Knowledge (XXG)

Isoperimetric dimension

Source 📝

62:
says that of all bodies with the same volume, the ball has the smallest surface area. In other manifolds it is usually very difficult to find the precise body minimizing the surface area, and this is not what the isoperimetric dimension is about. The question we will ask is, what is
185: 361: 276:) has topological dimension 2 but isoperimetric dimension 1. Indeed, multiplying any manifold with a compact manifold does not change the isoperimetric dimension (it only changes the value of the constant 448: 481:. In general, the opposite is not true, i.e. even uniformly exponential volume growth does not imply any kind of isoperimetric inequality. A simple example can be had by taking the graph 614: 661: 104: 307: 750:
This paper contains the result that on groups of polynomial growth, volume growth and isoperimetric inequalities are equivalent. In French.
190:
The notations vol and area refer to the regular notions of volume and surface area on the manifold, or more precisely, if the manifold has
283:
It is also possible for the isoperimetric dimension to be larger than the topological dimension. The simplest example is the infinite
714: 785: 772:
This paper contains a precise definition of the isoperimetric dimension of a graph, and establishes many of its properties.
396: 288: 387: 525: 478: 550: 297:
has topological dimension 2 and isoperimetric dimension infinity. In fact the hyperbolic plane has positive
76: 40: 532: 505: 474: 294: 44: 790: 710: 265: 543:
Varopoulos' theorem: If G is a graph satisfying a d-dimensional isoperimetric inequality then
624: 298: 501:|. Both properties (exponential growth and 0 isoperimetric dimension) are easy to verify. 55: 36: 180:{\displaystyle \operatorname {area} (\partial D)\geq C\operatorname {vol} (D)^{(d-1)/d}.} 779: 521: 254: 59: 536: 269: 20: 356:{\displaystyle \operatorname {area} (\partial D)\geq C\operatorname {vol} (D),} 284: 707:
Isoperimetric Inequalities: Differential geometric and analytic perspectives
517: 273: 535:
connects the isoperimetric dimension of a graph to the rate of escape of
28: 764: 287:, which has topological dimension 2 and isoperimetric dimension 3. See 721:
Discusses the topic in the context of manifolds, no mention of graphs.
67:
the minimal surface area, whatever the body realizing it might be.
257:— as discussed above, for the Euclidean space the constant 261:
is known precisely since the minimum is achieved for the ball.
508:. It turns out that a group with polynomial growth of order 280:). Any compact manifold has isoperimetric dimension 0. 366:
which obviously implies infinite isoperimetric dimension.
249:-dimensional Euclidean space has isoperimetric dimension 206:
here refers to some constant, which does not depend on
31:
is a notion of dimension that tries to capture how the
627: 553: 443:{\displaystyle \operatorname {vol} B(x,r)\geq Cr^{d}} 399: 310: 107: 709:, Cambridge university press, Cambridge, UK (2001), 655: 608: 442: 355: 179: 382:-dimensional isoperimetric inequality implies a 739:Isopérimétrie pour les groupes et les variétés 301:. This means that it satisfies the inequality 493: + 1) and connecting to the vertex 8: 728:Isoperimetric inequalities and Markov chains 378:(or sum in the case of graphs) shows that a 737:Thierry Coulhon and Laurent Saloff-Coste, 485:(i.e. all the integers with edges between 202: − 1)-dimensional volume. 194:topological dimensions then vol refers to 632: 626: 596: 589: 558: 552: 434: 398: 309: 164: 148: 106: 664:is the probability that a random walk on 609:{\displaystyle p_{n}(x,y)\leq Cn^{-d/2}} 504:An interesting exception is the case of 198:-dimensional volume and area refers to ( 237:-dimensional isoperimetric inequality. 51:against those of the Euclidean space). 763:, International Press, (2004), 53–82. 210:(it may depend on the manifold and on 7: 765:http://math.ucsd.edu/~fan/wp/iso.pdf 35:of the manifold resembles that of a 761:Surveys in Differential Geometry IX 757:Discrete Isoperimetric Inequalities 290:for pictures and Mathematica code. 516:. This holds both for the case of 497:a complete binary tree of height | 320: 117: 14: 225:is the supremum of all values of 539:on the graph. The result states 98:with a smooth boundary one has 650: 638: 576: 564: 421: 409: 347: 341: 326: 317: 161: 149: 145: 138: 123: 114: 1: 465:) denotes the ball of radius 264:An infinite cylinder (i.e. a 512:has isoperimetric dimension 370:Consequences of isoperimetry 741:, Rev. Mat. Iberoamericana 807: 374:A simple integration over 253:. This is the well known 526:finitely generated group 88:isoperimetric inequality 60:isoperimetric inequality 47:which compare different 656:{\textstyle p_{n}(x,y)} 219:isoperimetric dimension 77:differentiable manifold 25:isoperimetric dimension 657: 610: 444: 357: 181: 786:Mathematical analysis 658: 611: 445: 358: 255:isoperimetric problem 182: 41:topological dimension 625: 551: 397: 308: 105: 90:if for any open set 82:that it satisfies a 33:large-scale behavior 726:N. Th. Varopoulos, 475:Riemannian distance 45:Hausdorff dimension 16:Concept in topology 730:, J. Funct. Anal. 653: 606: 440: 353: 177: 694:is some constant. 469:around the point 71:Formal definition 798: 745:(1993), 293–314. 734:(1985), 215–239. 662: 660: 659: 654: 637: 636: 615: 613: 612: 607: 605: 604: 600: 563: 562: 449: 447: 446: 441: 439: 438: 362: 360: 359: 354: 299:Cheeger constant 295:hyperbolic plane 186: 184: 183: 178: 173: 172: 168: 806: 805: 801: 800: 799: 797: 796: 795: 776: 775: 702: 701: 628: 623: 622: 585: 554: 549: 548: 430: 395: 394: 372: 306: 305: 243: 144: 103: 102: 75:We say about a 73: 56:Euclidean space 49:local behaviors 37:Euclidean space 17: 12: 11: 5: 804: 802: 794: 793: 788: 778: 777: 774: 773: 769: 768: 752: 751: 747: 746: 735: 723: 722: 718: 717: 705:Isaac Chavel, 700: 697: 652: 649: 646: 643: 640: 635: 631: 617: 616: 603: 599: 595: 592: 588: 584: 581: 578: 575: 572: 569: 566: 561: 557: 479:graph distance 451: 450: 437: 433: 429: 426: 423: 420: 417: 414: 411: 408: 405: 402: 371: 368: 364: 363: 352: 349: 346: 343: 340: 337: 334: 331: 328: 325: 322: 319: 316: 313: 242: 239: 188: 187: 176: 171: 167: 163: 160: 157: 154: 151: 147: 143: 140: 137: 134: 131: 128: 125: 122: 119: 116: 113: 110: 72: 69: 15: 13: 10: 9: 6: 4: 3: 2: 803: 792: 789: 787: 784: 783: 781: 771: 770: 766: 762: 758: 754: 753: 749: 748: 744: 740: 736: 733: 729: 725: 724: 720: 719: 716: 715:0-521-80267-9 712: 708: 704: 703: 698: 696: 695: 692: 689: 686: 683: 680: 677: 674: 671: 670:starting from 668: 665: 647: 644: 641: 633: 629: 621: 601: 597: 593: 590: 586: 582: 579: 573: 570: 567: 559: 555: 547: 546: 545: 544: 540: 538: 534: 531:A theorem of 529: 527: 523: 519: 515: 511: 507: 502: 500: 496: 492: 488: 484: 480: 476: 472: 468: 464: 460: 456: 435: 431: 427: 424: 418: 415: 412: 406: 403: 400: 393: 392: 391: 389: 388:volume growth 386:-dimensional 385: 381: 377: 369: 367: 350: 344: 338: 335: 332: 329: 323: 314: 311: 304: 303: 302: 300: 296: 291: 289: 286: 281: 279: 275: 271: 267: 262: 260: 256: 252: 248: 240: 238: 236: 232: 228: 224: 220: 215: 213: 209: 205: 201: 197: 193: 174: 169: 165: 158: 155: 152: 141: 135: 132: 129: 126: 120: 111: 108: 101: 100: 99: 97: 93: 89: 86:-dimensional 85: 81: 78: 70: 68: 66: 65:approximately 61: 57: 52: 50: 46: 42: 38: 34: 30: 26: 22: 760: 756: 742: 738: 731: 727: 706: 693: 690: 687: 684: 681: 678: 675: 672: 669: 666: 663: 619: 618: 542: 541: 530: 522:Cayley graph 520:and for the 513: 509: 503: 498: 494: 490: 486: 482: 470: 466: 462: 458: 454: 452: 383: 379: 375: 373: 365: 292: 282: 277: 263: 258: 250: 246: 244: 234: 233:satisfies a 230: 226: 222: 218: 216: 211: 207: 203: 199: 195: 191: 189: 95: 91: 87: 83: 79: 74: 64: 53: 48: 39:(unlike the 32: 24: 18: 755:Fan Chung, 537:random walk 21:mathematics 780:Categories 699:References 688:steps, and 676:will be in 533:Varopoulos 518:Lie groups 477:or in the 285:jungle gym 229:such that 791:Dimension 591:− 580:≤ 425:≥ 404:⁡ 390:, namely 339:⁡ 330:≥ 321:∂ 315:⁡ 156:− 136:⁡ 127:≥ 118:∂ 112:⁡ 272:and the 241:Examples 29:manifold 473:in the 268:of the 266:product 54:In the 43:or the 713:  506:groups 453:where 270:circle 58:, the 23:, the 682:after 620:where 524:of a 27:of a 732:63:2 711:ISBN 489:and 312:area 293:The 274:line 217:The 109:area 743:9:2 401:vol 336:vol 221:of 214:). 133:vol 94:in 19:In 782:: 759:. 528:. 245:A 767:. 691:C 685:n 679:y 673:x 667:G 651:) 648:y 645:, 642:x 639:( 634:n 630:p 602:2 598:/ 594:d 587:n 583:C 577:) 574:y 571:, 568:x 565:( 560:n 556:p 514:d 510:d 499:n 495:n 491:n 487:n 483:Z 471:x 467:r 463:r 461:, 459:x 457:( 455:B 436:d 432:r 428:C 422:) 419:r 416:, 413:x 410:( 407:B 384:d 380:d 376:r 351:, 348:) 345:D 342:( 333:C 327:) 324:D 318:( 278:C 259:C 251:d 247:d 235:d 231:M 227:d 223:M 212:d 208:D 204:C 200:n 196:n 192:n 175:. 170:d 166:/ 162:) 159:1 153:d 150:( 146:) 142:D 139:( 130:C 124:) 121:D 115:( 96:M 92:D 84:d 80:M

Index

mathematics
manifold
Euclidean space
topological dimension
Hausdorff dimension
Euclidean space
isoperimetric inequality
differentiable manifold
isoperimetric problem
product
circle
line
jungle gym

hyperbolic plane
Cheeger constant
volume growth
Riemannian distance
graph distance
groups
Lie groups
Cayley graph
finitely generated group
Varopoulos
random walk
ISBN
0-521-80267-9
http://math.ucsd.edu/~fan/wp/iso.pdf
Categories
Mathematical analysis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.