Knowledge (XXG)

Jaynes–Cummings–Hubbard model

Source 📝

20: 516: 51: 181: 511:{\displaystyle H=\sum _{n=1}^{N}\omega _{c}a_{n}^{\dagger }a_{n}+\sum _{n=1}^{N}\omega _{a}\sigma _{n}^{+}\sigma _{n}^{-}+\kappa \sum _{n=1}^{N}\left(a_{n+1}^{\dagger }a_{n}+a_{n}^{\dagger }a_{n+1}\right)+\eta \sum _{n=1}^{N}\left(a_{n}\sigma _{n}^{+}+a_{n}^{\dagger }\sigma _{n}^{-}\right)} 863: 773: 943: 551: 1404:
K. Winkler; G. Thalhammer; F. Lang; R. Grimm; J. H. Denschlag; A. J. Daley; A. Kantian; H. P. Buchler; P. Zoller (2006). "Repulsively bound atom pairs in an optical lattice".
665: 638: 1526: 173: 579: 44: 599: 117:
The JCH model was originally proposed in June 2006 in the context of Mott transitions for strongly interacting photons in coupled cavity arrays. A different
957:
bound states when the photon-atom interaction is sufficiently strong. In particular, the two polaritons associated with the bound states exhibit a strong
102: 778: 693: 66: 105:
and hence require strong-coupling theory for treatment. One method for realizing an experimental model of the system uses circularly-linked
62: 1130:
D. G. Angelakis; M. F. Santos; S. Bose (2007). "Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays".
872: 1072:
A. Nunnenkamp; Jens Koch; S. M. Girvin (2011). "Synthetic gauge fields and homodyne transmission in Jaynes-Cummings lattices".
1185:
M. J. Hartmann, F. G. S. L. Brandão and M. B. Plenio (2006). "Strongly interacting polaritons in coupled arrays of cavities".
86: 55: 1356: 78: 1598: 118: 121:
scheme was synchronically suggested, wherein four level atoms interacted with external fields, leading to
98: 1074: 106: 1240:
A. D. Greentree; C. Tahan; J. H. Cole; L. C. L. Hollenberg (2006). "Quantum phase transitions of light".
1520: 602: 524: 1559: 1492: 1425: 1370: 1327: 1261: 1206: 1151: 1093: 1030: 133:
Using mean-field theory to predict the phase diagram of the JCH model, the JCH model should exhibit
1575: 1549: 1508: 1482: 1449: 1415: 1386: 1360: 1277: 1251: 1222: 1196: 1167: 1141: 1109: 1083: 1054: 1020: 866: 643: 616: 19: 1441: 1132: 1046: 680: 152: 23: 564: 29: 1567: 1500: 1433: 1406: 1378: 1269: 1214: 1159: 1101: 1038: 1012: 684: 584: 973: 1571: 1007: 1563: 1496: 1429: 1374: 1265: 1210: 1155: 1105: 1097: 1034: 1304: 1242: 1187: 962: 134: 50: 1592: 1579: 1468: 1390: 1342: 1323: 1281: 1113: 138: 1512: 1171: 1058: 1473: 1453: 1347: 1226: 1042: 858:{\displaystyle {\hat {N}}_{a}\equiv \sum _{n=1}^{N}\sigma _{n}^{+}\sigma _{n}^{-}} 958: 1504: 1382: 1163: 85:. As the name suggests, the Jaynes–Cummings–Hubbard model is a variant on the 1540:
M. Valiente; D. Petrosyan (2008). "Two-particle states in the Hubbard model".
954: 610: 122: 1445: 1050: 1420: 1256: 1201: 1146: 965:. This process is similar to the formation of a bound pair of repulsive 768:{\displaystyle {\hat {N}}_{c}\equiv \sum _{n=1}^{N}a_{n}^{\dagger }a_{n}} 1437: 667:. The cavities are treated as periodic, so that the cavity labelled by 966: 1300: 1273: 1218: 606: 59: 1467:
Javanainen, Juha and Odong, Otim and Sanders, Jerome C. (Apr 2010).
1554: 1487: 1365: 1088: 1025: 969: 554: 82: 49: 18: 1343:"Two-polariton bound states in the Jaynes-Cummings-Hubbard model" 938:{\displaystyle \lbrack H,{\hat {N}}_{c}+{\hat {N}}_{a}\rbrack =0} 101:, Jaynes–Cummings–Hubbard dynamics depend on photonic and atomic 690:
Defining the photonic and atomic excitation number operators as
94: 1008:"Strong Coupling Theory for the Jaynes-Cummings-Hubbard Model" 1469:"Dimer of two bosons in a one-dimensional optical lattice" 581:
is the tunneling rate between neighboring cavities, and
875: 781: 696: 646: 619: 587: 567: 527: 184: 155: 89:; a one-dimensional JCH model consists of a chain of 32: 93:
coupled single-mode cavities, each with a two-level
937: 857: 767: 659: 632: 593: 573: 545: 510: 167: 38: 1320:Physics and Applications of the Josephson Effect 8: 1525:: CS1 maint: multiple names: authors list ( 926: 876: 1318:Antonio Barone; Gianfranco Paternó (1982). 961:such that they stay close to each other in 77:is a many-body quantum system modeling the 1553: 1486: 1419: 1364: 1255: 1200: 1145: 1087: 1024: 920: 909: 908: 898: 887: 886: 874: 849: 844: 834: 829: 819: 808: 795: 784: 783: 780: 759: 749: 744: 734: 723: 710: 699: 698: 695: 651: 645: 624: 618: 586: 566: 537: 532: 526: 497: 492: 482: 477: 464: 459: 449: 434: 423: 396: 386: 381: 368: 358: 347: 332: 321: 305: 300: 290: 285: 275: 265: 254: 241: 231: 226: 216: 206: 195: 183: 154: 31: 26:of photons between coupled cavities. The 1297:An Introduction to the Josephson Effects 557:operators for the two-level atom at the 1125: 1123: 998: 865:, the total number of excitations is a 609:-atom interaction strength. The cavity 156: 1518: 1341:Max T. C. Wong; C. K. Law (May 2011). 985:D. F. Walls and G. J. Milburn (1995), 1006:Schmidt, S.; Blatter, G. (Aug 2009). 149:The Hamiltonian of the JCH model is ( 7: 679:= 1. Note that the model exhibits 640:and atomic transition frequency is 125:with strongly correlated dynamics. 75:Jaynes–Cummings–Hubbard (JCH) model 546:{\displaystyle \sigma _{n}^{\pm }} 46:is the tunnelling rate of photons. 14: 953:The JCH Hamiltonian supports two- 683:; this process is similar to the 1572:10.1088/0953-4075/41/16/161002 1542:J. Phys. B: At. Mol. Opt. Phys 1043:10.1103/PhysRevLett.103.086403 914: 892: 789: 704: 1: 1106:10.1088/1367-2630/13/9/095008 675:+1 corresponds to the cavity 660:{\displaystyle \omega _{a}} 633:{\displaystyle \omega _{c}} 605:which characterizes to the 1615: 1505:10.1103/PhysRevA.81.043609 1383:10.1103/PhysRevA.83.055802 1164:10.1103/physreva.76.031805 949:Two-polariton bound states 97:. Unlike in the competing 1357:American Physical Society 168:{\displaystyle \hbar =1} 79:quantum phase transition 574:{\displaystyle \kappa } 39:{\displaystyle \kappa } 16:Model in quantum optics 1075:New Journal of Physics 939: 859: 824: 769: 739: 661: 634: 595: 575: 547: 512: 439: 337: 270: 211: 169: 107:superconducting qubits 70: 47: 40: 1295:B. W. Petley (1971). 940: 860: 804: 770: 719: 662: 635: 603:vacuum Rabi frequency 596: 594:{\displaystyle \eta } 576: 548: 513: 419: 317: 250: 191: 170: 87:Jaynes–Cummings model 56:Jaynes–Cummings model 53: 41: 22: 873: 779: 694: 644: 617: 585: 565: 525: 182: 153: 54:Illustration of the 30: 1564:2008JPhB...41p1002V 1497:2010PhRvA..81d3609J 1438:10.1038/nature04918 1430:2006Natur.441..853W 1375:2011PhRvA..83e5802W 1266:2006NatPh...2..856G 1211:2006NatPh...2..849H 1156:2007PhRvA..76c1805A 1098:2011NJPh...13i5008N 1035:2009PhRvL.103h6403S 854: 839: 754: 542: 502: 487: 469: 391: 363: 310: 295: 236: 989:, Springer-Verlag. 935: 867:conserved quantity 855: 840: 825: 765: 740: 657: 630: 591: 571: 543: 528: 508: 488: 473: 455: 377: 343: 296: 281: 222: 165: 103:degrees of freedom 99:Bose–Hubbard model 71: 48: 36: 1414:(7095): 853–856. 1133:Physical Review A 917: 895: 792: 707: 681:quantum tunneling 561:-th cavity. The 58:. In the circle, 1606: 1584: 1583: 1557: 1537: 1531: 1530: 1524: 1516: 1490: 1464: 1458: 1457: 1423: 1421:cond-mat/0605196 1401: 1395: 1394: 1368: 1338: 1332: 1331: 1315: 1309: 1308: 1292: 1286: 1285: 1274:10.1038/nphys466 1259: 1257:cond-mat/0609050 1237: 1231: 1230: 1219:10.1038/nphys462 1204: 1202:quant-ph/0606097 1182: 1176: 1175: 1149: 1147:quant-ph/0606159 1127: 1118: 1117: 1091: 1069: 1063: 1062: 1028: 1013:Phys. Rev. Lett. 1003: 944: 942: 941: 936: 925: 924: 919: 918: 910: 903: 902: 897: 896: 888: 864: 862: 861: 856: 853: 848: 838: 833: 823: 818: 800: 799: 794: 793: 785: 774: 772: 771: 766: 764: 763: 753: 748: 738: 733: 715: 714: 709: 708: 700: 685:Josephson effect 666: 664: 663: 658: 656: 655: 639: 637: 636: 631: 629: 628: 600: 598: 597: 592: 580: 578: 577: 572: 552: 550: 549: 544: 541: 536: 517: 515: 514: 509: 507: 503: 501: 496: 486: 481: 468: 463: 454: 453: 438: 433: 412: 408: 407: 406: 390: 385: 373: 372: 362: 357: 336: 331: 309: 304: 294: 289: 280: 279: 269: 264: 246: 245: 235: 230: 221: 220: 210: 205: 174: 172: 171: 166: 45: 43: 42: 37: 1614: 1613: 1609: 1608: 1607: 1605: 1604: 1603: 1589: 1588: 1587: 1539: 1538: 1534: 1517: 1466: 1465: 1461: 1403: 1402: 1398: 1340: 1339: 1335: 1317: 1316: 1312: 1294: 1293: 1289: 1250:(12): 856–861. 1239: 1238: 1234: 1195:(12): 849–855. 1184: 1183: 1179: 1129: 1128: 1121: 1071: 1070: 1066: 1005: 1004: 1000: 996: 982: 980:Further reading 974:optical lattice 951: 907: 885: 871: 870: 782: 777: 776: 755: 697: 692: 691: 647: 642: 641: 620: 615: 614: 583: 582: 563: 562: 523: 522: 445: 444: 440: 392: 364: 342: 338: 271: 237: 212: 180: 179: 151: 150: 147: 131: 115: 28: 27: 17: 12: 11: 5: 1612: 1610: 1602: 1601: 1599:Quantum optics 1591: 1590: 1586: 1585: 1548:(16): 161002. 1532: 1459: 1396: 1333: 1310: 1305:Mills and Boon 1287: 1243:Nature Physics 1232: 1188:Nature Physics 1177: 1140:(3): 1805(R). 1119: 1064: 997: 995: 992: 991: 990: 987:Quantum Optics 981: 978: 963:position space 950: 947: 934: 931: 928: 923: 916: 913: 906: 901: 894: 891: 884: 881: 878: 852: 847: 843: 837: 832: 828: 822: 817: 814: 811: 807: 803: 798: 791: 788: 762: 758: 752: 747: 743: 737: 732: 729: 726: 722: 718: 713: 706: 703: 654: 650: 627: 623: 590: 570: 540: 535: 531: 519: 518: 506: 500: 495: 491: 485: 480: 476: 472: 467: 462: 458: 452: 448: 443: 437: 432: 429: 426: 422: 418: 415: 411: 405: 402: 399: 395: 389: 384: 380: 376: 371: 367: 361: 356: 353: 350: 346: 341: 335: 330: 327: 324: 320: 316: 313: 308: 303: 299: 293: 288: 284: 278: 274: 268: 263: 260: 257: 253: 249: 244: 240: 234: 229: 225: 219: 215: 209: 204: 201: 198: 194: 190: 187: 164: 161: 158: 146: 143: 135:Mott insulator 130: 127: 114: 111: 35: 15: 13: 10: 9: 6: 4: 3: 2: 1611: 1600: 1597: 1596: 1594: 1581: 1577: 1573: 1569: 1565: 1561: 1556: 1551: 1547: 1543: 1536: 1533: 1528: 1522: 1514: 1510: 1506: 1502: 1498: 1494: 1489: 1484: 1481:(4): 043609. 1480: 1476: 1475: 1470: 1463: 1460: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1422: 1417: 1413: 1409: 1408: 1400: 1397: 1392: 1388: 1384: 1380: 1376: 1372: 1367: 1362: 1358: 1354: 1350: 1349: 1344: 1337: 1334: 1329: 1325: 1321: 1314: 1311: 1306: 1302: 1298: 1291: 1288: 1283: 1279: 1275: 1271: 1267: 1263: 1258: 1253: 1249: 1245: 1244: 1236: 1233: 1228: 1224: 1220: 1216: 1212: 1208: 1203: 1198: 1194: 1190: 1189: 1181: 1178: 1173: 1169: 1165: 1161: 1157: 1153: 1148: 1143: 1139: 1135: 1134: 1126: 1124: 1120: 1115: 1111: 1107: 1103: 1099: 1095: 1090: 1085: 1082:(9): 095008. 1081: 1077: 1076: 1068: 1065: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1027: 1022: 1019:(8): 086403. 1018: 1015: 1014: 1009: 1002: 999: 993: 988: 984: 983: 979: 977: 975: 971: 968: 964: 960: 956: 948: 946: 932: 929: 921: 911: 904: 899: 889: 882: 879: 868: 850: 845: 841: 835: 830: 826: 820: 815: 812: 809: 805: 801: 796: 786: 760: 756: 750: 745: 741: 735: 730: 727: 724: 720: 716: 711: 701: 688: 686: 682: 678: 674: 670: 652: 648: 625: 621: 612: 608: 604: 588: 568: 560: 556: 538: 533: 529: 504: 498: 493: 489: 483: 478: 474: 470: 465: 460: 456: 450: 446: 441: 435: 430: 427: 424: 420: 416: 413: 409: 403: 400: 397: 393: 387: 382: 378: 374: 369: 365: 359: 354: 351: 348: 344: 339: 333: 328: 325: 322: 318: 314: 311: 306: 301: 297: 291: 286: 282: 276: 272: 266: 261: 258: 255: 251: 247: 242: 238: 232: 227: 223: 217: 213: 207: 202: 199: 196: 192: 188: 185: 178: 177: 176: 162: 159: 144: 142: 140: 136: 128: 126: 124: 120: 112: 110: 108: 104: 100: 96: 92: 88: 84: 80: 76: 68: 64: 61: 57: 52: 33: 25: 21: 1545: 1541: 1535: 1521:cite journal 1478: 1474:Phys. Rev. A 1472: 1462: 1411: 1405: 1399: 1352: 1348:Phys. Rev. A 1346: 1336: 1319: 1313: 1296: 1290: 1247: 1241: 1235: 1192: 1186: 1180: 1137: 1131: 1079: 1073: 1067: 1016: 1011: 1001: 986: 952: 689: 676: 672: 668: 558: 520: 148: 132: 116: 90: 74: 72: 959:correlation 145:Hamiltonian 119:interaction 1359:: 055802. 994:References 139:superfluid 129:Properties 123:polaritons 69:are shown. 67:absorption 24:Tunnelling 1580:115168045 1555:0805.1812 1488:1004.5118 1391:119200554 1366:1101.1366 1282:118903056 1114:118557639 1089:1105.1817 1026:0905.3344 955:polariton 915:^ 893:^ 851:− 842:σ 827:σ 806:∑ 802:≡ 790:^ 751:† 721:∑ 717:≡ 705:^ 649:ω 622:ω 611:frequency 589:η 569:κ 539:± 530:σ 499:− 490:σ 484:† 457:σ 421:∑ 417:η 388:† 360:† 319:∑ 315:κ 307:− 298:σ 283:σ 273:ω 252:∑ 233:† 214:ω 193:∑ 157:ℏ 34:κ 1593:Category 1513:55445588 1446:16778884 1324:New York 1172:44490741 1059:32092406 1051:19792743 869:, i.e., 141:phases. 63:emission 1560:Bibcode 1493:Bibcode 1454:2214243 1426:Bibcode 1371:Bibcode 1262:Bibcode 1227:9122839 1207:Bibcode 1152:Bibcode 1094:Bibcode 1031:Bibcode 967:bosonic 601:is the 113:History 1578:  1511:  1452:  1444:  1407:Nature 1389:  1301:London 1280:  1225:  1170:  1112:  1057:  1049:  972:in an 607:photon 521:where 60:photon 1576:S2CID 1550:arXiv 1509:S2CID 1483:arXiv 1450:S2CID 1416:arXiv 1387:S2CID 1361:arXiv 1355:(5). 1328:Wiley 1278:S2CID 1252:arXiv 1223:S2CID 1197:arXiv 1168:S2CID 1142:arXiv 1110:S2CID 1084:arXiv 1055:S2CID 1021:arXiv 970:atoms 555:Pauli 83:light 1527:link 1442:PMID 1047:PMID 775:and 553:are 137:and 95:atom 73:The 65:and 1568:doi 1501:doi 1434:doi 1412:441 1379:doi 1270:doi 1215:doi 1160:doi 1102:doi 1039:doi 1017:103 613:is 175:): 81:of 1595:: 1574:. 1566:. 1558:. 1546:41 1544:. 1523:}} 1519:{{ 1507:. 1499:. 1491:. 1479:81 1477:. 1471:. 1448:. 1440:. 1432:. 1424:. 1410:. 1385:. 1377:. 1369:. 1353:83 1351:. 1345:. 1326:: 1322:. 1303:: 1299:. 1276:. 1268:. 1260:. 1246:. 1221:. 1213:. 1205:. 1191:. 1166:. 1158:. 1150:. 1138:76 1136:. 1122:^ 1108:. 1100:. 1092:. 1080:13 1078:. 1053:. 1045:. 1037:. 1029:. 1010:. 976:. 945:. 687:. 671:= 109:. 1582:. 1570:: 1562:: 1552:: 1529:) 1515:. 1503:: 1495:: 1485:: 1456:. 1436:: 1428:: 1418:: 1393:. 1381:: 1373:: 1363:: 1330:. 1307:. 1284:. 1272:: 1264:: 1254:: 1248:2 1229:. 1217:: 1209:: 1199:: 1193:2 1174:. 1162:: 1154:: 1144:: 1116:. 1104:: 1096:: 1086:: 1061:. 1041:: 1033:: 1023:: 933:0 930:= 927:] 922:a 912:N 905:+ 900:c 890:N 883:, 880:H 877:[ 846:n 836:+ 831:n 821:N 816:1 813:= 810:n 797:a 787:N 761:n 757:a 746:n 742:a 736:N 731:1 728:= 725:n 712:c 702:N 677:n 673:N 669:n 653:a 626:c 559:n 534:n 505:) 494:n 479:n 475:a 471:+ 466:+ 461:n 451:n 447:a 442:( 436:N 431:1 428:= 425:n 414:+ 410:) 404:1 401:+ 398:n 394:a 383:n 379:a 375:+ 370:n 366:a 355:1 352:+ 349:n 345:a 340:( 334:N 329:1 326:= 323:n 312:+ 302:n 292:+ 287:n 277:a 267:N 262:1 259:= 256:n 248:+ 243:n 239:a 228:n 224:a 218:c 208:N 203:1 200:= 197:n 189:= 186:H 163:1 160:= 91:N

Index


Tunnelling

Jaynes–Cummings model
photon
emission
absorption
quantum phase transition
light
Jaynes–Cummings model
atom
Bose–Hubbard model
degrees of freedom
superconducting qubits
interaction
polaritons
Mott insulator
superfluid
Pauli
vacuum Rabi frequency
photon
frequency
quantum tunneling
Josephson effect
conserved quantity
polariton
correlation
position space
bosonic
atoms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.