Knowledge (XXG)

Isomorphism of categories

Source ๐Ÿ“

119:
to each other. Two isomorphic categories share all properties that are defined solely in terms of category theory; for all practical purposes, they are identical and differ only in the notation of their objects and morphisms.
562: 750:, and the meet operation as multiplication. Again, both of these assignments can be extended to morphisms to yield functors, and these functors are inverse to each other. 458: 706: 733: 262: 212: 179: 235: 148: 634:). (There are still several things to check: both these assignments are functors, i.e. they can be applied to maps between group representations resp. 907: 639: 951: 916: 123:
Isomorphism of categories is a very strong condition and rarely satisfied in practice. Much more important is the notion of
669: 662: 946: 879: 124: 116: 100: 774: 183: 685: 650: 404: 396: 277: 378: 371: 640:
Representation theory of finite groups ยง Representations, modules and the convolution algebra
646: 444: 912: 902: 691: 658: 654: 926: 718: 240: 190: 157: 922: 911:. Graduate Texts in Mathematics. Vol. 5 (2nd ed.). Springer-Verlag. p. 14. 806: 357:. This criterion can be convenient as it avoids the need to construct the inverse functor 33: 638:
modules, and they are inverse to each other, both on objects and on morphisms). See also
217: 130: 758: 940: 411:. The isomorphism can be described as follows: given a group representation ฯ : 17: 673: 440: 424: 557:{\displaystyle \left(\sum _{g\in G}a_{g}g\right)v=\sum _{g\in G}a_{g}\rho (g)(v)} 273: 385: 350: 127:; roughly speaking, for an equivalence of categories we don't require that 801:
is the category with one object and only its identity morphism (in fact,
104: 354: 49: 672:: the category of Boolean algebras is isomorphic to the category of 276:, we have the following general properties formally similar to an 665:
is isomorphic to the category of left modules over the ring.
668:
Another isomorphism of categories arises in the theory of
349:
yields an isomorphism of categories if and only if it is
721: 694: 461: 243: 220: 193: 160: 133: 708:
as multiplication. Conversely, given a Boolean ring
727: 700: 556: 256: 229: 206: 173: 142: 757:is a category with an initial object s, then the 602:vector space, and multiplication with an element 75:that are mutually inverse to each other, i.e. 849:between these functors, selecting a morphism 8: 813:is any category, then the functor category 897: 895: 720: 693: 527: 511: 487: 471: 460: 248: 242: 219: 198: 192: 165: 159: 132: 29:Relation of categories in category theory 908:Categories for the Working Mathematician 626:), which describes a group homomorphism 891: 837:), and arrows natural transformations 7: 688:as addition and the meet operation 712:, we define the join operation by 25: 684:into a Boolean ring by using the 403:is isomorphic to the category of 551: 545: 542: 536: 1: 272:As is true for any notion of 586:. Conversely, given a left 237:be naturally isomorphic to 99:. This means that both the 968: 676:. Given a Boolean algebra 663:category of abelian groups 661:from this category to the 653:with a single object. The 952:Equivalence (mathematics) 880:Equivalence of categories 865:, is again isomorphic to 125:equivalence of categories 117:one-to-one correspondence 85:(the identity functor on 817:, with objects functors 785:, the functor category ( 781:is a terminal object in 614:-linear automorphism of 288:is isomorphic to itself 829:, selecting an object 729: 702: 701:{\displaystyle \land } 558: 435:) is the group of its 258: 231: 208: 175: 144: 730: 728:{\displaystyle \lor } 703: 559: 397:group representations 259: 257:{\displaystyle 1_{C}} 232: 209: 207:{\displaystyle 1_{D}} 176: 174:{\displaystyle 1_{D}} 145: 18:Isomorphic categories 719: 692: 686:symmetric difference 651:preadditive category 572:and every element ฮฃ 459: 278:equivalence relation 241: 218: 214:, and likewise that 191: 184:naturally isomorphic 158: 131: 793:) is isomorphic to 769:) is isomorphic to 649:can be viewed as a 455:module by defining 903:Mac Lane, Saunders 725: 698: 554: 522: 482: 445:group homomorphism 391:. The category of 370:Consider a finite 353:on objects and on 254: 230:{\displaystyle GF} 227: 204: 171: 143:{\displaystyle FG} 140: 807:terminal category 659:additive functors 622:is invertible in 507: 467: 329:is isomorphic to 321:is isomorphic to 313:is isomorphic to 303:is isomorphic to 295:is isomorphic to 36:, two categories 16:(Redirected from 959: 947:Adjoint functors 931: 930: 899: 797:. Similarly, if 734: 732: 731: 726: 707: 705: 704: 699: 670:Boolean algebras 655:functor category 563: 561: 560: 555: 532: 531: 521: 500: 496: 492: 491: 481: 263: 261: 260: 255: 253: 252: 236: 234: 233: 228: 213: 211: 210: 205: 203: 202: 180: 178: 177: 172: 170: 169: 149: 147: 146: 141: 21: 967: 966: 962: 961: 960: 958: 957: 956: 937: 936: 935: 934: 919: 901: 900: 893: 888: 876: 717: 716: 690: 689: 577: 523: 483: 466: 462: 457: 456: 367: 270: 244: 239: 238: 216: 215: 194: 189: 188: 161: 156: 155: 129: 128: 98: 84: 48:if there exist 34:category theory 30: 23: 22: 15: 12: 11: 5: 965: 963: 955: 954: 949: 939: 938: 933: 932: 917: 890: 889: 887: 884: 883: 882: 875: 872: 871: 870: 759:slice category 751: 724: 697: 666: 643: 575: 553: 550: 547: 544: 541: 538: 535: 530: 526: 520: 517: 514: 510: 506: 503: 499: 495: 490: 486: 480: 477: 474: 470: 465: 366: 363: 335: 334: 307: 289: 269: 266: 251: 247: 226: 223: 201: 197: 168: 164: 139: 136: 94: 80: 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 964: 953: 950: 948: 945: 944: 942: 928: 924: 920: 918:0-387-98403-8 914: 910: 909: 904: 898: 896: 892: 885: 881: 878: 877: 873: 868: 864: 860: 856: 852: 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 808: 804: 800: 796: 792: 788: 784: 780: 776: 772: 768: 764: 760: 756: 752: 749: 745: 741: 737: 722: 715: 711: 695: 687: 683: 679: 675: 674:Boolean rings 671: 667: 664: 660: 656: 652: 648: 644: 641: 637: 633: 629: 625: 621: 617: 613: 609: 605: 601: 597: 593: 589: 585: 581: 578: 571: 567: 548: 539: 533: 528: 524: 518: 515: 512: 508: 504: 501: 497: 493: 488: 484: 478: 475: 472: 468: 463: 454: 450: 446: 443:, and ฯ is a 442: 441:automorphisms 438: 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 394: 390: 387: 386:group algebra 383: 380: 376: 373: 369: 368: 364: 362: 360: 356: 355:morphism sets 352: 348: 344: 340: 332: 328: 324: 320: 316: 312: 308: 306: 302: 298: 294: 290: 287: 284:any category 283: 282: 281: 279: 275: 267: 265: 249: 245: 224: 221: 199: 195: 186: 185: 166: 162: 153: 137: 134: 126: 121: 118: 114: 110: 106: 102: 97: 92: 88: 83: 78: 74: 70: 66: 62: 58: 54: 51: 47: 43: 39: 35: 27: 19: 906: 866: 862: 858: 854: 850: 846: 842: 838: 834: 830: 826: 822: 818: 814: 810: 802: 798: 794: 790: 786: 782: 778: 770: 766: 762: 754: 747: 743: 739: 735: 713: 709: 681: 677: 635: 631: 627: 623: 619: 615: 611: 607: 603: 599: 595: 591: 587: 583: 579: 573: 569: 565: 452: 451:into a left 448: 436: 432: 428: 425:vector space 420: 416: 412: 408: 405:left modules 400: 392: 388: 381: 374: 358: 346: 342: 338: 336: 330: 326: 322: 318: 314: 310: 304: 300: 296: 292: 285: 271: 182: 151: 122: 112: 108: 95: 90: 86: 81: 76: 72: 68: 64: 60: 56: 52: 45: 41: 37: 31: 26: 274:isomorphism 181:, but only 115:stand in a 941:Categories 886:References 680:, we turn 564:for every 447:, we turn 337:A functor 268:Properties 46:isomorphic 723:∨ 696:∧ 610:yields a 534:ρ 516:∈ 509:∑ 476:∈ 469:∑ 419:), where 351:bijective 105:morphisms 905:(1998). 874:See also 439:-linear 395:-linear 384:and the 365:Examples 341: : 103:and the 67: : 55: : 50:functors 927:1712872 809:), and 805:is the 657:of all 618:(since 594:, then 590:module 325:, then 299:, then 101:objects 925:  915:  775:Dually 645:Every 89:) and 777:, if 630:โ†’ GL( 598:is a 431:, GL( 427:over 423:is a 415:โ†’ GL( 407:over 379:field 372:group 152:equal 913:ISBN 833:โˆˆOb( 647:ring 377:, a 317:and 111:and 63:and 44:are 40:and 861:in 753:If 738:= 606:of 582:in 568:in 399:of 309:if 291:if 187:to 154:to 150:be 107:of 93:= 1 79:= 1 32:In 943:: 923:MR 921:. 894:^ 857:โ†’ 853:: 845:โ†’ 841:: 825:โ†’ 821:: 773:. 748:ab 746:+ 742:+ 636:kG 624:kG 588:kG 584:kG 453:kG 409:kG 389:kG 361:. 345:โ†’ 280:: 264:. 91:GF 77:FG 71:โ†’ 59:โ†’ 929:. 869:. 867:C 863:C 859:d 855:c 851:f 847:d 843:c 839:f 835:C 831:c 827:C 823:1 819:c 815:C 811:C 803:1 799:1 795:C 791:t 789:โ†“ 787:C 783:C 779:t 771:C 767:C 765:โ†“ 763:s 761:( 755:C 744:b 740:a 736:b 714:a 710:R 682:B 678:B 642:. 632:M 628:G 620:g 616:M 612:k 608:G 604:g 600:k 596:M 592:M 580:g 576:g 574:a 570:V 566:v 552:) 549:v 546:( 543:) 540:g 537:( 529:g 525:a 519:G 513:g 505:= 502:v 498:) 494:g 489:g 485:a 479:G 473:g 464:( 449:V 437:k 433:V 429:k 421:V 417:V 413:G 401:G 393:k 382:k 375:G 359:G 347:D 343:C 339:F 333:. 331:E 327:C 323:E 319:D 315:D 311:C 305:C 301:D 297:D 293:C 286:C 250:C 246:1 225:F 222:G 200:D 196:1 167:D 163:1 138:G 135:F 113:D 109:C 96:C 87:D 82:D 73:C 69:D 65:G 61:D 57:C 53:F 42:D 38:C 20:)

Index

Isomorphic categories
category theory
functors
objects
morphisms
one-to-one correspondence
equivalence of categories
naturally isomorphic
isomorphism
equivalence relation
bijective
morphism sets
group
field
group algebra
group representations
left modules
vector space
automorphisms
group homomorphism
Representation theory of finite groups ยง Representations, modules and the convolution algebra
ring
preadditive category
functor category
additive functors
category of abelian groups
Boolean algebras
Boolean rings
symmetric difference
slice category

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘