
Tsoukalas, Dimitris; Buga, Ana; Docea, Anca; Sarandi, Evangelia; Mitrut, Radu; Renieri, Elisavet; Spandidos, Demetrios; Rogoveanu, Ion; Cercelaru, Liliana; Niculescu, Mihaela; Tsatsakis, Aristidis; Calina, Daniela (10 September 2021).
1331: 1947:
It may, moreover, happen that instead of a descending transmission of heat accompanying, in the one and the same process, the ascending transmission, another permanent change may occur which has the peculiarity of
1721:. One of the reasons that Diesel engines are able to attain higher efficiency is that the combustion is much more uniform, so less energy is lost to dissipation and the process is closer to reversible. 1685:
changes in some property of the system without expenditure of energy. A system that undergoes an irreversible process may still be capable of returning to its initial state. Because entropy is a
2153:
capacities of organisms, species or other complex systems can adapt, like minor injuries or changes in the physical environment are reversible. However, adaptation depends on import of
2149:
with the same organizational principle (e.g. identical DNA-structure) could be developed, this would not mean that the former distinct system comes back into being. Events to which the
1956:
Simply, Clausius states that it is impossible for a system to transfer heat from a cooler body to a hotter body. For example, a cup of hot coffee placed in an area of room temperature
1964:). However, that same initial cup of coffee will never absorb heat from its surroundings, causing it to grow even hotter, with the temperature of the room decreasing (to 1166: 1111: 1056: 863: 816: 731: 684: 596: 549: 2338:
Grazzini G. e Lucia U., 2008 Evolution rate of thermodynamic systems, 1st International Workshop "Shape and Thermodynamics" – Florence 25 and 26 September 2008, pp. 1-7
1641: 767: 635: 1001: 1342: 500: 1230: 839: 792: 707: 660: 572: 525: 1993:
Nevertheless, the principle of dissipation of energy is compatible with a molecular theory in which each particle is subject to the laws of abstract dynamics.
464: 1689:, the change in entropy of the system is the same whether the process is reversible or irreversible. However, the impossibility occurs in restoring the 1320: 1353: 1939:, in the 1850s, was the first to mathematically quantify the discovery of irreversibility in nature through his introduction of the concept of 2472:
Gyenis, Balazs (2017). "Maxwell and the normal distribution: A colored story of probability, independence, and tendency towards equilibrium".
3048: 2625: 2585: 1771: 923: 1634: 1221: 457: 335: 890: 2190: 1659: 273: 1405: 1379: 900: 354: 2812: 2568:
Lebowitz, Joel L. (1995). "Microscopic reversibility and macroscopic behavior: Physical explanations and mathematical derivations".
2038: 1985: 1905: 1887: 1785: 306: 1458: 929: 328: 3043:
Lucia U., 2009, The thermodynamic Lagrangian, in Pandalai S.G., 2009, Recent Research Developments in Physics, Vol. 8, pp. 1-5,
1943:. In his 1854 memoir "On a Modified Form of the Second Fundamental Theorem in the Mechanical Theory of Heat," Clausius states: 1627: 2200: 1952:
without either becoming replaced by a new permanent change of a similar kind, or producing a descending transmission of heat.
1558: 90: 1981: 1453: 2423:
Lucia, U.; Maino, G. (2003). "Thermodynamical analysis of the dynamics of tumor interaction with the host immune system".
1533: 1306: 283: 2006: 1698: 918: 121: 111: 2157:
into the organism, thereby increasing irreversible processes in its environment. Ecological principles, like those of
1960:
will transfer heat to its surroundings and thereby cool down with the temperature of the room slightly increasing (to
126: 116: 1976:'s 1860 argument that molecular collisions entail an equalization of temperatures of mixed gases. From 1872 to 1875, 1865: 1817: 1448: 1410: 1374: 86: 2145:, extinction of a species or the collapse of a meteorological system can be considered as irreversible. Even if a 2069: 1968:). Therefore, the process of the coffee cooling down is irreversible unless extra energy is added to the system. 1869: 1821: 1777: 1203: 951: 397: 210: 200: 2075: 1923:
reversibility is low and the former state of system and surroundings is recovered only to certain extent (see:
1732:
due to intermolecular friction and collisions. This energy will not be recoverable if the process is reversed.
2783:
Longo, Giuseppe; Montévil, Maël (2012-01-01). Dinneen, Michael J.; Khoussainov, Bakhadyr; Nies, André (eds.).
3106: 2620:
Moran, John (2008). "Fundamentals of Engineering Thermodynamics", p. 220. John Wiley & Sons, Inc., USA.
2180: 2162: 1655: 1615: 1443: 1240: 943: 882: 418: 407: 73: 2790: 2538: 1548: 1468: 1265: 349: 103: 78: 2862:
Lucia U., Irreversibility and entropy in Rational Thermodynamics, Ricerche di Matematica, L1 (2001) 77-87
1857: 1813: 1924: 1690: 1674:
at the coexistence temperature (e.g. melting of ice cubes in water) is well approximated as reversible.
1483: 1060: 373: 219: 68: 2012: 2872:
Lucia, U.; Gervino, G. (2005). "Thermoeconomic analysis of an irreversible Stirling heat pump cycle".
3074: 3008: 2969: 2934: 2891: 2647: 2491: 2432: 2395: 2360: 2305: 2235: 1725: 1563: 1488: 1478: 152: 140: 2795: 2543: 1973: 1678: 1508: 1503: 1270: 292: 258: 253: 166: 24: 2226:
Lucia, U (1995). "Mathematical consequences and Gyarmati's principle in Rational Thermodynamics".
3026: 2907: 2881: 2818: 2715: 2671: 2591: 2507: 2481: 2321: 2251: 2175: 1597: 1260: 1208: 1121: 1066: 1011: 440: 424: 311: 263: 248: 238: 47: 41: 2960:
Lucia, U. (2007). "Irreversible entropy variation and the problem of the trend to equilibrium".
2925:
Lucia, Umberto; Maino, G. (2006). "The relativistic behaviour of the thermodynamic Lagrangian".
1255: 845: 798: 713: 666: 578: 531: 3044: 2808: 2765: 2707: 2663: 2638:
Ledford, Heidi (2 December 2020). "Reversal of biological clock restores vision in old mice".
2621: 2581: 2205: 2118: 2109:
The difference between reversible and irreversible events has particular explanatory value in
2017: 1998: 1592: 1553: 1543: 1115: 913: 749: 741: 614: 243: 233: 175: 1681:
of a system and all of its surroundings cannot be precisely restored to its initial state by
3082: 3016: 2977: 2942: 2899: 2845: 2800: 2755: 2747: 2699: 2655: 2573: 2548: 2499: 2440: 2403: 2368: 2313: 2278: 2243: 2195: 2146: 2122: 1977: 1671: 1513: 1498: 1438: 1433: 1250: 1245: 971: 895: 363: 228: 2150: 2138: 2130: 2097: 2084: 1936: 1718: 1709: 1463: 1311: 965: 606: 429: 190: 157: 3078: 3012: 2973: 2938: 2895: 2703: 2651: 2495: 2436: 2399: 2364: 2309: 2239: 482: 2836:
Lucia, Umberto (1998). "Maximum principle and open systems including two-phase flows".
2760: 2735: 2457: 2158: 2134: 2110: 1741: 1686: 1667: 1518: 1288: 824: 777: 692: 645: 557: 510: 388: 268: 205: 195: 63: 33: 20: 2849: 2444: 2351:
Lucia, Umberto (October 2009). "Irreversibility, entropy and incomplete information".
2282: 2269:
Grazzini; Lucia, U. (1997). "Global analysis of dissipations due to irreversibility".
3100: 3030: 2911: 2719: 2675: 2255: 2058: 1682: 1587: 905: 474: 435: 147: 2822: 2595: 2511: 2325: 2296:
Lucia, U. (2008). "Probability, ergodicity, irreversibility and dynamical systems".
2789:. Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp. 289–308. 2298:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
2002: 1538: 1523: 1473: 956: 1997:
Another explanation of irreversible systems was presented by French mathematician
2903: 2804: 2001:. In 1890, he published his first explanation of nonlinear dynamics, also called 3086: 2981: 2946: 2503: 2407: 2372: 2126: 2037:(this claim is disputed, as aging has been demonstrated to be reversed in mice. 1729: 1714: 1705: 1493: 301: 2659: 2386:
Lucia, U (2008). "Statistical approach of the irreversible entropy variation".
3021: 2996: 2553: 2526: 2154: 2114: 2042: 1701:
can be used to determine whether a hypothetical process is reversible or not.
1582: 1528: 2577: 2137:. In the context of complex systems, events which lead to the end of certain 2608: 180: 2997:"Hydrodynamics cavitation: from theory towards a new experimental approach" 2769: 2751: 2736:"Reversal of brain aging by targeting telomerase: A nutraceutical approach" 2711: 2667: 2317: 1693:
to its own initial conditions. An irreversible process increases the total
3065:
Lucia, U. (2010). "Maximum entropy generation and κκ-exponential model".
2064: 1296: 1213: 1005: 413: 185: 2886: 2247: 1940: 1736: 1694: 402: 1980:
reinforced the statistical explanation of this paradox in the form of
2185: 2034: 3059:
Lucia U., 2010, Maximum entropy generation and κ−exponential model,
2784: 2486: 2129:, which enables their continued existence. More primitive forms of 2142: 2048: 2011: 1724:
The phenomenon of irreversibility results from the fact that if a
2420:
Lucia U., "Irreversible Entropy in Biological Systems", EPISTEME
2053: 378: 2165:
can be defined with reference to the concept of reversibility.
1840: 1792: 1751: 1670:. All complex natural processes are irreversible, although a 2572:. Lecture Notes in Physics. Vol. 445. pp. 1–20. 2092:
Spontaneous mixing of matter of varying composition/states
2133:
systems have been described by the physicist and chemist
1740:
typically needed to perform what results in a pair of
3067:
Physica A: Statistical Mechanics and Its Applications
2962:
Physica A: Statistical Mechanics and Its Applications
2425:
Physica A: Statistical Mechanics and Its Applications
2388:
Physica A: Statistical Mechanics and Its Applications
2353:
Physica A: Statistical Mechanics and Its Applications
1124: 1069: 1014: 974: 848: 827: 801: 780: 752: 716: 695: 669: 648: 617: 581: 560: 534: 513: 485: 1704:
Intuitively, a process is reversible if there is no
2474:
Studies in History and Philosophy of Modern Physics
1808:may lack focus or may be about more than one topic 1160: 1105: 1050: 995: 857: 833: 810: 786: 761: 725: 701: 678: 654: 629: 590: 566: 543: 519: 494: 2570:25 Years of Non-Equilibrium Statistical Mechanics 2080:Magnetization or polarization with a hysteresis 2045:have also been demonstrated to reverse ageing.) 1990: 1945: 2611:.Page dated 2002-2-19. Retrieved on 2010-4-01. 1812:Please help improve this article, possibly by 2525:Bishop, R. C.; Bohm, A.; Gadella, M. (2004). 1635: 8: 1868:. There might be a discussion about this on 19:For the concept in evolutionary theory, see 2740:International Journal of Molecular Medicine 2346: 2344: 1786:Learn how and when to remove these messages 1642: 1628: 1191: 343: 162: 40: 29: 3020: 2885: 2794: 2759: 2552: 2542: 2485: 1906:Learn how and when to remove this message 1888:Learn how and when to remove this message 1748:Absolute versus statistical reversibility 1123: 1068: 1013: 973: 847: 826: 800: 779: 751: 715: 694: 668: 647: 616: 580: 559: 533: 512: 484: 2125:, living organisms are characterized by 1697:of the system and its surroundings. The 2531:Discrete Dynamics in Nature and Society 2218: 2061:through a finite temperature difference 1388: 1365: 1319: 1279: 1229: 1194: 387: 362: 291: 218: 165: 32: 2527:"Irreversibility in quantum mechanics" 1972:tendency towards equilibrium, such as 7: 1816:the article and/or by introducing a 1666:. This concept arises frequently in 3001:Central European Journal of Physics 2704:10.1016/j.freeradbiomed.2020.05.003 2191:Reversible process (thermodynamics) 2074:Flow of electric current through a 1677:In thermodynamics, a change in the 2025:Examples of irreversible processes 849: 802: 717: 670: 582: 535: 355:Intensive and extensive properties 14: 2692:Free Radical Biology and Medicine 1986:William Thomson, 1st Baron Kelvin 1767:This section has multiple issues. 1845: 1797: 1756: 1611: 1610: 930:Table of thermodynamic equations 2995:Lucia, U.; Gervino, G. (2009). 2874:The European Physical Journal B 2786:Computation, Physics and Beyond 2609:"The 2nd Law of Thermodynamics" 2117:). According to the biologists 2005:. Applying chaos theory to the 1820:, or discuss this issue on the 1775:or discuss these issues on the 1406:Maxwell's thermodynamic surface 2201:Non-equilibrium thermodynamics 2113:(such as living organisms, or 2089:Spontaneous chemical reactions 1140: 1128: 1085: 1073: 1030: 1018: 990: 978: 1: 2850:10.1016/s0035-3159(98)80007-x 2445:10.1016/S0378-4371(02)00980-9 2283:10.1016/s0035-3159(97)89987-4 1307:Mechanical equivalent of heat 16:Process that cannot be undone 2805:10.1007/978-3-642-27654-5_22 2007:second law of thermodynamics 1699:second law of thermodynamics 919:Onsager reciprocal relations 3087:10.1016/j.physa.2010.06.047 2982:10.1016/j.physa.2006.10.059 2838:Revue Gènèrale de Thermique 2504:10.1016/j.shpsb.2017.01.001 2408:10.1016/j.physa.2008.02.002 2373:10.1016/j.physa.2009.06.027 2271:Revue Gènèrale de Thermique 1982:Boltzmann's entropy formula 1411:Entropy as energy dispersal 1222:"Perpetual motion" machines 1161:{\displaystyle G(T,p)=H-TS} 1106:{\displaystyle A(T,V)=U-TS} 1051:{\displaystyle H(S,p)=U+pV} 3123: 2904:10.1140/epjb/e2006-00060-x 2660:10.1038/d41586-020-03403-0 858:{\displaystyle \partial T} 811:{\displaystyle \partial V} 726:{\displaystyle \partial p} 679:{\displaystyle \partial V} 591:{\displaystyle \partial T} 544:{\displaystyle \partial S} 18: 3022:10.2478/s11534-009-0092-y 2947:10.1393/ncb/i2006-10035-8 2554:10.1155/S1026022604401046 1332:An Inquiry Concerning the 2578:10.1007/3-540-59158-3_31 1744:irreversible processes. 1345:Heterogeneous Substances 762:{\displaystyle \alpha =} 630:{\displaystyle \beta =-} 2181:Entropy (arrow of time) 2163:precautionary principle 1988:, who had argued that: 2752:10.3892/ijmm.2021.5032 2318:10.1098/rspa.2007.0304 2021: 1995: 1954: 1162: 1107: 1052: 997: 996:{\displaystyle U(S,V)} 859: 835: 812: 788: 763: 727: 703: 680: 656: 631: 592: 568: 545: 521: 496: 475:Specific heat capacity 79:Quantum thermodynamics 23:. For other uses, see 2015: 1935:The German physicist 1925:uncertainty principle 1343:On the Equilibrium of 1163: 1108: 1061:Helmholtz free energy 1053: 998: 860: 836: 813: 789: 764: 728: 704: 681: 657: 632: 593: 569: 546: 522: 497: 3063:389, pp. 4558-4563 1950:not being reversible 1858:confusing or unclear 1726:thermodynamic system 1356:Motive Power of Fire 1122: 1067: 1012: 972: 924:Bridgman's equations 901:Fundamental relation 846: 825: 799: 778: 750: 714: 693: 667: 646: 615: 579: 558: 532: 511: 483: 3079:2010PhyA..389.4558L 3013:2009CEJPh...7..638L 2974:2007PhyA..376..289L 2939:2006NCimB.121..213L 2896:2006EPJB...50..367L 2652:2020Natur.588..209L 2496:2017SHPMP..57...53G 2437:2002PhyA..313..569L 2400:2008PhyA..387.3454L 2365:2009PhyA..388.4025L 2310:2008RSPSA.464.1089L 2304:(2093): 1089–1104. 2240:1995NCimB.110.1227L 2085:expansion of fluids 2070:Plastic deformation 1974:James Clerk Maxwell 1866:clarify the section 1818:disambiguation page 1717:and sometimes even 1679:thermodynamic state 1334:Source ... Friction 1266:Loschmidt's paradox 458:Material properties 336:Conjugate variables 25:Reversible dynamics 2927:Il Nuovo Cimento B 2248:10.1007/bf02724612 2176:Entropy production 2022: 1598:Order and disorder 1354:Reflections on the 1261:Heat death paradox 1158: 1103: 1048: 993: 855: 831: 808: 784: 759: 723: 699: 676: 652: 627: 588: 564: 541: 517: 495:{\displaystyle c=} 492: 465:Property databases 441:Reduced properties 425:Chemical potential 389:Functions of state 312:Thermal efficiency 48:Carnot heat engine 3073:(21): 4558–4563. 3049:978-81-7895-346-5 2626:978-0-471-78735-8 2587:978-3-540-59158-0 2394:(14): 3454–3460. 2359:(19): 4025–4033. 2234:(10): 1227–1235. 2206:Symmetry breaking 2119:Humberto Maturana 2018:adiabatic process 1916: 1915: 1908: 1898: 1897: 1890: 1839: 1838: 1790: 1742:thermodynamically 1652: 1651: 1593:Self-organization 1418: 1417: 1116:Gibbs free energy 914:Maxwell relations 872: 871: 868: 867: 834:{\displaystyle V} 787:{\displaystyle 1} 742:Thermal expansion 736: 735: 702:{\displaystyle V} 655:{\displaystyle 1} 601: 600: 567:{\displaystyle N} 520:{\displaystyle T} 448: 447: 364:Process functions 350:Property diagrams 329:System properties 319: 318: 284:Endoreversibility 176:Equation of state 3114: 3091: 3090: 3057: 3051: 3041: 3035: 3034: 3024: 2992: 2986: 2985: 2957: 2951: 2950: 2922: 2916: 2915: 2889: 2880:(1–2): 367–369. 2869: 2863: 2860: 2854: 2853: 2833: 2827: 2826: 2798: 2780: 2774: 2773: 2763: 2730: 2724: 2723: 2686: 2680: 2679: 2635: 2629: 2618: 2612: 2606: 2600: 2599: 2565: 2559: 2558: 2556: 2546: 2522: 2516: 2515: 2489: 2469: 2463: 2458:David Albert on 2455: 2449: 2448: 2431:(3–4): 569–577. 2418: 2412: 2411: 2383: 2377: 2376: 2348: 2339: 2336: 2330: 2329: 2293: 2287: 2286: 2266: 2260: 2259: 2228:Il Nuovo Cimento 2223: 2196:One way function 2141:processes, like 2123:Francisco Varela 1978:Ludwig Boltzmann 1967: 1963: 1959: 1911: 1904: 1893: 1886: 1882: 1879: 1873: 1849: 1848: 1841: 1834: 1831: 1825: 1801: 1800: 1793: 1782: 1760: 1759: 1752: 1672:phase transition 1644: 1637: 1630: 1614: 1613: 1321:Key publications 1302: 1301:("living force") 1251:Brownian ratchet 1246:Entropy and life 1241:Entropy and time 1192: 1167: 1165: 1164: 1159: 1112: 1110: 1109: 1104: 1057: 1055: 1054: 1049: 1002: 1000: 999: 994: 896:Clausius theorem 891:Carnot's theorem 864: 862: 861: 856: 840: 838: 837: 832: 817: 815: 814: 809: 793: 791: 790: 785: 772: 771: 768: 766: 765: 760: 732: 730: 729: 724: 708: 706: 705: 700: 685: 683: 682: 677: 661: 659: 658: 653: 640: 639: 636: 634: 633: 628: 597: 595: 594: 589: 573: 571: 570: 565: 550: 548: 547: 542: 526: 524: 523: 518: 505: 504: 501: 499: 498: 493: 471: 470: 344: 163: 44: 30: 3122: 3121: 3117: 3116: 3115: 3113: 3112: 3111: 3097: 3096: 3095: 3094: 3064: 3058: 3054: 3042: 3038: 2994: 2993: 2989: 2959: 2958: 2954: 2924: 2923: 2919: 2887:physics/0512182 2871: 2870: 2866: 2861: 2857: 2835: 2834: 2830: 2815: 2796:10.1.1.640.1835 2782: 2781: 2777: 2732: 2731: 2727: 2688: 2687: 2683: 2637: 2636: 2632: 2619: 2615: 2607: 2603: 2588: 2567: 2566: 2562: 2544:10.1.1.576.7850 2524: 2523: 2519: 2471: 2470: 2466: 2460:Time and Chance 2456: 2452: 2422: 2421: 2419: 2415: 2385: 2384: 2380: 2350: 2349: 2342: 2337: 2333: 2295: 2294: 2290: 2268: 2267: 2263: 2225: 2224: 2220: 2215: 2210: 2171: 2151:self-organizing 2139:self-organising 2131:self-organizing 2111:complex systems 2107: 2105:Complex systems 2098:Joule expansion 2027: 1965: 1961: 1957: 1937:Rudolf Clausius 1933: 1912: 1901: 1900: 1899: 1894: 1883: 1877: 1874: 1863: 1850: 1846: 1835: 1829: 1826: 1811: 1802: 1798: 1761: 1757: 1750: 1719:engine knocking 1710:Joule expansion 1708:. For example, 1648: 1603: 1602: 1578: 1570: 1569: 1568: 1428: 1420: 1419: 1398: 1384: 1359: 1355: 1348: 1344: 1337: 1333: 1300: 1293: 1275: 1256:Maxwell's demon 1218: 1189: 1188: 1172: 1171: 1170: 1120: 1119: 1118: 1065: 1064: 1063: 1010: 1009: 1008: 970: 969: 968: 966:Internal energy 961: 946: 936: 935: 910: 885: 875: 874: 873: 844: 843: 823: 822: 797: 796: 776: 775: 748: 747: 712: 711: 691: 690: 665: 664: 644: 643: 613: 612: 607:Compressibility 577: 576: 556: 555: 530: 529: 509: 508: 481: 480: 460: 450: 449: 430:Particle number 383: 342: 331: 321: 320: 279:Irreversibility 191:State of matter 158:Isolated system 143: 133: 132: 131: 106: 96: 95: 91:Non-equilibrium 83: 58: 50: 28: 17: 12: 11: 5: 3120: 3118: 3110: 3109: 3107:Thermodynamics 3099: 3098: 3093: 3092: 3052: 3036: 3007:(3): 638–644. 2987: 2952: 2933:(2): 213–216. 2917: 2864: 2855: 2844:(9): 813–817. 2828: 2813: 2775: 2725: 2681: 2630: 2613: 2601: 2586: 2560: 2517: 2464: 2450: 2413: 2378: 2340: 2331: 2288: 2277:(8): 605–609. 2261: 2217: 2216: 2214: 2211: 2209: 2208: 2203: 2198: 2193: 2188: 2183: 2178: 2172: 2170: 2167: 2159:sustainability 2135:Ilya Prigogine 2106: 2103: 2094: 2093: 2090: 2087: 2081: 2078: 2072: 2067: 2062: 2056: 2051: 2046: 2026: 2023: 1999:Henri Poincaré 1932: 1929: 1914: 1913: 1896: 1895: 1853: 1851: 1844: 1837: 1836: 1805: 1803: 1796: 1791: 1765: 1764: 1762: 1755: 1749: 1746: 1687:state function 1668:thermodynamics 1654:In science, a 1650: 1649: 1647: 1646: 1639: 1632: 1624: 1621: 1620: 1619: 1618: 1605: 1604: 1601: 1600: 1595: 1590: 1585: 1579: 1576: 1575: 1572: 1571: 1567: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1436: 1430: 1429: 1426: 1425: 1422: 1421: 1416: 1415: 1414: 1413: 1408: 1400: 1399: 1397: 1396: 1393: 1389: 1386: 1385: 1383: 1382: 1377: 1375:Thermodynamics 1371: 1368: 1367: 1363: 1362: 1361: 1360: 1351: 1349: 1340: 1338: 1329: 1324: 1323: 1317: 1316: 1315: 1314: 1309: 1304: 1292: 1291: 1289:Caloric theory 1285: 1282: 1281: 1277: 1276: 1274: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1237: 1234: 1233: 1227: 1226: 1225: 1224: 1217: 1216: 1211: 1206: 1200: 1197: 1196: 1190: 1187: 1186: 1183: 1179: 1178: 1177: 1174: 1173: 1169: 1168: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1113: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1058: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1003: 992: 989: 986: 983: 980: 977: 962: 960: 959: 954: 948: 947: 942: 941: 938: 937: 934: 933: 926: 921: 916: 909: 908: 903: 898: 893: 887: 886: 881: 880: 877: 876: 870: 869: 866: 865: 854: 851: 841: 830: 819: 818: 807: 804: 794: 783: 769: 758: 755: 745: 738: 737: 734: 733: 722: 719: 709: 698: 687: 686: 675: 672: 662: 651: 637: 626: 623: 620: 610: 603: 602: 599: 598: 587: 584: 574: 563: 552: 551: 540: 537: 527: 516: 502: 491: 488: 478: 469: 468: 467: 461: 456: 455: 452: 451: 446: 445: 444: 443: 438: 433: 422: 411: 392: 391: 385: 384: 382: 381: 376: 370: 367: 366: 360: 359: 358: 357: 352: 333: 332: 327: 326: 323: 322: 317: 316: 315: 314: 309: 304: 296: 295: 289: 288: 287: 286: 281: 276: 271: 269:Free expansion 266: 261: 256: 251: 246: 241: 236: 231: 223: 222: 216: 215: 214: 213: 208: 206:Control volume 203: 198: 196:Phase (matter) 193: 188: 183: 178: 170: 169: 161: 160: 155: 150: 144: 139: 138: 135: 134: 130: 129: 124: 119: 114: 108: 107: 102: 101: 98: 97: 94: 93: 82: 81: 76: 71: 66: 60: 59: 56: 55: 52: 51: 46:The classical 45: 37: 36: 34:Thermodynamics 15: 13: 10: 9: 6: 4: 3: 2: 3119: 3108: 3105: 3104: 3102: 3088: 3084: 3080: 3076: 3072: 3068: 3062: 3056: 3053: 3050: 3046: 3040: 3037: 3032: 3028: 3023: 3018: 3014: 3010: 3006: 3002: 2998: 2991: 2988: 2983: 2979: 2975: 2971: 2967: 2963: 2956: 2953: 2948: 2944: 2940: 2936: 2932: 2928: 2921: 2918: 2913: 2909: 2905: 2901: 2897: 2893: 2888: 2883: 2879: 2875: 2868: 2865: 2859: 2856: 2851: 2847: 2843: 2839: 2832: 2829: 2824: 2820: 2816: 2814:9783642276538 2810: 2806: 2802: 2797: 2792: 2788: 2787: 2779: 2776: 2771: 2767: 2762: 2757: 2753: 2749: 2745: 2741: 2737: 2729: 2726: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2685: 2682: 2677: 2673: 2669: 2665: 2661: 2657: 2653: 2649: 2646:(7837): 209. 2645: 2641: 2634: 2631: 2627: 2623: 2617: 2614: 2610: 2605: 2602: 2597: 2593: 2589: 2583: 2579: 2575: 2571: 2564: 2561: 2555: 2550: 2545: 2540: 2536: 2532: 2528: 2521: 2518: 2513: 2509: 2505: 2501: 2497: 2493: 2488: 2483: 2479: 2475: 2468: 2465: 2462: 2461: 2454: 2451: 2446: 2442: 2438: 2434: 2430: 2426: 2417: 2414: 2409: 2405: 2401: 2397: 2393: 2389: 2382: 2379: 2374: 2370: 2366: 2362: 2358: 2354: 2347: 2345: 2341: 2335: 2332: 2327: 2323: 2319: 2315: 2311: 2307: 2303: 2299: 2292: 2289: 2284: 2280: 2276: 2272: 2265: 2262: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2222: 2219: 2212: 2207: 2204: 2202: 2199: 2197: 2194: 2192: 2189: 2187: 2184: 2182: 2179: 2177: 2174: 2173: 2168: 2166: 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2104: 2102: 2099: 2091: 2088: 2086: 2083:Unrestrained 2082: 2079: 2077: 2073: 2071: 2068: 2066: 2063: 2060: 2059:Heat transfer 2057: 2055: 2052: 2050: 2047: 2044: 2040: 2036: 2033: 2032: 2031: 2024: 2019: 2016:Irreversible 2014: 2010: 2008: 2004: 2000: 1994: 1989: 1987: 1983: 1979: 1975: 1969: 1953: 1951: 1944: 1942: 1938: 1930: 1928: 1926: 1922: 1910: 1907: 1892: 1889: 1881: 1871: 1870:the talk page 1867: 1861: 1859: 1854:This section 1852: 1843: 1842: 1833: 1823: 1819: 1815: 1809: 1806:This article 1804: 1795: 1794: 1789: 1787: 1780: 1779: 1774: 1773: 1768: 1763: 1754: 1753: 1747: 1745: 1743: 1738: 1733: 1731: 1727: 1722: 1720: 1716: 1711: 1707: 1702: 1700: 1696: 1692: 1688: 1684: 1683:infinitesimal 1680: 1675: 1673: 1669: 1665: 1661: 1657: 1645: 1640: 1638: 1633: 1631: 1626: 1625: 1623: 1622: 1617: 1609: 1608: 1607: 1606: 1599: 1596: 1594: 1591: 1589: 1588:Self-assembly 1586: 1584: 1581: 1580: 1574: 1573: 1565: 1562: 1560: 1559:van der Waals 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1484:von Helmholtz 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1431: 1424: 1423: 1412: 1409: 1407: 1404: 1403: 1402: 1401: 1394: 1391: 1390: 1387: 1381: 1378: 1376: 1373: 1372: 1370: 1369: 1364: 1358: 1357: 1350: 1347: 1346: 1339: 1336: 1335: 1328: 1327: 1326: 1325: 1322: 1318: 1313: 1310: 1308: 1305: 1303: 1299: 1295: 1294: 1290: 1287: 1286: 1284: 1283: 1278: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1236: 1235: 1232: 1228: 1223: 1220: 1219: 1215: 1212: 1210: 1207: 1205: 1202: 1201: 1199: 1198: 1193: 1184: 1181: 1180: 1176: 1175: 1155: 1152: 1149: 1146: 1143: 1137: 1134: 1131: 1125: 1117: 1114: 1100: 1097: 1094: 1091: 1088: 1082: 1079: 1076: 1070: 1062: 1059: 1045: 1042: 1039: 1036: 1033: 1027: 1024: 1021: 1015: 1007: 1004: 987: 984: 981: 975: 967: 964: 963: 958: 955: 953: 950: 949: 945: 940: 939: 932: 931: 927: 925: 922: 920: 917: 915: 912: 911: 907: 906:Ideal gas law 904: 902: 899: 897: 894: 892: 889: 888: 884: 879: 878: 852: 842: 828: 821: 820: 805: 795: 781: 774: 773: 770: 756: 753: 746: 743: 740: 739: 720: 710: 696: 689: 688: 673: 663: 649: 642: 641: 638: 624: 621: 618: 611: 608: 605: 604: 585: 575: 561: 554: 553: 538: 528: 514: 507: 506: 503: 489: 486: 479: 476: 473: 472: 466: 463: 462: 459: 454: 453: 442: 439: 437: 436:Vapor quality 434: 432: 431: 426: 423: 421: 420: 415: 412: 409: 405: 404: 399: 396: 395: 394: 393: 390: 386: 380: 377: 375: 372: 371: 369: 368: 365: 361: 356: 353: 351: 348: 347: 346: 345: 341: 337: 330: 325: 324: 313: 310: 308: 305: 303: 300: 299: 298: 297: 294: 290: 285: 282: 280: 277: 275: 274:Reversibility 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 226: 225: 224: 221: 217: 212: 209: 207: 204: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 173: 172: 171: 168: 164: 159: 156: 154: 151: 149: 148:Closed system 146: 145: 142: 137: 136: 128: 125: 123: 120: 118: 115: 113: 110: 109: 105: 100: 99: 92: 88: 85: 84: 80: 77: 75: 72: 70: 67: 65: 62: 61: 54: 53: 49: 43: 39: 38: 35: 31: 26: 22: 3070: 3066: 3060: 3055: 3039: 3004: 3000: 2990: 2965: 2961: 2955: 2930: 2926: 2920: 2877: 2873: 2867: 2858: 2841: 2837: 2831: 2785: 2778: 2743: 2739: 2728: 2695: 2691: 2684: 2643: 2639: 2633: 2616: 2604: 2569: 2563: 2537:(1): 75–83. 2534: 2530: 2520: 2477: 2473: 2467: 2459: 2453: 2428: 2424: 2416: 2391: 2387: 2381: 2356: 2352: 2334: 2301: 2297: 2291: 2274: 2270: 2264: 2231: 2227: 2221: 2108: 2095: 2028: 2003:chaos theory 1996: 1991: 1970: 1955: 1949: 1946: 1934: 1920: 1917: 1902: 1884: 1875: 1864:Please help 1855: 1827: 1807: 1783: 1776: 1770: 1769:Please help 1766: 1734: 1723: 1703: 1676: 1664:irreversible 1663: 1658:that is not 1653: 1449:Carathéodory 1380:Heat engines 1352: 1341: 1330: 1312:Motive power 1297: 957:Free entropy 928: 428: 427: / 417: 416: / 408:introduction 401: 400: / 339: 302:Heat engines 278: 89: / 2968:: 289–292. 2127:autopoiesis 1730:dissipation 1715:flame front 1706:dissipation 1691:environment 1271:Synergetics 952:Free energy 398:Temperature 259:Quasistatic 254:Isenthalpic 211:Instruments 201:Equilibrium 153:Open system 87:Equilibrium 69:Statistical 21:Dollo's law 2746:(5): 199. 2487:1702.01411 2213:References 2155:negentropy 2115:ecosystems 2076:resistance 2043:telomerase 1878:April 2014 1860:to readers 1830:April 2014 1772:improve it 1737:biological 1662:is called 1660:reversible 1583:Nucleation 1427:Scientists 1231:Philosophy 944:Potentials 307:Heat pumps 264:Polytropic 249:Isentropic 239:Isothermal 3061:Physica A 3031:120720503 2912:119372773 2791:CiteSeerX 2720:219312914 2676:227259860 2539:CiteSeerX 2480:: 53–65. 2256:119568672 1822:talk page 1814:splitting 1778:talk page 1564:Waterston 1514:von Mayer 1469:de Donder 1459:Clapeyron 1439:Boltzmann 1434:Bernoulli 1395:Education 1366:Timelines 1150:− 1095:− 883:Equations 850:∂ 803:∂ 754:α 718:∂ 671:∂ 625:− 619:β 583:∂ 536:∂ 244:Adiabatic 234:Isochoric 220:Processes 181:Ideal gas 64:Classical 3101:Category 2823:16929949 2770:34515324 2712:32492457 2698:: 1–10. 2668:33268879 2596:16589172 2512:38272381 2326:34898343 2169:See also 2161:and the 2065:Friction 1966:~71.7 °F 1962:~72.3 °F 1958:(~72 °F) 1616:Category 1554:Thompson 1464:Clausius 1444:Bridgman 1298:Vis viva 1280:Theories 1214:Gas laws 1006:Enthalpy 414:Pressure 229:Isobaric 186:Real gas 74:Chemical 57:Branches 3075:Bibcode 3009:Bibcode 2970:Bibcode 2935:Bibcode 2892:Bibcode 2761:8448543 2648:Bibcode 2492:Bibcode 2433:Bibcode 2396:Bibcode 2361:Bibcode 2306:Bibcode 2236:Bibcode 1941:entropy 1931:History 1856:may be 1695:entropy 1656:process 1539:Smeaton 1534:Rankine 1524:Onsager 1509:Maxwell 1504:Massieu 1209:Entropy 1204:General 1195:History 1185:Culture 1182:History 406: ( 403:Entropy 340:italics 141:Systems 3047:  3029:  2910:  2821:  2811:  2793:  2768:  2758:  2718:  2710:  2674:  2666:  2640:Nature 2624:  2594:  2584:  2541:  2510:  2324:  2254:  2186:Exergy 2035:Ageing 1529:Planck 1519:Nernst 1494:Kelvin 1454:Carnot 744:  609:  477:  419:Volume 334:Note: 293:Cycles 122:Second 112:Zeroth 3027:S2CID 2908:S2CID 2882:arXiv 2819:S2CID 2716:S2CID 2672:S2CID 2592:S2CID 2508:S2CID 2482:arXiv 2322:S2CID 2252:S2CID 2147:clone 2143:death 2049:Death 1735:Many 1577:Other 1544:Stahl 1499:Lewis 1489:Joule 1479:Gibbs 1474:Duhem 167:State 127:Third 117:First 3045:ISBN 2809:ISBN 2766:PMID 2708:PMID 2664:PMID 2622:ISBN 2582:ISBN 2535:2004 2232:B110 2121:and 2054:Time 2041:and 2039:NAD+ 1921:real 1549:Tait 379:Heat 374:Work 104:Laws 3083:doi 3071:389 3017:doi 2978:doi 2966:376 2943:doi 2931:121 2900:doi 2846:doi 2801:doi 2756:PMC 2748:doi 2700:doi 2696:156 2656:doi 2644:588 2574:doi 2549:doi 2500:doi 2441:doi 2429:313 2404:doi 2392:387 2369:doi 2357:388 2314:doi 2302:464 2279:doi 2244:doi 1392:Art 338:in 3103:: 3081:. 3069:. 3025:. 3015:. 3003:. 2999:. 2976:. 2964:. 2941:. 2929:. 2906:. 2898:. 2890:. 2878:50 2876:. 2842:37 2840:. 2817:. 2807:. 2799:. 2764:. 2754:. 2744:48 2742:. 2738:. 2714:. 2706:. 2694:. 2670:. 2662:. 2654:. 2642:. 2590:. 2580:. 2547:. 2533:. 2529:. 2506:. 2498:. 2490:. 2478:57 2476:. 2439:. 2427:. 2402:. 2390:. 2367:. 2355:. 2343:^ 2320:. 2312:. 2300:. 2275:36 2273:. 2250:. 2242:. 2230:. 2096:A 1781:. 3089:. 3085:: 3077:: 3033:. 3019:: 3011:: 3005:7 2984:. 2980:: 2972:: 2949:. 2945:: 2937:: 2914:. 2902:: 2894:: 2884:: 2852:. 2848:: 2825:. 2803:: 2772:. 2750:: 2722:. 2702:: 2678:. 2658:: 2650:: 2628:. 2598:. 2576:: 2557:. 2551:: 2514:. 2502:: 2494:: 2484:: 2447:. 2443:: 2435:: 2410:. 2406:: 2398:: 2375:. 2371:: 2363:: 2328:. 2316:: 2308:: 2285:. 2281:: 2258:. 2246:: 2238:: 1909:) 1903:( 1891:) 1885:( 1880:) 1876:( 1872:. 1862:. 1832:) 1828:( 1824:. 1810:. 1788:) 1784:( 1643:e 1636:t 1629:v 1156:S 1153:T 1147:H 1144:= 1141:) 1138:p 1135:, 1132:T 1129:( 1126:G 1101:S 1098:T 1092:U 1089:= 1086:) 1083:V 1080:, 1077:T 1074:( 1071:A 1046:V 1043:p 1040:+ 1037:U 1034:= 1031:) 1028:p 1025:, 1022:S 1019:( 1016:H 991:) 988:V 985:, 982:S 979:( 976:U 853:T 829:V 806:V 782:1 757:= 721:p 697:V 674:V 650:1 622:= 586:T 562:N 539:S 515:T 490:= 487:c 410:) 27:.

Index

Dollo's law
Reversible dynamics
Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.