Knowledge

Radiometric dating

Source 📝

419: 310:
measurement. The in-growth method is one way of measuring the decay constant of a system, which involves accumulating daughter nuclides. Unfortunately for nuclides with high decay constants (which are useful for dating very old samples), long periods of time (decades) are required to accumulate enough decay products in a single sample to accurately measure them. A faster method involves using particle counters to determine alpha, beta or gamma activity, and then dividing that by the number of radioactive nuclides. However, it is challenging and expensive to accurately determine the number of radioactive nuclides. Alternatively, decay constants can be determined by comparing isotope data for rocks of known age. This method requires at least one of the isotope systems to be very precisely calibrated, such as the
1766: 1738: 393:, resetting the isotopic "clock" to zero. As the mineral cools, the crystal structure begins to form and diffusion of isotopes is less easy. At a certain temperature, the crystal structure has formed sufficiently to prevent diffusion of isotopes. Thus an igneous or metamorphic rock or melt, which is slowly cooling, does not begin to exhibit measurable radioactive decay until it cools below the closure temperature. The age that can be calculated by radiometric dating is thus the time at which the rock or mineral cooled to closure temperature. This temperature varies for every mineral and isotopic system, so a system can be 145: 3066: 913:, and animals acquire it from consumption of plants and other animals. When an organism dies, it ceases to take in new carbon-14, and the existing isotope decays with a characteristic half-life (5730 years). The proportion of carbon-14 left when the remains of the organism are examined provides an indication of the time elapsed since its death. This makes carbon-14 an ideal dating method to date the age of bones or the remains of an organism. The carbon-14 dating limit lies around 58,000 to 62,000 years. 323: 251:, eventually ending with the formation of a stable (nonradioactive) daughter nuclide; each step in such a chain is characterized by a distinct half-life. In these cases, usually the half-life of interest in radiometric dating is the longest one in the chain, which is the rate-limiting factor in the ultimate transformation of the radioactive nuclide into its stable daughter. Isotopic systems that have been exploited for radiometric dating have half-lives ranging from only about 10 years (e.g., 1752: 1056:. The radiation causes charge to remain within the grains in structurally unstable "electron traps". Exposure to sunlight or heat releases these charges, effectively "bleaching" the sample and resetting the clock to zero. The trapped charge accumulates over time at a rate determined by the amount of background radiation at the location where the sample was buried. Stimulating these mineral grains using either light ( 640: 864: 803:. Closure temperatures are so high that they are not a concern. Rubidium-strontium dating is not as precise as the uranium–lead method, with errors of 30 to 50 million years for a 3-billion-year-old sample. Application of in situ analysis (Laser-Ablation ICP-MS) within single mineral grains in faults have shown that the Rb-Sr method can be used to decipher episodes of fault movement. 955: 338:. Precision is enhanced if measurements are taken on multiple samples from different locations of the rock body. Alternatively, if several different minerals can be dated from the same sample and are assumed to be formed by the same event and were in equilibrium with the reservoir when they formed, they should form an 291:, whose decay rate may be affected by local electron density. For all other nuclides, the proportion of the original nuclide to its decay products changes in a predictable way as the original nuclide decays over time. This predictability allows the relative abundances of related nuclides to be used as a 1156:
At the beginning of the solar system, there were several relatively short-lived radionuclides like Al, Fe, Mn, and I present within the solar nebula. These radionuclides—possibly produced by the explosion of a supernova—are extinct today, but their decay products can be detected in very old material,
388:
The closure temperature or blocking temperature represents the temperature below which the mineral is a closed system for the studied isotopes. If a material that selectively rejects the daughter nuclide is heated above this temperature, any daughter nuclides that have been accumulated over time will
1152:
Absolute radiometric dating requires a measurable fraction of parent nucleus to remain in the sample rock. For rocks dating back to the beginning of the solar system, this requires extremely long-lived parent isotopes, making measurement of such rocks' exact ages imprecise. To be able to distinguish
365:
Accurate radiometric dating generally requires that the parent has a long enough half-life that it will be present in significant amounts at the time of measurement (except as described below under "Dating with short-lived extinct radionuclides"), the half-life of the parent is accurately known, and
1025:
between 1952 and 1958. The residence time of Cl in the atmosphere is about 1 week. Thus, as an event marker of 1950s water in soil and ground water, Cl is also useful for dating waters less than 50 years before the present. Cl has seen use in other areas of the geological sciences, including dating
373:
The precision of a dating method depends in part on the half-life of the radioactive isotope involved. For instance, carbon-14 has a half-life of 5,730 years. After an organism has been dead for 60,000 years, so little carbon-14 is left that accurate dating cannot be established. On the other hand,
1165:
and using isochronplots, it is possible to determine relative ages of different events in the early history of the solar system. Dating methods based on extinct radionuclides can also be calibrated with the U–Pb method to give absolute ages. Thus both the approximate age and a high time resolution
262:
For most radioactive nuclides, the half-life depends solely on nuclear properties and is essentially constant. This is known because decay constants measured by different techniques give consistent values within analytical errors and the ages of the same materials are consistent from one method to
333:
The basic equation of radiometric dating requires that neither the parent nuclide nor the daughter product can enter or leave the material after its formation. The possible confounding effects of contamination of parent and daughter isotopes have to be considered, as do the effects of any loss or
712:
One of its great advantages is that any sample provides two clocks, one based on uranium-235's decay to lead-207 with a half-life of about 700 million years, and one based on uranium-238's decay to lead-206 with a half-life of about 4.5 billion years, providing a built-in crosscheck that allows
309:
The radioactive decay constant, the probability that an atom will decay per year, is the solid foundation of the common measurement of radioactivity. The accuracy and precision of the determination of an age (and a nuclide's half-life) depends on the accuracy and precision of the decay constant
401:
for another. Dating of different minerals and/or isotope systems (with differing closure temperatures) within the same rock can therefore enable the tracking of the thermal history of the rock in question with time, and thus the history of metamorphic events may become known in detail. These
662:
involves using uranium-235 or uranium-238 to date a substance's absolute age. This scheme has been refined to the point that the error margin in dates of rocks can be as low as less than two million years in two-and-a-half billion years. An error margin of 2–5% has been achieved on younger
1067:
These methods can be used to date the age of a sediment layer, as layers deposited on top would prevent the grains from being "bleached" and reset by sunlight. Pottery shards can be dated to the last time they experienced significant heat, generally when they were fired in a kiln.
366:
enough of the daughter product is produced to be accurately measured and distinguished from the initial amount of the daughter present in the material. The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate. This normally involves
885:
is also simply called carbon-14 dating. Carbon-14 is a radioactive isotope of carbon, with a half-life of 5,730 years (which is very short compared with the above isotopes), and decays into nitrogen. In other radiometric dating methods, the heavy parent isotopes were produced by
817:
A relatively short-range dating technique is based on the decay of uranium-234 into thorium-230, a substance with a half-life of about 80,000 years. It is accompanied by a sister process, in which uranium-235 decays into protactinium-231, which has a half-life of 32,760 years.
2512:
Manyeruke, Tawanda D.; Thomas G. Blenkinsop; Peter Buchholz; David Love; Thomas OberthĂŒr; Ulrich K. Vetter; Donald W. Davis (2004). "The age and petrology of the Chimbadzi Hill Intrusion, NW Zimbabwe: first evidence for early Paleoproterozoic magmatism in Zimbabwe".
1008:
which have a variable amount of uranium content. Because the fission tracks are healed by temperatures over about 200 Â°C the technique has limitations as well as benefits. The technique has potential applications for detailing the thermal history of a deposit.
697:, but strongly reject lead. Zircon has a very high closure temperature, is resistant to mechanical weathering and is very chemically inert. Zircon also forms multiple crystal layers during metamorphic events, which each may record an isotopic age of the event. 2928:
Jacobs, J.; R. J. Thomas (August 2001). "A titanite fission track profile across the southeastern ArchĂŠan Kaapvaal Craton and the Mesoproterozoic Natal Metamorphic Province, South Africa: evidence for differential cryptic Meso- to Neoproterozoic tectonism".
713:
accurate determination of the age of the sample even if some of the lead has been lost. This can be seen in the concordia diagram, where the samples plot along an errorchron (straight line) which intersects the concordia curve at the age of the sample.
973:. This causes induced fission of U, as opposed to the spontaneous fission of U. The fission tracks produced by this process are recorded in the plastic film. The uranium content of the material can then be calculated from the number of tracks and the 2476:
OberthĂŒr, Thomas; Davis, Donald W.; Blenkinsop, Thomas G.; Höhndorf, Axel (2002). "Precise U–Pb mineral ages, Rb–Sr and Sm–Nd systematics for the Great Dyke, Zimbabwe—constraints on late Archean events in the Zimbabwe craton and Limpopo belt".
589:. This is well established for most isotopic systems. However, construction of an isochron does not require information on the original compositions, using merely the present ratios of the parent and daughter isotopes to a standard isotope. An 625:," depending on their mass and level of ionization. On impact in the cups, the ions set up a very weak current that can be measured to determine the rate of impacts and the relative concentrations of different atoms in the beams. 1064:) causes a luminescence signal to be emitted as the stored unstable electron energy is released, the intensity of which varies depending on the amount of radiation absorbed during burial and specific properties of the mineral. 2548:
Li, Xian-hua; Liang, Xi-rong; Sun, Min; Guan, Hong; Malpas, J. G. (2001). "Precise Pb/U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation".
2100:
Begemann, F.; Ludwig, K.R.; Lugmair, G.W.; Min, K.; Nyquist, L.E.; Patchett, P.J.; Renne, P.R.; Shih, C.-Y.; Villa, I.M.; Walker, R.J. (January 2001). "Call for an improved set of decay constants for geochronological use".
1722:, the authors proposed that the terms "parent isotope" and "daughter isotope" be avoided in favor of the more descriptive "precursor isotope" and "product isotope", analogous to "precursor ion" and "product ion" in 1153:
the relative ages of rocks from such old material, and to get a better time resolution than that available from long-lived isotopes, short-lived isotopes that are no longer present in the rock can be used.
418: 2893: 243:, usually given in units of years when discussing dating techniques. After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or 354:
is used which also decreases the problem of nuclide loss. Finally, correlation between different isotopic dating methods may be required to confirm the age of a sample. For example, the age of the
969:
of uranium-238 impurities. The uranium content of the sample has to be known, but that can be determined by placing a plastic film over the polished slice of the material, and bombarding it with
4284: 916:
The rate of creation of carbon-14 appears to be roughly constant, as cross-checks of carbon-14 dating with other dating methods show it gives consistent results. However, local eruptions of
2136:
Stewart, Kathy; Turner, Simon; Kelley, Simon; Hawkesworth, Chris; Kirstein, Linda; Mantovani, Marta (1996). "3-D, Ar-Ar geochronology in the ParanĂĄ continental flood basalt province".
655:. All the samples show loss of lead isotopes, but the intercept of the errorchron (straight line through the sample points) and the concordia (curve) shows the correct age of the rock. 334:
gain of such isotopes since the sample was created. It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of
890:
in supernovas, meaning that any parent isotope with a short half-life should be extinct by now. Carbon-14, though, is continuously created through collisions of neutrons generated by
2439:
Vinyu, M. L.; R. E. Hanson; M. W. Martin; S. A. Bowring; H. A. Jelsma; P. H. G. M. Dirks (2001). "U–Pb zircon ages from a craton-margin archaean orogenic belt in northern Zimbabwe".
3065:
Application of the authigenic 10 Be/ 9 Be dating method to Late Miocene–Pliocene sequences in the northern Danube Basin;Michal Ơujan – Global and Planetary Change 137 (2016) 35–53;
425:
isochrons plotted of meteorite samples. The age is calculated from the slope of the isochron (line) and the original composition from the intercept of the isochron with the y-axis.
920:
or other events that give off large amounts of carbon dioxide can reduce local concentrations of carbon-14 and give inaccurate dates. The releases of carbon dioxide into the
757:
decay of potassium-40 to argon-40. Potassium-40 has a half-life of 1.3 billion years, so this method is applicable to the oldest rocks. Radioactive potassium-40 is common in
2654:
Mukasa, S. B.; A. H. Wilson; R. W. Carlson (December 1998). "A multielement geochronologic study of the Great Dyke, Zimbabwe: significance of the robust and reset ages".
1944:
Pommé, S.; Stroh, H.; Altzitzoglou, T.; Paepen, J.; Van Ammel, R.; Kossert, K.; NÀhle, O.; Keightley, J. D.; Ferreira, K. M.; Verheyen, L.; Bruggeman, M. (1 April 2018).
1823: 1040:
Luminescence dating methods are not radiometric dating methods in that they do not rely on abundances of isotopes to calculate age. Instead, they are a consequence of
2754: 1708:
chronometer gives an estimate of the time period for formation of primitive meteorites of only a few million years (1.4 million years for Chondrule formation).
1223:. The iodine-xenon chronometer is an isochron technique. Samples are exposed to neutrons in a nuclear reactor. This converts the only stable isotope of iodine ( 3987: 3663: 1317:
ratio is observed across several consecutive temperature steps, it can be interpreted as corresponding to a time at which the sample stopped losing xenon.
613:. In the century since then the techniques have been greatly improved and expanded. Dating can now be performed on samples as small as a nanogram using a 362:(billion years ago) using uranium–lead dating and 3.56 ± 0.10 Ga (billion years ago) using lead–lead dating, results that are consistent with each other. 585:
The above equation makes use of information on the composition of parent and daughter isotopes at the time the material being tested cooled below its
1804: 374:
the concentration of carbon-14 falls off so steeply that the age of relatively young remains can be determined precisely to within a few decades.
617:. The mass spectrometer was invented in the 1940s and began to be used in radiometric dating in the 1950s. It operates by generating a beam of 1765: 3403: 3384: 3346: 2985: 2337: 2291: 1928: 3434: 326: 131:
Different methods of radiometric dating vary in the timescale over which they are accurate and the materials to which they can be applied.
659: 621:
from the sample under test. The ions then travel through a magnetic field, which diverts them into different sampling sensors, known as "
204:
and spontaneously transform into a different nuclide. This transformation may be accomplished in a number of different ways, including
3781: 3365: 2894:"Cosmic background reduction in the radiocarbon measurement by scintillation spectrometry at the underground laboratory of Gran Sasso" 235:
While the moment in time at which a particular nucleus decays is unpredictable, a collection of atoms of a radioactive nuclide decays
928:
have also depressed the proportion of carbon-14 by a few percent; in contrast, the amount of carbon-14 was increased by above-ground
3982: 3578: 3225: 3086: 2441: 2205: 2180: 1057: 3618: 1999: 2584:
Wingate, M.T.D. (2001). "SHRIMP baddeleyite and zircon ages for an Umkondo dolerite sill, Nyanga Mountains, Eastern Zimbabwe".
2390: 706: 367: 4028: 1320:
Samples of a meteorite called Shallowater are usually included in the irradiation to monitor the conversion efficiency from
778: 722: 422: 116:. By allowing the establishment of geological timescales, it provides a significant source of information about the ages of 1428:
when they each stopped losing xenon. This in turn corresponds to a difference in age of closure in the early solar system.
735:
of 1.06 x 10 years. Accuracy levels of within twenty million years in ages of two-and-a-half billion years are achievable.
3776: 965:
This involves inspection of a polished slice of a material to determine the density of "track" markings left in it by the
769:, though the closure temperature is fairly low in these materials, about 350 Â°C (mica) to 500 Â°C (hornblende). 3771: 3203:
Alexander N. Krot(2002) Dating the Earliest Solids in our Solar System, Hawai'i Institute of Geophysics and Planetology
2758: 2279: 398: 1110: 1104: 4279: 3961: 3831: 2404:
Stacey, J. S.; J. D. Kramers (June 1975). "Approximation of terrestrial lead isotope evolution by a two-stage model".
837:, from which their ratios are measured. The scheme has a range of several hundred thousand years. A related method is 144: 2362: 1128: 812: 744: 109: 65:
products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by
1855:"The Ultimate Disintegration Products of the Radio-active Elements. Part II. The disintegration products of uranium" 4171: 4151: 1919:
Bernard-Griffiths, J.; Groan, G. (1989). "The samarium–neodymium method". In Roth, Etienne; Poty, Bernard (eds.).
1122: 838: 4161: 4133: 3745: 1061: 2966:"The Application of Fission-Track Dating to the Depositional and Thermal History of Rocks in Sedimentary Basins" 593:
is used to solve the age equation graphically and calculate the age of the sample and the original composition.
200:. Some nuclides are inherently unstable. That is, at some point in time, an atom of such a nuclide will undergo 57:
were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring
4228: 3427: 2689:
Tillberg, Mikael; Drake, Henrik; Zack, Thomas; Kooijman, Ellen; Whitehouse, Martin J.; Åström, Mats E. (2020).
4116: 3290: 1166:
can be obtained. Generally a shorter half-life leads to a higher time resolution at the expense of timescale.
1086: 898:
and thus remains at a near-constant level on Earth. The carbon-14 ends up as a trace component in atmospheric
644: 634: 347: 113: 2820: 1952:. ICRM 2017 Proceedings of the 21st International Conference on Radionuclide Metrology and its Applications. 1092: 4166: 3903: 3750: 2088: 1789: 1134: 988:(glass fragments from volcanic eruptions), and meteorites are best used. Older materials can be dated using 164:. The final decay product, lead-208 (Pb), is stable and can no longer undergo spontaneous radioactive decay. 152:
from lead-212 (Pb) to lead-208 (Pb) . Each parent nuclide spontaneously decays into a daughter nuclide (the
1080: 4066: 3867: 3613: 3512: 690: 322: 86: 3668: 1743: 693:). Zircon and baddeleyite incorporate uranium atoms into their crystalline structure as substitutes for 304: 4101: 1098: 311: 4042: 4018: 4013: 3326: 3250: 3186: 3145: 3014: 2938: 2839: 2702: 2663: 2593: 2558: 2522: 2486: 2450: 2413: 2233: 2145: 2110: 2049: 2008: 1957: 1866: 1784: 1718: 1041: 980:
This scheme has application over a wide range of geologic dates. For dates up to a few million years
949: 355: 42: 295:
to measure the time from the incorporation of the original nuclides into a material to the present.
4128: 4023: 3966: 3941: 3931: 3706: 3603: 3593: 3420: 1907: 1035: 966: 586: 383: 229: 101: 4253: 4233: 4111: 4081: 4003: 3802: 3766: 3568: 3309: 3268: 3048: 2965: 2801: 2736: 2636: 2369: 2067: 1882: 1278: 1053: 1045: 882: 858: 648: 105: 4061: 3857: 3852: 3696: 3532: 3399: 3380: 3361: 3342: 3221: 3082: 3040: 2981: 2728: 2343: 2333: 2297: 2287: 2201: 2176: 1975: 1924: 1757: 1751: 1723: 1519: 1162: 1021:(half-life ~300ky) were produced by irradiation of seawater during atmospheric detonations of 925: 614: 606: 351: 236: 201: 62: 3305: 4258: 4207: 4123: 4071: 3847: 3825: 3691: 3588: 3334: 3301: 3258: 3153: 3149: 3114: 3030: 3022: 2973: 2946: 2908: 2847: 2793: 2718: 2710: 2671: 2667: 2628: 2601: 2566: 2530: 2494: 2458: 2421: 2417: 2251: 2241: 2153: 2149: 2118: 2057: 2016: 1965: 1874: 1837: 970: 895: 796: 750: 610: 602: 407: 225: 173: 66: 4106: 1116: 4191: 4156: 4143: 4053: 3911: 3806: 3740: 3701: 3538: 3375:
McSween, Harry Y; Richardson, Steven Mcafee; Uhle, Maria E; Uhle, Professor Maria (2003).
2619:
Ireland, Trevor (December 1999). "Isotope Geochemistry: New Tools for Isotopic Analysis".
2276:
Principles and applications of geochemistry: a comprehensive textbook for geology students
887: 590: 339: 279:. The only exceptions are nuclides that decay by the process of electron capture, such as 70: 2867: 940:
above the current value would depress the amount of carbon-14 created in the atmosphere.
867: 3330: 3254: 3190: 3174: 3018: 2942: 2843: 2706: 2597: 2562: 2526: 2490: 2454: 2237: 2114: 2053: 2021: 2012: 1994: 1961: 1870: 909:
A carbon-based life form acquires carbon during its lifetime. Plants acquire it through
4091: 3889: 3877: 3821: 3816: 3810: 3735: 3658: 3583: 3158: 3133: 3099: 3035: 3002: 2723: 2690: 1901:
Radiometric Dating and the Geological Time Scale: Circular Reasoning or Reliable Tools?
1771: 1022: 937: 910: 899: 846: 530: 276: 272: 209: 185: 46: 3204: 2950: 2675: 2570: 2498: 2462: 2122: 639: 4273: 4008: 3926: 3921: 3872: 3862: 3623: 3502: 3313: 3272: 2805: 2740: 2640: 2534: 2425: 2386: 2283: 2157: 1886: 1794: 1779: 878:
were dated at 56 CE using the carbon-14 method on organic material found at the site.
560: 394: 343: 244: 177: 153: 97: 3263: 3238: 2781: 1833: 1518:
of 720 000 years. The dating is simply a question of finding the deviation from the
574:
is known to high precision, and one has accurate and precise measurements of D* and
4086: 3884: 3598: 3573: 3558: 3524: 3484: 3052: 2071: 1970: 1945: 1438: 974: 929: 830: 792: 788: 335: 288: 284: 256: 93: 82: 78: 58: 2632: 486:
is number of atoms of the daughter isotope in the original or initial composition,
2977: 1392:
ratios of the sample and Shallowater then corresponds to the different ratios of
3786: 3683: 3645: 3628: 3563: 3544: 3477: 3457: 1828: 1048:
is absorbed by mineral grains in sediments and archaeological materials such as
1018: 891: 784: 728: 682: 622: 280: 264: 248: 205: 157: 149: 125: 3118: 3003:"Ancient biomolecules from deep ice cores reveal a forested southern Greenland" 2714: 863: 429:
The mathematical expression that relates radioactive decay to geologic time is
17: 3553: 3548: 3443: 2913: 2852: 2821:"The ~2400-year cycle in atmospheric radiocarbon concentration: Bispectrum of 2797: 2246: 2221: 1903: 1733: 1175: 933: 766: 541:
The equation is most conveniently expressed in terms of the measured quantity
213: 161: 2892:
Plastino, Wolfango; Lauri Kaihola; Paolo Bartolomei; Francesco Bella (2001).
1878: 1832:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 4243: 4223: 3956: 3916: 3653: 3462: 3338: 3026: 2347: 2301: 1841: 1799: 1515: 1475: 1277:). After irradiation, samples are heated in a series of steps and the xenon 1158: 1140: 954: 921: 800: 732: 694: 534: 403: 390: 359: 247:. In many cases, the daughter nuclide itself is radioactive, resulting in a 240: 121: 3044: 2732: 2691:"In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults" 1979: 3179:
Press Abstracts from the Nineteenth Lunar and Planetary Science Conference
4238: 4076: 3720: 3633: 997: 932:
tests that were conducted into the early 1960s. Also, an increase in the
834: 762: 754: 686: 664: 652: 268: 221: 217: 196:
in the nucleus. A particular isotope of a particular element is called a
54: 3132:
Gilmour, J. D.; O. V Pravdivtseva; A. Busfield; C. M. Hohenberg (2006).
791:, with a half-life of 50 billion years. This scheme is used to date old 4248: 3472: 3467: 2329: 1001: 993: 985: 958: 917: 826: 822: 671: 252: 197: 193: 189: 74: 2757:. The Swedish National Heritage Board. 11 October 2006. Archived from 2256: 2605: 2325: 2062: 2037: 1049: 1005: 989: 875: 842: 702: 674: 181: 169: 117: 50: 1854: 475:
is number of atoms of the radiogenic daughter isotope in the sample,
3098:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
2222:"INTCAL04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP" 833:
are not, and so they are selectively precipitated into ocean-floor
563:(neither parent nor daughter isotopes have been lost from system), 3673: 3173:
Hutcheon, I. D.; Hutchison, R.; Wasserburg, G. J. (1 March 1988).
2200:(2nd ed.). Cambridge: Cambridge Univ. Press. pp. 15–49. 1436:
Another example of short-lived extinct radionuclide dating is the
1161:. By measuring the decay products of extinct radionuclides with a 953: 871: 862: 638: 417: 321: 292: 143: 85:
itself, and can also be used to date a wide range of natural and
3607: 3489: 2322:
Using geochemical data: evaluation, presentation, interpretation
1474:
chronometer, which can be used to estimate the relative ages of
981: 758: 3416: 2038:"Direct test of the constancy of fundamental nuclear constants" 1281:
of the gas evolved in each step is analysed. When a consistent
1148:
Dating with decay products of short-lived extinct radionuclides
601:
Radiometric dating has been carried out since 1905 when it was
533:
of the parent isotope, equal to the inverse of the radioactive
499:
is number of atoms of the parent isotope in the sample at time
3507: 618: 3412: 3321:
Magill, Joseph; Galy, Jean (2005). "Archaeology and Dating".
192:, with each isotope of an element differing in the number of 3175:"Evidence of In-situ Decay of 26Al in a Semarkona Chondrule" 1558:
decay) in comparison with the ratio of the stable isotopes
570:
either must be negligible or can be accurately estimated,
406:
using a high-temperature furnace. This field is known as
402:
temperatures are experimentally determined in the lab by
69:
and is now the principal source of information about the
2964:
Naeser, Nancy; Naeser, Charles; McCulloh, Thane (1989).
263:
another. It is not affected by external factors such as
27:
Technique used to date materials such as rocks or carbon
559:
To calculate the age, it is assumed that the system is
537:
of the parent isotope times the natural logarithm of 2.
1060:
or infrared stimulated luminescence dating) or heat (
681:), though it can be used on other materials, such as 3394:
Harry y. Mcsween, Jr; Huss, Gary R (29 April 2010).
4216: 4200: 4184: 4142: 4052: 4041: 3996: 3988:
Global Boundary Stratotype Section and Point (GSSP)
3975: 3949: 3940: 3902: 3840: 3795: 3759: 3728: 3719: 3682: 3644: 3523: 3498: 3450: 3205:
http://www.psrd.hawaii.edu/Sept02/isotopicAges.html
3237:Pourret, Olivier; Johannesson, Karen (July 2022). 870:at KĂ„seberga, around ten kilometres south east of 4285:Conservation and restoration of cultural heritage 3134:"The I-Xe Chronometer and the Early Solar System" 3100:"The NUBASE2020 evaluation of nuclear properties" 961:crystals are widely used in fission track dating. 3325:. Springer Berlin Heidelberg. pp. 105–115. 1904:Radiometric Dating and the Geological Time Scale 239:at a rate described by a parameter known as the 188:. Additionally, elements may exist in different 124:change. Radiometric dating is also used to date 1669:ratio to that of other Solar System materials. 1259:via neutron capture followed by beta decay (of 3220:, page 322. Cambridge University Press, 2001. 3081:, page 321. Cambridge University Press, 2001. 701:micro-beam analysis can be achieved via laser 670:Uranium–lead dating is often performed on the 3428: 609:as a method by which one might determine the 8: 2968:. In Naeser, Nancy; McCulloh, Thane (eds.). 2363:"Basics of Radioactive Isotope Geochemistry" 2315: 2313: 2311: 61:within the material to the abundance of its 3291:"Radioactivity: A Tool to Explore the Past" 2782:"A calibration curve for radiocarbon dates" 4049: 3946: 3725: 3520: 3435: 3421: 3413: 3239:"Radiogenic isotope: Not just about words" 2175:. Stanford, Calif.: Stanford Univ. Press. 3379:(2 ed.). Columbia University Press. 3262: 3157: 3034: 2912: 2851: 2819:Vasiliev, S. S.; V. A. Dergachev (2002). 2722: 2255: 2245: 2061: 2020: 1969: 549:) rather than the constant initial value 271:, chemical environment, or presence of a 96:, radiometric dating methods are used in 3983:Global Standard Stratigraphic Age (GSSA) 3306:10.1524/ract.1995.7071.special-issue.305 2269: 2267: 1923:. Springer Netherlands. pp. 53–72. 1805:Sensitive high-resolution ion microprobe 128:materials, including ancient artifacts. 2972:. Springer New York. pp. 157–180. 2387:"Geologic Time: Radiometric Time Scale" 2381: 2379: 1816: 356:Amitsoq gneisses from western Greenland 1356:. The difference between the measured 1176:Iodine-129 § Meteorite age dating 404:artificially resetting sample minerals 104:. Among the best-known techniques are 3356:AllĂšgre, Claude J (4 December 2008). 3323:Radioactivity Radionuclides Radiation 2970:Thermal History of Sedimentary Basins 1995:"Perturbation of Nuclear Decay Rates" 7: 3377:Geochemistry: Pathways and Processes 3216:Imke de Pater and Jack J. Lissauer: 3077:Imke de Pater and Jack J. Lissauer: 1716:In a July 2022 paper in the journal 327:Thermal ionization mass spectrometer 2656:Earth and Planetary Science Letters 2406:Earth and Planetary Science Letters 2138:Earth and Planetary Science Letters 2022:10.1146/annurev.ns.22.120172.001121 783:This is based on the beta decay of 255:) to over 100 billion years (e.g., 3782:Adoption of the Gregorian calendar 3159:10.1111/j.1945-5100.2006.tb00190.x 1829:Compendium of Chemical Terminology 25: 3138:Meteoritics and Planetary Science 2931:Journal of African Earth Sciences 2515:Journal of African Earth Sciences 2442:Journal of African Earth Sciences 2086:How to Change Nuclear Decay Rates 1058:optically stimulated luminescence 799:, and has also been used to date 358:was determined to be 3.60 ± 0.05 342:. This can reduce the problem of 2586:South African Journal of Geology 2535:10.1016/j.jafrearsci.2004.12.003 2000:Annual Review of Nuclear Science 1764: 1750: 1736: 1044:on certain minerals. Over time, 1017:Large amounts of otherwise rare 845:(thorium-230) to thorium-232 in 773:Rubidium–strontium dating method 717:Samarium–neodymium dating method 41:is a technique which is used to 3664:English and British regnal year 3264:10.1016/j.apgeochem.2022.105348 2391:United States Geological Survey 2103:Geochimica et Cosmochimica Acta 1157:such as that which constitutes 660:Uranium–lead radiometric dating 643:A concordia diagram as used in 368:isotope-ratio mass spectrometry 3398:. Cambridge University Press. 3360:. Cambridge University Press. 2825:data over the last 8000 years" 1971:10.1016/j.apradiso.2017.09.002 1950:Applied Radiation and Isotopes 841:, which measures the ratio of 318:Accuracy of radiometric dating 172:is made up of combinations of 1: 3777:Old Style and New Style dates 2951:10.1016/S0899-5362(01)80066-X 2676:10.1016/S0012-821X(98)00228-3 2633:10.1126/science.286.5448.2289 2571:10.1016/S0009-2541(00)00394-6 2499:10.1016/S0301-9268(01)00215-7 2463:10.1016/S0899-5362(01)90021-1 2123:10.1016/s0016-7037(00)00512-3 1633:*) is found by comparing the 807:Uranium–thorium dating method 739:Potassium–argon dating method 53:, in which trace radioactive 3729:Pre-Julian / Julian 3289:Gunten, Hans R. von (1995). 2978:10.1007/978-1-4612-3492-0_10 2426:10.1016/0012-821X(75)90088-6 2280:Englewood Cliffs, New Jersey 2171:Dalrymple, G. Brent (1994). 2158:10.1016/0012-821X(96)00132-X 299:Decay constant determination 3962:Geological history of Earth 3832:Astronomical year numbering 2320:Rollinson, Hugh R. (1993). 1859:American Journal of Science 1030:Luminescence dating methods 944:Fission track dating method 329:used in radiometric dating. 232:into two or more nuclides. 180:, indicating the number of 4301: 2715:10.1038/s41598-019-57262-5 2198:Radiogenic isotope geology 2036:Shlyakhter, A. I. (1976). 1853:Boltwood, Bertram (1907). 1173: 1033: 947: 856: 810: 776: 742: 720: 632: 629:Uranium–lead dating method 381: 302: 228:). Another possibility is 4134:Thermoluminescence dating 4029:Samarium–neodymium dating 2914:10.1017/S0033822200037954 2853:10.5194/angeo-20-115-2002 2798:10.1017/S0003598X00070277 2247:10.1017/S0033822200032999 1921:Nuclear Methods of Dating 1062:thermoluminescence dating 1013:Chlorine-36 dating method 853:Radiocarbon dating method 779:Rubidium–strontium dating 723:Samarium–neodymium dating 148:Example of a radioactive 120:and the deduced rates of 3848:Chinese sexagenary cycle 3119:10.1088/1674-1137/abddae 2196:Dickin, Alan P. (2008). 1879:10.2475/ajs.s4-23.134.78 503:(the present), given by 94:stratigraphic principles 4062:Amino acid racemisation 3339:10.1007/3-540-26881-2_6 3300:. 70–71 (s1): 305–413. 3150:2006M&PS...41...19G 3027:10.1126/science.1141758 3001:Willerslev, E. (2007). 2668:1998E&PSL.164..353M 2418:1975E&PSL..26..207S 2150:1996E&PSL.143...95S 1842:10.1351/goldbook.R05082 1790:Paleopedological record 1432:The Al – Mg chronometer 1221:0.12 million years 1111:Hafnium–tungsten dating 1076:Other methods include: 77:, including the age of 4067:Archaeomagnetic dating 3579:Era of Caesar (Iberia) 2274:Faure, Gunter (1998). 2232:(3): 1029–1058. 2004. 1170:The I – Xe chronometer 962: 879: 813:Uranium–thorium dating 745:Potassium–argon dating 691:monazite geochronology 656: 426: 410:or thermochronometry. 330: 165: 110:potassium–argon dating 3967:Geological time units 2780:Clark, R. M. (1975). 2361:White, W. M. (2003). 1744:Earth sciences portal 957: 894:with nitrogen in the 866: 839:ionium–thorium dating 647:, with data from the 642: 597:Modern dating methods 466:is age of the sample, 421: 325: 305:Radioactive decay law 147: 79:fossilized life forms 4019:Law of superposition 4014:Isotope geochemistry 3243:Applied Geochemistry 2479:Precambrian Research 2173:The age of the earth 2084:Johnson, B. (1993). 1946:"Is decay constant?" 1785:Isotope geochemistry 1719:Applied Geochemistry 1215:with a half-life of 1042:background radiation 950:fission track dating 924:as a consequence of 397:for one mineral but 176:, each with its own 4152:Fluorine absorption 4129:Luminescence dating 4024:Luminescence dating 3932:Milankovitch cycles 3772:Proleptic Gregorian 3604:Hindu units of time 3331:2005rrr..book.....M 3255:2022ApGC..14205348P 3191:1988LPICo.650...14H 3019:2007Sci...317..111W 2943:2001JAfES..33..323J 2844:2002AnGeo..20..115V 2832:Annales Geophysicae 2707:2020NatSR..10..562T 2627:(5448): 2289–2290. 2598:2001SAJG..104...13W 2563:2001ChGeo.175..209L 2527:2004JAfES..40..281M 2491:2002PreR..113..293O 2455:2001JAfES..32..103V 2238:2004Radcb..46.1029. 2115:2001GeCoA..65..111B 2054:1976Natur.264..340S 2013:1972ARNPS..22..165E 1993:Emery, G T (1972). 1962:2018AppRI.134....6P 1908:TalkOrigins Archive 1871:1907AmJS...23...78B 1712:A terminology issue 1036:Luminescence dating 1026:ice and sediments. 967:spontaneous fission 731:of Sm to Nd with a 645:uranium–lead dating 635:Uranium–lead dating 587:closure temperature 384:Closure temperature 378:Closure temperature 348:uranium–lead dating 230:spontaneous fission 114:uranium–lead dating 102:geologic time scale 75:geological features 73:of rocks and other 59:radioactive isotope 39:radioisotope dating 4280:Radiometric dating 4254:Terminus post quem 4234:Synchronoptic view 4201:Linguistic methods 4162:Obsidian hydration 4097:Radiometric dating 4082:Incremental dating 4004:Chronostratigraphy 3218:Planetary Sciences 3079:Planetary Sciences 2868:"Carbon-14 Dating" 2695:Scientific Reports 2370:Cornell University 2089:Usenet Physics FAQ 1834:radioactive dating 1615:(often designated 1279:isotopic signature 1054:potassium feldspar 1046:ionizing radiation 963: 883:Radiocarbon dating 880: 859:Radiocarbon dating 825:is water-soluble, 727:This involves the 657: 427: 331: 166: 106:radiocarbon dating 87:man-made materials 45:materials such as 35:radioactive dating 31:Radiometric dating 4267: 4266: 4180: 4179: 4037: 4036: 3898: 3897: 3853:Geologic Calendar 3715: 3714: 3405:978-0-521-87862-3 3386:978-0-231-12440-9 3348:978-3-540-26881-9 3298:Radiochimica Acta 3107:Chinese Physics C 3013:(5834): 111–114. 2987:978-1-4612-8124-5 2872:www.chem.uwec.edu 2339:978-0-582-06701-1 2293:978-0-02-336450-1 1930:978-0-7923-0188-2 1758:Geophysics portal 1724:mass spectrometry 1520:natural abundance 1163:mass spectrometer 1117:Potassium–calcium 926:industrialization 797:metamorphic rocks 615:mass spectrometer 607:Ernest Rutherford 352:concordia diagram 202:radioactive decay 174:chemical elements 140:Radioactive decay 100:to establish the 16:(Redirected from 4292: 4259:ASPRO chronology 4208:Glottochronology 4124:Tephrochronology 4072:Dendrochronology 4050: 3947: 3746:Proleptic Julian 3736:Pre-Julian Roman 3726: 3521: 3437: 3430: 3423: 3414: 3409: 3390: 3371: 3352: 3317: 3295: 3277: 3276: 3266: 3234: 3228: 3214: 3208: 3201: 3195: 3194: 3170: 3164: 3163: 3161: 3129: 3123: 3122: 3104: 3095: 3089: 3075: 3069: 3063: 3057: 3056: 3038: 2998: 2992: 2991: 2961: 2955: 2954: 2925: 2919: 2918: 2916: 2898: 2889: 2883: 2882: 2880: 2878: 2864: 2858: 2857: 2855: 2829: 2816: 2810: 2809: 2792:(196): 251–266. 2777: 2771: 2770: 2768: 2766: 2761:on 31 March 2009 2751: 2745: 2744: 2726: 2686: 2680: 2679: 2662:(1–2): 353–369. 2651: 2645: 2644: 2616: 2610: 2609: 2606:10.2113/104.1.13 2581: 2575: 2574: 2557:(3–4): 209–219. 2551:Chemical Geology 2545: 2539: 2538: 2509: 2503: 2502: 2485:(3–4): 293–306. 2473: 2467: 2466: 2436: 2430: 2429: 2401: 2395: 2394: 2383: 2374: 2373: 2367: 2358: 2352: 2351: 2317: 2306: 2305: 2278:(2nd ed.). 2271: 2262: 2261: 2259: 2249: 2218: 2212: 2211: 2193: 2187: 2186: 2168: 2162: 2161: 2133: 2127: 2126: 2097: 2091: 2082: 2076: 2075: 2065: 2063:10.1038/264340a0 2033: 2027: 2026: 2024: 1990: 1984: 1983: 1973: 1941: 1935: 1934: 1916: 1910: 1899:McRae, A. 1998. 1897: 1891: 1890: 1850: 1844: 1821: 1774: 1769: 1768: 1760: 1755: 1754: 1746: 1741: 1740: 1739: 1707: 1706: 1705: 1698: 1697: 1689: 1688: 1687: 1680: 1679: 1668: 1667: 1666: 1659: 1658: 1650: 1649: 1648: 1641: 1640: 1632: 1631: 1630: 1623: 1622: 1614: 1613: 1612: 1605: 1604: 1593: 1592: 1591: 1584: 1583: 1575: 1574: 1573: 1566: 1565: 1557: 1556: 1555: 1548: 1547: 1540:(the product of 1539: 1538: 1537: 1530: 1529: 1513: 1512: 1511: 1504: 1503: 1495: 1494: 1493: 1486: 1485: 1473: 1472: 1471: 1464: 1463: 1455: 1453: 1452: 1445: 1444: 1427: 1426: 1425: 1418: 1417: 1409: 1408: 1407: 1400: 1399: 1391: 1390: 1389: 1382: 1381: 1373: 1372: 1371: 1364: 1363: 1355: 1354: 1353: 1346: 1345: 1337: 1336: 1335: 1328: 1327: 1316: 1315: 1314: 1307: 1306: 1298: 1297: 1296: 1289: 1288: 1276: 1275: 1274: 1267: 1266: 1258: 1257: 1256: 1249: 1248: 1240: 1239: 1238: 1231: 1230: 1222: 1220: 1214: 1213: 1212: 1205: 1204: 1196: 1195: 1194: 1187: 1186: 1105:Lutetium–hafnium 1093:Lanthanum–barium 896:upper atmosphere 751:electron capture 611:age of the Earth 528: 522: 498: 485: 474: 465: 456: 414:The age equation 408:thermochronology 389:be lost through 226:electron capture 67:Bertram Boltwood 21: 4300: 4299: 4295: 4294: 4293: 4291: 4290: 4289: 4270: 4269: 4268: 4263: 4212: 4196: 4192:Molecular clock 4185:Genetic methods 4176: 4157:Nitrogen dating 4144:Relative dating 4138: 4107:Potassium–argon 4054:Absolute dating 4044: 4033: 3992: 3971: 3936: 3912:Cosmic Calendar 3904:Astronomic time 3894: 3836: 3791: 3755: 3741:Original Julian 3711: 3678: 3640: 3539:Ab urbe condita 3517: 3494: 3446: 3441: 3406: 3393: 3387: 3374: 3368: 3358:Isotope Geology 3355: 3349: 3320: 3293: 3288: 3285: 3283:Further reading 3280: 3236: 3235: 3231: 3215: 3211: 3202: 3198: 3172: 3171: 3167: 3131: 3130: 3126: 3102: 3097: 3096: 3092: 3076: 3072: 3064: 3060: 3000: 2999: 2995: 2988: 2963: 2962: 2958: 2927: 2926: 2922: 2907:(2A): 157–161. 2896: 2891: 2890: 2886: 2876: 2874: 2866: 2865: 2861: 2827: 2818: 2817: 2813: 2779: 2778: 2774: 2764: 2762: 2753: 2752: 2748: 2688: 2687: 2683: 2653: 2652: 2648: 2618: 2617: 2613: 2583: 2582: 2578: 2547: 2546: 2542: 2511: 2510: 2506: 2475: 2474: 2470: 2438: 2437: 2433: 2403: 2402: 2398: 2393:. 16 June 2001. 2385: 2384: 2377: 2365: 2360: 2359: 2355: 2340: 2319: 2318: 2309: 2294: 2273: 2272: 2265: 2220: 2219: 2215: 2208: 2195: 2194: 2190: 2183: 2170: 2169: 2165: 2144:(1–4): 95–109. 2135: 2134: 2130: 2099: 2098: 2094: 2083: 2079: 2035: 2034: 2030: 1992: 1991: 1987: 1943: 1942: 1938: 1931: 1918: 1917: 1913: 1898: 1894: 1852: 1851: 1847: 1822: 1818: 1814: 1770: 1763: 1756: 1749: 1742: 1737: 1735: 1732: 1714: 1704: 1702: 1701: 1700: 1696: 1694: 1693: 1692: 1691: 1686: 1684: 1683: 1682: 1678: 1676: 1675: 1674: 1673: 1665: 1663: 1662: 1661: 1657: 1655: 1654: 1653: 1652: 1647: 1645: 1644: 1643: 1639: 1637: 1636: 1635: 1634: 1629: 1627: 1626: 1625: 1621: 1619: 1618: 1617: 1616: 1611: 1609: 1608: 1607: 1603: 1601: 1600: 1599: 1598: 1590: 1588: 1587: 1586: 1582: 1580: 1579: 1578: 1577: 1572: 1570: 1569: 1568: 1564: 1562: 1561: 1560: 1559: 1554: 1552: 1551: 1550: 1546: 1544: 1543: 1542: 1541: 1536: 1534: 1533: 1532: 1528: 1526: 1525: 1524: 1523: 1510: 1508: 1507: 1506: 1502: 1500: 1499: 1498: 1497: 1492: 1490: 1489: 1488: 1484: 1482: 1481: 1480: 1479: 1470: 1468: 1467: 1466: 1462: 1460: 1459: 1458: 1457: 1451: 1449: 1448: 1447: 1443: 1441: 1440: 1439: 1437: 1434: 1424: 1422: 1421: 1420: 1416: 1414: 1413: 1412: 1411: 1406: 1404: 1403: 1402: 1398: 1396: 1395: 1394: 1393: 1388: 1386: 1385: 1384: 1380: 1378: 1377: 1376: 1375: 1370: 1368: 1367: 1366: 1362: 1360: 1359: 1358: 1357: 1352: 1350: 1349: 1348: 1344: 1342: 1341: 1340: 1339: 1334: 1332: 1331: 1330: 1326: 1324: 1323: 1322: 1321: 1313: 1311: 1310: 1309: 1305: 1303: 1302: 1301: 1300: 1295: 1293: 1292: 1291: 1287: 1285: 1284: 1283: 1282: 1273: 1271: 1270: 1269: 1265: 1263: 1262: 1261: 1260: 1255: 1253: 1252: 1251: 1247: 1245: 1244: 1243: 1242: 1237: 1235: 1234: 1233: 1229: 1227: 1226: 1225: 1224: 1218: 1216: 1211: 1209: 1208: 1207: 1203: 1201: 1200: 1199: 1198: 1197:beta-decays to 1193: 1191: 1190: 1189: 1185: 1183: 1182: 1181: 1180: 1178: 1172: 1150: 1135:Krypton–krypton 1129:Uranium–uranium 1074: 1038: 1032: 1023:nuclear weapons 1015: 952: 946: 936:or the Earth's 905: 888:nucleosynthesis 861: 855: 815: 809: 781: 775: 747: 741: 725: 719: 680: 637: 631: 599: 569: 554: 526: 518: 504: 502: 489: 484: 478: 469: 463: 457: 442: 432: 416: 386: 380: 320: 307: 301: 210:alpha particles 142: 137: 28: 23: 22: 18:Isotopic dating 15: 12: 11: 5: 4298: 4296: 4288: 4287: 4282: 4272: 4271: 4265: 4264: 4262: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4229:New Chronology 4226: 4220: 4218: 4217:Related topics 4214: 4213: 4211: 4210: 4204: 4202: 4198: 4197: 4195: 4194: 4188: 4186: 4182: 4181: 4178: 4177: 4175: 4174: 4169: 4164: 4159: 4154: 4148: 4146: 4140: 4139: 4137: 4136: 4131: 4126: 4121: 4120: 4119: 4114: 4109: 4104: 4094: 4092:Paleomagnetism 4089: 4084: 4079: 4074: 4069: 4064: 4058: 4056: 4047: 4039: 4038: 4035: 4034: 4032: 4031: 4026: 4021: 4016: 4011: 4006: 4000: 3998: 3994: 3993: 3991: 3990: 3985: 3979: 3977: 3973: 3972: 3970: 3969: 3964: 3959: 3953: 3951: 3944: 3938: 3937: 3935: 3934: 3929: 3924: 3919: 3914: 3908: 3906: 3900: 3899: 3896: 3895: 3893: 3892: 3890:New Earth Time 3887: 3882: 3881: 3880: 3875: 3865: 3860: 3855: 3850: 3844: 3842: 3838: 3837: 3835: 3834: 3829: 3819: 3814: 3799: 3797: 3793: 3792: 3790: 3789: 3784: 3779: 3774: 3769: 3763: 3761: 3757: 3756: 3754: 3753: 3751:Revised Julian 3748: 3743: 3738: 3732: 3730: 3723: 3717: 3716: 3713: 3712: 3710: 3709: 3704: 3699: 3694: 3688: 3686: 3680: 3679: 3677: 3676: 3671: 3669:Lists of kings 3666: 3661: 3659:Canon of Kings 3656: 3650: 3648: 3642: 3641: 3639: 3638: 3637: 3636: 3631: 3626: 3621: 3611: 3601: 3596: 3591: 3586: 3584:Before present 3581: 3576: 3571: 3566: 3561: 3556: 3551: 3542: 3535: 3529: 3527: 3518: 3516: 3515: 3510: 3505: 3499: 3496: 3495: 3493: 3492: 3487: 3482: 3481: 3480: 3470: 3465: 3460: 3454: 3452: 3448: 3447: 3442: 3440: 3439: 3432: 3425: 3417: 3411: 3410: 3404: 3396:Cosmochemistry 3391: 3385: 3372: 3367:978-0521862288 3366: 3353: 3347: 3318: 3284: 3281: 3279: 3278: 3229: 3209: 3196: 3165: 3124: 3090: 3070: 3058: 2993: 2986: 2956: 2937:(2): 323–333. 2920: 2884: 2859: 2838:(1): 115–120. 2811: 2772: 2746: 2681: 2646: 2611: 2576: 2540: 2521:(5): 281–292. 2504: 2468: 2449:(1): 103–114. 2431: 2412:(2): 207–221. 2396: 2375: 2353: 2338: 2307: 2292: 2263: 2213: 2206: 2188: 2181: 2163: 2128: 2109:(1): 111–121. 2092: 2077: 2028: 2007:(1): 165–202. 1985: 1936: 1929: 1911: 1892: 1865:(134): 77–88. 1845: 1815: 1813: 1810: 1809: 1808: 1802: 1797: 1792: 1787: 1782: 1776: 1775: 1772:Physics portal 1761: 1747: 1731: 1728: 1713: 1710: 1703: 1695: 1685: 1677: 1664: 1656: 1646: 1638: 1628: 1620: 1610: 1602: 1597:The excess of 1589: 1581: 1571: 1563: 1553: 1545: 1535: 1527: 1509: 1501: 1491: 1483: 1469: 1461: 1450: 1442: 1433: 1430: 1423: 1415: 1405: 1397: 1387: 1379: 1369: 1361: 1351: 1343: 1333: 1325: 1312: 1304: 1294: 1286: 1272: 1264: 1254: 1246: 1236: 1228: 1210: 1202: 1192: 1184: 1171: 1168: 1149: 1146: 1145: 1144: 1138: 1132: 1126: 1123:Rhenium–osmium 1120: 1114: 1108: 1102: 1096: 1090: 1084: 1073: 1070: 1034:Main article: 1031: 1028: 1014: 1011: 948:Main article: 945: 942: 938:magnetic field 911:photosynthesis 903: 900:carbon dioxide 857:Main article: 854: 851: 847:ocean sediment 811:Main article: 808: 805: 777:Main article: 774: 771: 749:This involves 743:Main article: 740: 737: 721:Main article: 718: 715: 678: 633:Main article: 630: 627: 598: 595: 567: 552: 539: 538: 531:decay constant 524: 516: 500: 487: 482: 476: 467: 440: 431: 415: 412: 382:Main article: 379: 376: 319: 316: 300: 297: 277:electric field 186:atomic nucleus 141: 138: 136: 133: 126:archaeological 92:Together with 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4297: 4286: 4283: 4281: 4278: 4277: 4275: 4260: 4257: 4255: 4252: 4250: 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4221: 4219: 4215: 4209: 4206: 4205: 4203: 4199: 4193: 4190: 4189: 4187: 4183: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4150: 4149: 4147: 4145: 4141: 4135: 4132: 4130: 4127: 4125: 4122: 4118: 4115: 4113: 4110: 4108: 4105: 4103: 4100: 4099: 4098: 4095: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4059: 4057: 4055: 4051: 4048: 4046: 4043:Chronological 4040: 4030: 4027: 4025: 4022: 4020: 4017: 4015: 4012: 4010: 4009:Geochronology 4007: 4005: 4002: 4001: 3999: 3995: 3989: 3986: 3984: 3981: 3980: 3978: 3974: 3968: 3965: 3963: 3960: 3958: 3955: 3954: 3952: 3948: 3945: 3943: 3942:Geologic time 3939: 3933: 3930: 3928: 3927:Metonic cycle 3925: 3923: 3922:Galactic year 3920: 3918: 3915: 3913: 3910: 3909: 3907: 3905: 3901: 3891: 3888: 3886: 3883: 3879: 3876: 3874: 3871: 3870: 3869: 3866: 3864: 3863:ISO week date 3861: 3859: 3856: 3854: 3851: 3849: 3846: 3845: 3843: 3839: 3833: 3830: 3827: 3823: 3820: 3818: 3815: 3812: 3808: 3804: 3801: 3800: 3798: 3794: 3788: 3785: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3764: 3762: 3758: 3752: 3749: 3747: 3744: 3742: 3739: 3737: 3734: 3733: 3731: 3727: 3724: 3722: 3718: 3708: 3705: 3703: 3700: 3698: 3695: 3693: 3690: 3689: 3687: 3685: 3681: 3675: 3672: 3670: 3667: 3665: 3662: 3660: 3657: 3655: 3652: 3651: 3649: 3647: 3643: 3635: 3632: 3630: 3627: 3625: 3622: 3620: 3617: 3616: 3615: 3612: 3609: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3587: 3585: 3582: 3580: 3577: 3575: 3572: 3570: 3569:Byzantine era 3567: 3565: 3562: 3560: 3557: 3555: 3552: 3550: 3546: 3543: 3541: 3540: 3536: 3534: 3531: 3530: 3528: 3526: 3525:Calendar eras 3522: 3519: 3514: 3511: 3509: 3506: 3504: 3501: 3500: 3497: 3491: 3488: 3486: 3483: 3479: 3476: 3475: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3455: 3453: 3449: 3445: 3438: 3433: 3431: 3426: 3424: 3419: 3418: 3415: 3407: 3401: 3397: 3392: 3388: 3382: 3378: 3373: 3369: 3363: 3359: 3354: 3350: 3344: 3340: 3336: 3332: 3328: 3324: 3319: 3315: 3311: 3307: 3303: 3299: 3292: 3287: 3286: 3282: 3274: 3270: 3265: 3260: 3256: 3252: 3248: 3244: 3240: 3233: 3230: 3227: 3226:0-521-48219-4 3223: 3219: 3213: 3210: 3206: 3200: 3197: 3192: 3188: 3184: 3180: 3176: 3169: 3166: 3160: 3155: 3151: 3147: 3143: 3139: 3135: 3128: 3125: 3120: 3116: 3113:(3): 030001. 3112: 3108: 3101: 3094: 3091: 3088: 3087:0-521-48219-4 3084: 3080: 3074: 3071: 3068: 3062: 3059: 3054: 3050: 3046: 3042: 3037: 3032: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 2997: 2994: 2989: 2983: 2979: 2975: 2971: 2967: 2960: 2957: 2952: 2948: 2944: 2940: 2936: 2932: 2924: 2921: 2915: 2910: 2906: 2902: 2895: 2888: 2885: 2873: 2869: 2863: 2860: 2854: 2849: 2845: 2841: 2837: 2833: 2826: 2824: 2815: 2812: 2807: 2803: 2799: 2795: 2791: 2787: 2783: 2776: 2773: 2760: 2756: 2755:"Ales stenar" 2750: 2747: 2742: 2738: 2734: 2730: 2725: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2685: 2682: 2677: 2673: 2669: 2665: 2661: 2657: 2650: 2647: 2642: 2638: 2634: 2630: 2626: 2622: 2615: 2612: 2607: 2603: 2599: 2595: 2591: 2587: 2580: 2577: 2572: 2568: 2564: 2560: 2556: 2552: 2544: 2541: 2536: 2532: 2528: 2524: 2520: 2516: 2508: 2505: 2500: 2496: 2492: 2488: 2484: 2480: 2472: 2469: 2464: 2460: 2456: 2452: 2448: 2444: 2443: 2435: 2432: 2427: 2423: 2419: 2415: 2411: 2407: 2400: 2397: 2392: 2388: 2382: 2380: 2376: 2371: 2364: 2357: 2354: 2349: 2345: 2341: 2335: 2331: 2327: 2323: 2316: 2314: 2312: 2308: 2303: 2299: 2295: 2289: 2285: 2284:Prentice Hall 2281: 2277: 2270: 2268: 2264: 2258: 2253: 2248: 2243: 2239: 2235: 2231: 2227: 2223: 2217: 2214: 2209: 2207:9780521530170 2203: 2199: 2192: 2189: 2184: 2182:9780804723312 2178: 2174: 2167: 2164: 2159: 2155: 2151: 2147: 2143: 2139: 2132: 2129: 2124: 2120: 2116: 2112: 2108: 2104: 2096: 2093: 2090: 2087: 2081: 2078: 2073: 2069: 2064: 2059: 2055: 2051: 2048:(5584): 340. 2047: 2043: 2039: 2032: 2029: 2023: 2018: 2014: 2010: 2006: 2002: 2001: 1996: 1989: 1986: 1981: 1977: 1972: 1967: 1963: 1959: 1955: 1951: 1947: 1940: 1937: 1932: 1926: 1922: 1915: 1912: 1909: 1905: 1902: 1896: 1893: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1849: 1846: 1843: 1839: 1835: 1831: 1830: 1825: 1820: 1817: 1811: 1806: 1803: 1801: 1798: 1796: 1795:Radioactivity 1793: 1791: 1788: 1786: 1783: 1781: 1780:Hadean zircon 1778: 1777: 1773: 1767: 1762: 1759: 1753: 1748: 1745: 1734: 1729: 1727: 1725: 1721: 1720: 1711: 1709: 1670: 1595: 1521: 1517: 1477: 1454: 1431: 1429: 1318: 1280: 1177: 1169: 1167: 1164: 1160: 1154: 1147: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1109: 1106: 1103: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1078: 1077: 1072:Other methods 1071: 1069: 1065: 1063: 1059: 1055: 1051: 1047: 1043: 1037: 1029: 1027: 1024: 1020: 1012: 1010: 1007: 1003: 999: 995: 991: 987: 983: 978: 976: 972: 971:slow neutrons 968: 960: 956: 951: 943: 941: 939: 935: 931: 927: 923: 919: 914: 912: 907: 901: 897: 893: 889: 884: 877: 873: 869: 865: 860: 852: 850: 848: 844: 840: 836: 832: 828: 824: 819: 814: 806: 804: 802: 801:lunar samples 798: 794: 790: 786: 780: 772: 770: 768: 764: 760: 756: 752: 746: 738: 736: 734: 730: 724: 716: 714: 710: 708: 704: 700: 696: 692: 688: 684: 676: 673: 668: 666: 661: 654: 650: 646: 641: 636: 628: 626: 624: 620: 619:ionized atoms 616: 612: 608: 604: 596: 594: 592: 591:isochron plot 588: 583: 581: 577: 573: 566: 562: 557: 555: 548: 544: 536: 532: 525: 521: 515: 511: 507: 496: 492: 488: 481: 477: 472: 468: 462: 461: 460: 454: 450: 446: 439: 435: 430: 424: 420: 413: 411: 409: 405: 400: 396: 392: 385: 377: 375: 371: 369: 363: 361: 357: 353: 349: 345: 344:contamination 341: 337: 328: 324: 317: 315: 313: 306: 298: 296: 294: 290: 286: 282: 278: 274: 270: 266: 260: 258: 254: 250: 246: 245:decay product 242: 238: 237:exponentially 233: 231: 227: 224:emission, or 223: 219: 215: 211: 208:(emission of 207: 203: 199: 195: 191: 187: 183: 179: 178:atomic number 175: 171: 168:All ordinary 163: 159: 155: 154:decay product 151: 146: 139: 134: 132: 129: 127: 123: 119: 115: 111: 107: 103: 99: 98:geochronology 95: 90: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 4172:Stratigraphy 4117:Uranium–lead 4096: 4087:Lichenometry 3885:Winter count 3868:Mesoamerican 3796:Astronomical 3614:Mesoamerican 3599:Sothic cycle 3574:Seleucid era 3559:Bosporan era 3547: / 3537: 3485:Paleontology 3395: 3376: 3357: 3322: 3297: 3246: 3242: 3232: 3217: 3212: 3199: 3182: 3178: 3168: 3144:(1): 19–31. 3141: 3137: 3127: 3110: 3106: 3093: 3078: 3073: 3061: 3010: 3006: 2996: 2969: 2959: 2934: 2930: 2923: 2904: 2900: 2887: 2875:. Retrieved 2871: 2862: 2835: 2831: 2822: 2814: 2789: 2785: 2775: 2763:. Retrieved 2759:the original 2749: 2698: 2694: 2684: 2659: 2655: 2649: 2624: 2620: 2614: 2592:(1): 13–22. 2589: 2585: 2579: 2554: 2550: 2543: 2518: 2514: 2507: 2482: 2478: 2471: 2446: 2440: 2434: 2409: 2405: 2399: 2356: 2321: 2275: 2229: 2225: 2216: 2197: 2191: 2172: 2166: 2141: 2137: 2131: 2106: 2102: 2095: 2085: 2080: 2045: 2041: 2031: 2004: 1998: 1988: 1953: 1949: 1939: 1920: 1914: 1900: 1895: 1862: 1858: 1848: 1827: 1819: 1717: 1715: 1671: 1596: 1435: 1319: 1179: 1155: 1151: 1087:Iodine–xenon 1075: 1066: 1039: 1016: 979: 975:neutron flux 964: 930:nuclear bomb 915: 908: 881: 868:Ale's Stones 831:protactinium 820: 816: 789:strontium-87 782: 748: 726: 711: 709:techniques. 698: 669: 658: 623:Faraday cups 600: 584: 579: 575: 571: 564: 558: 550: 546: 542: 540: 519: 513: 509: 505: 494: 490: 479: 470: 458: 452: 448: 444: 437: 433: 428: 387: 372: 364: 332: 312:Pb–Pb system 308: 289:zirconium-89 285:strontium-85 261: 257:samarium-147 234: 167: 135:Fundamentals 130: 122:evolutionary 91: 83:age of Earth 71:absolute age 38: 34: 30: 29: 4112:Radiocarbon 3787:Dual dating 3646:Regnal year 3624:Short Count 3564:Bostran era 3545:Anno Domini 3478:Big History 3458:Archaeology 2901:Radiocarbon 2226:Radiocarbon 1081:Argon–argon 892:cosmic rays 785:rubidium-87 767:hornblendes 729:alpha decay 683:baddeleyite 649:Pfunze Belt 281:beryllium-7 265:temperature 249:decay chain 206:alpha decay 150:decay chain 4274:Categories 3707:Vietnamese 3619:Long Count 3554:Anno Mundi 3549:Common Era 3451:Key topics 3444:Chronology 3249:: 105348. 2701:(1): 562. 2257:10289/3690 1812:References 1496:decays to 1476:chondrules 1174:See also: 1159:meteorites 934:solar wind 336:alteration 303:See also: 220:emission, 214:beta decay 55:impurities 4244:Year zero 4224:Chronicle 4167:Seriation 4102:Lead–lead 3976:Standards 3957:Deep time 3917:Ephemeris 3803:Lunisolar 3767:Gregorian 3760:Gregorian 3721:Calendars 3684:Era names 3654:Anka year 3533:Human Era 3463:Astronomy 3314:100441969 3273:248907159 2806:161729853 2786:Antiquity 2741:210670668 2641:129408440 1887:131688682 1800:Radiohalo 1516:half-life 1141:Beryllium 1099:Lead–lead 922:biosphere 918:volcanoes 835:sediments 763:feldspars 733:half-life 695:zirconium 535:half-life 391:diffusion 241:half-life 156:) via an 4239:Timeline 4077:Ice core 3950:Concepts 3697:Japanese 3629:Tzolk'in 3594:Egyptian 3045:17615355 2733:31953465 2348:27937350 2302:37783103 1980:28947247 1956:: 6–12. 1807:(SHRIMP) 1730:See also 998:titanite 986:tektites 755:positron 687:monazite 665:Mesozoic 653:Zimbabwe 603:invented 340:isochron 273:magnetic 269:pressure 222:positron 218:electron 194:neutrons 190:isotopes 4249:Floruit 3997:Methods 3858:Iranian 3826:Islamic 3692:Chinese 3503:Periods 3473:History 3468:Geology 3327:Bibcode 3251:Bibcode 3187:Bibcode 3146:Bibcode 3053:7423309 3036:2694912 3015:Bibcode 3007:Science 2939:Bibcode 2877:6 April 2840:Bibcode 2765:9 March 2724:6969261 2703:Bibcode 2664:Bibcode 2621:Science 2594:Bibcode 2559:Bibcode 2523:Bibcode 2487:Bibcode 2451:Bibcode 2414:Bibcode 2330:Longman 2234:Bibcode 2146:Bibcode 2111:Bibcode 2072:4252035 2050:Bibcode 2009:Bibcode 1958:Bibcode 1867:Bibcode 1514:with a 1241:) into 1143:(Be–Be) 1137:(Kr–Kr) 1125:(Re–Os) 1107:(Lu–Hf) 1101:(Pb–Pb) 1095:(La–Ba) 1083:(Ar–Ar) 1002:epidote 994:apatite 959:Apatite 827:thorium 823:uranium 793:igneous 699:In situ 672:mineral 667:rocks. 529:is the 253:tritium 198:nuclide 184:in the 182:protons 162:ÎČ decay 158:α decay 118:fossils 81:or the 4045:dating 3841:Others 3807:Hebrew 3702:Korean 3513:Epochs 3402:  3383:  3364:  3345:  3312:  3271:  3224:  3185:: 14. 3085:  3051:  3043:  3033:  2984:  2804:  2739:  2731:  2721:  2639:  2346:  2336:  2326:Harlow 2300:  2290:  2204:  2179:  2070:  2042:Nature 1978:  1927:  1885:  1119:(K–Ca) 1113:(Hf-W) 1089:(I–Xe) 1050:quartz 1006:garnet 990:zircon 876:Sweden 843:ionium 821:While 765:, and 703:ICP-MS 689:(see: 677:(ZrSiO 675:zircon 561:closed 459:where 395:closed 350:, the 287:, and 212:) and 170:matter 51:carbon 3878:Aztec 3822:Lunar 3817:Solar 3811:Hindu 3674:Limmu 3634:Haab' 3589:Hijri 3310:S2CID 3294:(PDF) 3269:S2CID 3103:(PDF) 3049:S2CID 2897:(PDF) 2828:(PDF) 2802:S2CID 2737:S2CID 2637:S2CID 2366:(PDF) 2068:S2CID 1883:S2CID 1861:. 4. 1824:IUPAC 1217:16.14 1131:(U–U) 982:micas 872:Ystad 759:micas 523:, and 423:Lu-Hf 346:. In 293:clock 160:or a 63:decay 47:rocks 3873:Maya 3608:Yuga 3508:Eras 3490:Time 3400:ISBN 3381:ISBN 3362:ISBN 3343:ISBN 3222:ISBN 3083:ISBN 3041:PMID 2982:ISBN 2879:2016 2767:2009 2729:PMID 2344:OCLC 2334:ISBN 2298:OCLC 2288:ISBN 2202:ISBN 2177:ISBN 1976:PMID 1925:ISBN 1672:The 1052:and 1004:and 829:and 795:and 707:SIMS 685:and 512:) = 455:− 1) 436:* = 399:open 112:and 43:date 3335:doi 3302:doi 3259:doi 3247:142 3183:650 3154:doi 3115:doi 3067:pdf 3031:PMC 3023:doi 3011:317 2974:doi 2947:doi 2909:doi 2848:doi 2794:doi 2719:PMC 2711:doi 2672:doi 2660:164 2629:doi 2625:286 2602:doi 2590:104 2567:doi 2555:175 2531:doi 2495:doi 2483:113 2459:doi 2422:doi 2252:hdl 2242:doi 2154:doi 2142:143 2119:doi 2058:doi 2046:264 2017:doi 1966:doi 1954:134 1875:doi 1838:doi 1836:". 1522:of 1338:to 906:). 902:(CO 787:to 753:or 705:or 605:by 582:). 451:) ( 275:or 259:). 49:or 37:or 4276:: 3809:, 3341:. 3333:. 3308:. 3296:. 3267:. 3257:. 3245:. 3241:. 3181:. 3177:. 3152:. 3142:41 3140:. 3136:. 3111:45 3109:. 3105:. 3047:. 3039:. 3029:. 3021:. 3009:. 3005:. 2980:. 2945:. 2935:33 2933:. 2905:43 2903:. 2899:. 2870:. 2846:. 2836:20 2834:. 2830:. 2800:. 2790:49 2788:. 2784:. 2735:. 2727:. 2717:. 2709:. 2699:10 2697:. 2693:. 2670:. 2658:. 2635:. 2623:. 2600:. 2588:. 2565:. 2553:. 2529:. 2519:40 2517:. 2493:. 2481:. 2457:. 2447:32 2445:. 2420:. 2410:26 2408:. 2389:. 2378:^ 2368:. 2342:. 2332:. 2328:: 2324:. 2310:^ 2296:. 2286:. 2282:: 2266:^ 2250:. 2240:. 2230:46 2228:. 2224:. 2152:. 2140:. 2117:. 2107:65 2105:. 2066:. 2056:. 2044:. 2040:. 2015:. 2005:22 2003:. 1997:. 1974:. 1964:. 1948:. 1906:, 1881:. 1873:. 1863:23 1857:. 1826:, 1726:. 1699:Mg 1690:– 1681:Al 1660:Mg 1642:Mg 1624:Mg 1606:Mg 1594:. 1585:Mg 1567:Al 1549:Al 1531:Mg 1505:Mg 1487:Al 1478:. 1465:Mg 1456:– 1446:Al 1383:Xe 1365:Xe 1347:Xe 1308:Xe 1290:Xe 1250:Xe 1206:Xe 1019:Cl 1000:, 996:, 992:, 984:, 977:. 874:, 849:. 761:, 651:, 556:. 443:+ 370:. 360:Ga 314:. 283:, 267:, 108:, 89:. 33:, 3828:) 3824:( 3813:) 3805:( 3610:) 3606:( 3436:e 3429:t 3422:v 3408:. 3389:. 3370:. 3351:. 3337:: 3329:: 3316:. 3304:: 3275:. 3261:: 3253:: 3207:. 3193:. 3189:: 3162:. 3156:: 3148:: 3121:. 3117:: 3055:. 3025:: 3017:: 2990:. 2976:: 2953:. 2949:: 2941:: 2917:. 2911:: 2881:. 2856:. 2850:: 2842:: 2823:C 2808:. 2796:: 2769:. 2743:. 2713:: 2705:: 2678:. 2674:: 2666:: 2643:. 2631:: 2608:. 2604:: 2596:: 2573:. 2569:: 2561:: 2537:. 2533:: 2525:: 2501:. 2497:: 2489:: 2465:. 2461:: 2453:: 2428:. 2424:: 2416:: 2372:. 2350:. 2304:. 2260:. 2254:: 2244:: 2236:: 2210:. 2185:. 2160:. 2156:: 2148:: 2125:. 2121:: 2113:: 2074:. 2060:: 2052:: 2025:. 2019:: 2011:: 1982:. 1968:: 1960:: 1933:. 1889:. 1877:: 1869:: 1840:: 1651:/ 1576:/ 1419:I 1410:/ 1401:I 1374:/ 1329:I 1299:/ 1268:I 1232:I 1219:± 1188:I 904:2 679:4 580:t 578:( 576:N 572:λ 568:0 565:D 553:o 551:N 547:t 545:( 543:N 527:λ 520:e 517:0 514:N 510:t 508:( 506:N 501:t 497:) 495:t 493:( 491:N 483:0 480:D 473:* 471:D 464:t 453:e 449:t 447:( 445:N 441:0 438:D 434:D 216:( 20:)

Index

Isotopic dating
date
rocks
carbon
impurities
radioactive isotope
decay
Bertram Boltwood
absolute age
geological features
fossilized life forms
age of Earth
man-made materials
stratigraphic principles
geochronology
geologic time scale
radiocarbon dating
potassium–argon dating
uranium–lead dating
fossils
evolutionary
archaeological

decay chain
decay product
α decay
ÎČ decay
matter
chemical elements
atomic number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑