Knowledge (XXG)

Atmospheric escape

Source 📝

484:. The projectile can impart momentum, and thereby facilitate escape of the atmosphere, in three main ways: (a) the meteoroid heats and accelerates the gas it encounters as it travels through the atmosphere, (b) solid ejecta from the impact crater heat atmospheric particles through drag as they are ejected, and (c) the impact creates vapor which expands away from the surface. In the first case, the heated gas can escape in a manner similar to hydrodynamic escape, albeit on a more localized scale. Most of the escape from impact erosion occurs due to the third case. The maximum atmosphere that can be ejected is above a plane tangent to the impact site. 319: 552:
atmospheric processes, such as gravity waves, convection, and dust storms. Oxygen loss is dominated by suprathermal methods: photochemical (~1300 g/s), charge exchange (~130 g/s), and sputtering (~80 g/s) escape combine for a total loss rate of ~1500 g/s. Other heavy atoms, such as carbon and nitrogen, are primarily lost due to photochemical reactions and interactions with the solar wind.
421: 461: 88: 433:
Ions in the solar wind or magnetosphere can charge exchange with molecules in the upper atmosphere. A fast-moving ion can capture the electron from a slow atmospheric neutral, creating a fast neutral and a slow ion. The slow ion is trapped on the magnetic field lines, but the fast neutral can escape.
497:
Atmospheric escape of hydrogen on Earth is due to charge exchange escape (~60–90%), Jeans escape (~10–40%), and polar wind escape (~10–15%), currently losing about 3 kg/s of hydrogen. The Earth additionally loses approximately 50 g/s of helium primarily through polar wind escape. Escape of
342:
radiation, is absorbed by the atmosphere. As molecules are heated, they expand upwards and are further accelerated until they reach escape velocity. In this process, lighter molecules can drag heavier molecules with them through collisions as a larger quantity of gas escapes. Hydrodynamic escape has
298:
Three factors strongly contribute to the relative importance of Jeans escape: mass of the molecule, escape velocity of the planet, and heating of the upper atmosphere by radiation from the parent star. Heavier molecules are less likely to escape because they move slower than lighter molecules at the
551:
The MAVEN mission has also explored the current rate of atmospheric escape of Mars. Jeans escape plays an important role in the continued escape of hydrogen on Mars, contributing to a loss rate that varies between 160 - 1800 g/s. Jeans escape of hydrogen can be significantly modulated by lower
1847:
Ehrenreich, David; Bourrier, Vincent; Wheatley, Peter J.; des Etangs, Alain Lecavelier; Hébrard, Guillaume; Udry, Stéphane; Bonfils, Xavier; Delfosse, Xavier; Désert, Jean-Michel (June 2015). "A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b".
322:
A visualization of hydrodynamic escape. At some level in the atmosphere, the bulk gas will be heated and begin to expand. As the gas expands, it accelerates and escapes the atmosphere. In this process, lighter, faster molecules drag heavier, slower molecules out of the
315:. Finally, the distance a planet orbits from a star also plays a part; a close planet has a hotter atmosphere, with higher velocities and hence, a greater likelihood of escape. A distant body has a cooler atmosphere, with lower velocities, and less chance of escape. 1478:
Jakosky, B. M.; Brain, D.; Chaffin, M.; Curry, S.; Deighan, J.; Grebowsky, J.; Halekas, J.; Leblanc, F.; Lillis, R. (2018-11-15). "Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time".
577:
gained from pick-up and sputtering associated with the solar winds increases thermal escape throughout the orbit of Titan, causing neutral hydrogen to escape. The escaped hydrogen maintains an orbit following in the wake of Titan, creating a neutral hydrogen
44:. A number of different mechanisms can be responsible for atmospheric escape; these processes can be divided into thermal escape, non-thermal (or suprathermal) escape, and impact erosion. The relative importance of each loss process depends on the planet's 1257:
Lammer, H.; Lichtenegger, H. I. M.; Biernat, H. K.; Erkaev, N. V.; Arshukova, I. L.; Kolb, C.; Gunell, H.; Lukyanov, A.; Holmstrom, M.; Barabash, S.; Zhang, T. L.; Baumjohann, W. (2006). "Loss of hydrogen and oxygen from the upper atmosphere of Venus".
655:, which is an issue for Lyman-alpha. Helium has on the other hand the disadvantage that it requires knowledge about the hydrogen-helium ratio to model the mass-loss of the atmosphere. Helium escape was measured around many giant exoplanets, including 464:
Atmospheric escape from impact erosion is concentrated in a cone (red dash-dotted line) centered at the impact site. The angle of this cone increases with impact energy to eject a maximum of all the atmosphere above a tangent plane (orange dotted
452:. Near the poles of a magnetosphere, the magnetic field lines are open, allowing a pathway for ions in the atmosphere to exhaust into space. The ambipolar electric field accelerates any ions in the ionosphere, launching along these lines. 568:
have atmospheres and are subject to atmospheric loss processes. They have no magnetic fields of their own, but orbit planets with powerful magnetic fields, which protects a given moon from the solar wind when its orbit is within the
1785:
Lecavelier des Etangs, A.; Ehrenreich, D.; Vidal-Madjar, A.; Ballester, G. E.; Désert, J.-M.; Ferlet, R.; Hébrard, G.; Sing, D. K.; Tchakoumegni, K.-O. (May 2010). "Evaporation of the planet HD 189733b observed in H I Lyman- α".
2050:
Zhang, Michael; Knutson, Heather A.; Wang, Lile; Dai, Fei; dos Santos, Leonardo A.; Fossati, Luca; Henry, Gregory W.; Ehrenreich, David; Alibert, Yann; Hoyer, Sergio; Wilson, Thomas G.; Bonfanti, Andrea (2022-01-17).
91:
A visualization of Jeans escape. Temperature defines a range of molecular energy. Above the exobase, molecules with enough energy escape, while in the lower atmosphere, molecules are trapped by collisions with other
1917:
Spake, J. J.; Sing, D. K.; Evans, T. M.; Oklopčić; A.; Bourrier, V.; Kreidberg, L.; Rackham, B. V.; Irwin, J.; Ehrenreich, D.; Wyttenbach, A.; Wakeford, H. R.; Zhou, Y.; Chubb, K. L.; Nikolov, N. (2018-05-01).
1041:
Gronoff, G.; Arras, P.; Baraka, S.; Bell, J. M.; Cessateur, G.; Cohen, O.; Curry, S. M.; Drake, J. J.; Elrod, M.; Erwin, J.; Garcia‐Sage, K.; Garraffo, C.; Glocer, A.; Heavens, N. G.; Lovato, K. (2020).
501:
In 1 billion years, the Sun will be 10% brighter than it is now, making it hot enough on Earth to dramatically increase the water vapor in the atmosphere where solar ultraviolet light will dissociate H
1726:
Vidal-Madjar, A.; des Etangs, A. Lecavelier; Désert, J.-M.; Ballester, G. E.; Ferlet, R.; Hébrard, G.; Mayor, M. (March 2003). "An extended upper atmosphere around the extrasolar planet HD209458b".
261: 520:
is almost entirely due to suprathermal mechanisms, primarily photochemical reactions and charge exchange with the solar wind. Oxygen escape is dominated by charge exchange and sputtering escape.
528:
on the rate of atmospheric escape of Venus, and researchers found a factor of 1.9 increase in escape rate during periods of increased coronal mass ejections compared with calmer space weather.
125:, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy. The variation in kinetic energy among the molecules is described by the 424:
The fast ion captures an electron from a slow neutral in a charge exchange collision. The new, fast neutral can escape the atmosphere, and the new, slow ion is trapped on magnetic field lines.
307:. Second, a planet with a larger mass tends to have more gravity, so the escape velocity tends to be greater, and fewer particles will gain the energy required to escape. This is why the 846: 397:. In the first case, these ions may undergo escape mechanisms described below. In the second case, the ion recombines with an electron, releases energy, and can escape. 498:
other atmospheric constituents is much smaller. A Japanese research team in 2017 found evidence of a small number of oxygen ions on the moon that came from the Earth.
413:
from a solid surface. This type of interaction is more pronounced in the absence of a planetary magnetosphere, as the electrically charged solar wind is deflected by
160: 477:
can lead to the loss of atmosphere. If a collision is sufficiently energetic, it is possible for ejecta, including atmospheric molecules, to reach escape velocity.
200: 180: 693:
Sequestration is not a form of escape from the planet, but a loss of molecules from the atmosphere and into the planet. It occurs on Earth when water vapor
860:
Vidal-Madjar, A.; Dsert, J.-M.; Etangs; Hbrard, G.; Ballester, G. E.; Ehrenreich, D.; Ferlet, R.; McConnell, J. C.; Mayor, M.; Parkinson, C. D. (2004).
338:
An atmosphere with high pressure and temperature can also undergo hydrodynamic escape. In this case, a large amount of thermal energy, usually through
84:
is sufficiently high. Thermal escape happens at all scales, from the molecular level (Jeans escape) to bulk atmospheric outflow (hydrodynamic escape).
288: 602:
Studies of exoplanets have measured atmospheric escape as a means of determining atmospheric composition and habitability. The most common method is
957:
Lundin, Rickard; Lammer, Helmut; Ribas, Ignasi (2007-08-17). "Planetary Magnetic Fields and Solar Forcing: Implications for Atmospheric Evolution".
1991:
Zhang, Michael; Knutson, Heather A.; Dai, Fei; Wang, Lile; Ricker, George R.; Schwarz, Richard P.; Mann, Christopher; Collins, Karen (2022-07-01).
1311:
Edberg, N. J. T.; Nilsson, H.; Futaana, Y.; Stenberg, G.; Lester, M.; Cowley, S. W. H.; Luhmann, J. G.; McEnulty, T. R.; Opgenoorth, H. J. (2011).
611: 1628:
Wilson, J. K.; Mendillo, M.; Baumgardner, J.; Schneider, N. M.; Trauger, J. T.; Flynn, B. (2002). "The dual sources of Io's sodium clouds".
2231: 2137: 536:
Primordial Mars also suffered from the cumulative effects of multiple small impact erosion events, and recent observations with
1593:
Lammer, H.; Stumptner, W.; Bauer, S. J. (1998). "Dynamic escape of H from Titan as consequence of sputtering induced heating".
1017: 573:. However Titan spends roughly half of its orbital period outside of the bow-shock, subjected to unimpeded solar winds. The 205: 64:
can escape when it is moving faster than the escape velocity of its planet. Categorizing the rate of atmospheric escape in
271:
and leave the atmosphere, provided they can escape before undergoing another collision; this happens predominantly in the
906:
Shematovich, V I; Marov, M Ya (2018-03-31). "Escape of planetary atmospheres: physical processes and numerical models".
69: 651:
Lyman-alpha lines. The wavelength around the helium triplet has also the advantage that it is not severely affected by
2193: 2115: 544:
in the Martian atmosphere has been lost over the last 4 billion years due to suprathermal escape, and the amount of CO
480:
In order to have a significant effect on atmospheric escape, the radius of the impacting body must be larger than the
394: 1421:
Alsaeed, N.; Stone, S.; Yelle, R.; Elrod, M.; Mahaffy, P.; Benna, M.; Slipski, M.; Jakosky, B. M. (2017-03-31).
1091: 1275: 652: 636: 614:
describes the amount of hydrogen present in a sphere around the exoplanet. This method indicates that the
448:
Atmospheric molecules can also escape from the polar regions on a planet with a magnetosphere, due to the
49: 840: 525: 385:
can break a molecule into smaller components and provide enough energy for those components to escape.
312: 1199:
Schröder, K.-P.; Connon Smith, Robert (May 1, 2008), "Distant future of the Sun and Earth revisited",
2202: 2163: 2074: 2014: 1941: 1867: 1805: 1735: 1684: 1639: 1602: 1543: 1488: 1434: 1379: 1324: 1267: 1218: 1127: 966: 915: 796: 710: 706: 688: 126: 57: 1280: 1179: 2236: 2120: 1043: 607: 339: 333: 2179: 2064: 2032: 2004: 1973: 1931: 1899: 1857: 1829: 1795: 1767: 1708: 1674: 1575: 1512: 1403: 1370:
Melosh, H.J.; Vickery, A.M. (April 1989). "Impact erosion of the primordial atmosphere of Mars".
1293: 1236: 1208: 1161: 1055: 990: 939: 873: 820: 606:
absorption. Much as exoplanets are discovered using the dimming of a distant star's brightness (
582:
around Saturn. Io, in its orbit around Jupiter, encounters a plasma cloud. Interaction with the
757: 672: 267:
of the distribution (where a few particles have much higher speeds than the average) may reach
2154: 2141: 2133: 2092: 1965: 1957: 1891: 1883: 1821: 1759: 1751: 1700: 1567: 1559: 1504: 1460: 1452: 1395: 1352: 1153: 1073: 1023: 1013: 982: 931: 828: 812: 541: 382: 132: 2210: 2206: 2171: 2082: 2022: 1949: 1875: 1813: 1809: 1743: 1692: 1665:
Owen, James E. (2019-05-30). "Atmospheric Escape and the Evolution of Close-In Exoplanets".
1647: 1630: 1610: 1606: 1551: 1496: 1442: 1387: 1342: 1332: 1285: 1271: 1226: 1143: 1135: 1065: 974: 923: 883: 804: 603: 583: 358:
Escape can also occur due to non-thermal interactions. Most of these processes occur due to
718: 506: 386: 268: 106: 45: 2167: 2078: 2018: 1992: 1945: 1919: 1871: 1739: 1696: 1688: 1643: 1547: 1492: 1438: 1383: 1328: 1222: 1139: 1131: 970: 919: 800: 574: 414: 359: 304: 283:. The number of particles able to escape depends on the molecular concentration at the 276: 185: 165: 81: 53: 1614: 1531: 808: 2225: 2214: 2183: 2036: 1977: 1712: 1579: 1516: 1297: 1231: 1165: 994: 943: 521: 390: 311:
planets still retain significant amounts of hydrogen, which escape more readily from
1833: 1240: 2191:
Lammer, H.; Bauer, S. J. (1993). "Atmospheric mass-loss from Titan by sputtering".
1903: 1771: 1423:"Mars' atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar" 1407: 702: 694: 668: 644: 643:
triplet. This wavelength is much more accessible from ground-based high-resolution
629: 615: 561: 481: 470: 344: 318: 292: 280: 68:
is necessary to determining whether an atmosphere persists, and so the exoplanet's
1817: 1012:. Rutherford, P. H. (Paul Harding), 1938-. Bristol, UK: Institute of Physics Pub. 2175: 1500: 927: 664: 648: 626: 618: 375: 122: 41: 2087: 2052: 2027: 1953: 1289: 978: 726: 676: 449: 443: 420: 410: 406: 347: 37: 2096: 1961: 1887: 1825: 1755: 1704: 1563: 1508: 1456: 1356: 1157: 1077: 986: 935: 816: 1555: 1447: 1422: 1184: 1148: 1027: 714: 656: 622: 570: 565: 474: 460: 308: 272: 264: 65: 17: 1969: 1895: 1763: 1651: 1571: 1464: 1399: 1118:
Ahrens, T J (1993). "Impact Erosion of Terrestrial Planetary Atmospheres".
832: 2152:
Hunten, D. M. (1993). "Atmospheric evolution of the terrestrial planets".
2145: 87: 1337: 1312: 1069: 878: 730: 300: 118: 114: 109:, who first described this process of atmospheric loss. In a quantity of 61: 1879: 1747: 824: 409:
can impart sufficient energy to eject atmospheric particles, similar to
698: 660: 284: 1347: 1180:"Moon's Been Getting Oxygen from Earth's Plants for Billions of Years" 787:
Catling, David C.; Zahnle, Kevin J. (2009). "The Planetary Air Leak".
2053:"Detection of Ongoing Mass Loss from HD 63433c, a Young Mini-Neptune" 1391: 722: 640: 591: 587: 378: 343:
been observed for exoplanets close to their host star, including the
34: 2069: 2009: 1936: 1862: 1679: 1060: 888: 861: 1800: 1213: 1044:"Atmospheric Escape Processes and Planetary Atmospheric Evolution" 579: 537: 517: 488:
Dominant atmospheric escape and loss processes in the Solar System
459: 419: 317: 86: 610:), looking specifically at wavelengths corresponding to hydrogen 1993:"Detection of Atmospheric Escape from Four Young Mini Neptunes" 52:, and its distance from its star. Escape occurs when molecular 777:, Springer Science & Business Media, May 26, 2011, p. 879. 639:
that atmospheric escape can also be measured with the 1083 nm
594:-shaped charged sodium cloud along a part of the orbit of Io. 363: 110: 221: 218: 215: 1313:"Atmospheric erosion of Venus during stormy space weather" 548:
lost over the same time period is around 0.5 bar or more.
505:
O, allowing it to gradually escape into space until the
725:
rocks from Fe to Fe). Gases can also be sequestered by
80:
Thermal escape occurs if the molecular velocity due to
862:"Vidal-Madjar et al., Oxygen and Carbon in HD 209458b" 256:{\displaystyle E_{\mathit {kin}}={\frac {1}{2}}mv^{2}} 389:
produces ions, which can get trapped in the planet's
208: 188: 168: 135: 733:
capture gas which adheres to the surface particles.
1920:"Helium in the eroding atmosphere of an exoplanet" 255: 194: 174: 154: 27:Loss of planetary atmospheric gases to outer space 1201:Monthly Notices of the Royal Astronomical Society 845:: CS1 maint: DOI inactive as of September 2024 ( 632:are experiencing significant atmospheric escape. 590:particles. The interaction produces a stationary 2114:Zahnle, Kevin J.; Catling, David C. (May 2009). 1252: 1250: 1092:"The curious case of Earth's leaking atmosphere" 2132:. Princeton, N.J.: Princeton University Press. 752: 750: 748: 746: 516:Recent models indicate that hydrogen escape on 1317:Journal of Geophysical Research: Space Physics 1048:Journal of Geophysical Research: Space Physics 1667:Annual Review of Earth and Planetary Sciences 1120:Annual Review of Earth and Planetary Sciences 8: 598:Observations of exoplanet atmospheric escape 303:escapes from an atmosphere more easily than 417:, which mitigates the loss of atmosphere. 101:One classical thermal escape mechanism is 2086: 2068: 2026: 2008: 1935: 1861: 1799: 1678: 1532:"Martian water escape and internal waves" 1446: 1346: 1336: 1279: 1230: 1212: 1147: 1059: 887: 877: 247: 230: 214: 213: 207: 187: 167: 140: 134: 667:. It has also been detected around some 764:May 2009, p. 26 (accessed 25 July 2012) 742: 381:can react more readily with molecules. 1113: 1111: 838: 775:Encyclopedia of Astrobiology, Volume 3 756:David C. Catling and Kevin J. Zahnle, 586:cloud induces sputtering, kicking off 374:In the upper atmosphere, high energy 7: 901: 899: 1697:10.1146/annurev-earth-053018-060246 1140:10.1146/annurev.ea.21.050193.002521 635:In 2018 it was discovered with the 25: 809:10.1038/scientificamerican0509-36 683:Other atmospheric loss mechanisms 354:Non-thermal (suprathermal) escape 1232:10.1111/j.1365-2966.2008.13022.x 717:(for example, by increasing the 2116:"Our Planet's Leaky Atmosphere" 405:Excess kinetic energy from the 279:is comparable in length to the 202:) of a molecule are related by 105:named after British astronomer 1010:Introduction to plasma physics 729:, where fine particles in the 299:same temperature. This is why 263:. Individual molecules in the 1: 2128:Ingersoll, Andrew P. (2013). 1615:10.1016/S0032-0633(98)00050-6 2215:10.1016/0032-0633(93)90049-8 2176:10.1126/science.259.5097.915 1501:10.1016/j.icarus.2018.05.030 2194:Planetary and Space Science 1818:10.1051/0004-6361/200913347 1595:Planetary and Space Science 1530:Yiğit, Erdal (2021-12-10). 1260:Planetary and Space Science 928:10.3367/ufne.2017.09.038212 2253: 1788:Astronomy and Astrophysics 686: 441: 395:dissociative recombination 331: 1954:10.1038/s41586-018-0067-5 1290:10.1016/j.pss.2006.04.022 979:10.1007/s11214-007-9176-4 866:The Astrophysical Journal 711:cycled through the oceans 121:is measured by the gas's 76:Thermal escape mechanisms 2232:Concepts in astrophysics 2088:10.3847/1538-3881/ac3f3b 2057:The Astronomical Journal 2028:10.3847/1538-3881/aca75b 1997:The Astronomical Journal 1008:Goldston, R. J. (1995). 540:suggest that 66% of the 72:and likelihood of life. 2207:1993P&SS...41..657L 1810:2010A&A...514A..72L 1607:1998P&SS...46.1207L 1556:10.1126/science.abg5893 1448:10.1126/science.aai7721 1272:2006P&SS...54.1445L 811:(inactive 2024-09-12). 653:interstellar absorption 647:, when compared to the 524:measured the effect of 155:{\displaystyle E_{kin}} 1652:10.1006/icar.2002.6821 758:The Planetary Air Leak 637:Hubble Space Telescope 526:coronal mass ejections 466: 429:Charge exchange escape 425: 324: 257: 196: 176: 156: 129:. The kinetic energy ( 93: 50:atmosphere composition 959:Space Science Reviews 463: 423: 362:or charged particle ( 321: 281:pressure scale height 258: 197: 177: 157: 90: 1338:10.1029/2011JA016749 1266:(13–14): 1445–1456. 1070:10.1029/2019JA027639 762:Scientific American, 713:, or when rocks are 689:Carbon sequestration 370:Photochemical escape 289:limited by diffusion 206: 186: 166: 133: 127:Maxwell distribution 60:; in other words, a 58:gravitational energy 2168:1993Sci...259..915H 2121:Scientific American 2079:2022AJ....163...68Z 2019:2023AJ....165...62Z 1946:2018Natur.557...68S 1880:10.1038/nature14501 1872:2015Natur.522..459E 1748:10.1038/nature01448 1740:2003Natur.422..143V 1689:2019AREPS..47...67O 1644:2002Icar..157..476W 1601:(9–10): 1207–1213. 1548:2021Sci...374.1323Y 1542:(6573): 1323–1324. 1493:2018Icar..315..146J 1439:2017Sci...355.1408J 1433:(6332): 1408–1410. 1384:1989Natur.338..487M 1329:2011JGRA..116.9308E 1223:2008MNRAS.386..155S 1132:1993AREPS..21..525A 971:2007SSRv..129..245L 920:2018PhyU...61..217S 801:2009SciAm.300e..36C 789:Scientific American 564:and Jupiter's moon 340:extreme ultraviolet 334:Hydrodynamic escape 328:Hydrodynamic escape 2130:Planetary climates 1188:. 30 January 2017. 467: 426: 325: 313:Earth's atmosphere 253: 192: 172: 152: 94: 31:Atmospheric escape 2162:(5097): 915–920. 1856:(7557): 459–461. 1734:(6928): 143–146. 1378:(6215): 487–489. 438:Polar wind escape 401:Sputtering escape 383:Photodissociation 238: 195:{\displaystyle v} 182:), and velocity ( 175:{\displaystyle m} 16:(Redirected from 2244: 2218: 2187: 2125: 2101: 2100: 2090: 2072: 2047: 2041: 2040: 2030: 2012: 1988: 1982: 1981: 1939: 1914: 1908: 1907: 1865: 1844: 1838: 1837: 1803: 1782: 1776: 1775: 1723: 1717: 1716: 1682: 1662: 1656: 1655: 1625: 1619: 1618: 1590: 1584: 1583: 1527: 1521: 1520: 1475: 1469: 1468: 1450: 1418: 1412: 1411: 1392:10.1038/338487a0 1367: 1361: 1360: 1350: 1340: 1308: 1302: 1301: 1283: 1254: 1245: 1244: 1234: 1216: 1196: 1190: 1189: 1176: 1170: 1169: 1151: 1149:2060/19920021677 1115: 1106: 1105: 1103: 1102: 1088: 1082: 1081: 1063: 1038: 1032: 1031: 1005: 999: 998: 965:(1–3): 245–278. 954: 948: 947: 903: 894: 893: 891: 881: 879:astro-ph/0401457 857: 851: 850: 844: 836: 784: 778: 773:Muriel Gargaud, 771: 765: 754: 719:oxidation states 709:in sediments or 697:to form rain or 604:Lyman-alpha line 366:) interactions. 262: 260: 259: 254: 252: 251: 239: 231: 226: 225: 224: 201: 199: 198: 193: 181: 179: 178: 173: 161: 159: 158: 153: 151: 150: 21: 2252: 2251: 2247: 2246: 2245: 2243: 2242: 2241: 2222: 2221: 2190: 2151: 2113: 2110: 2108:Further reading 2105: 2104: 2049: 2048: 2044: 1990: 1989: 1985: 1930:(7703): 68–70. 1916: 1915: 1911: 1846: 1845: 1841: 1784: 1783: 1779: 1725: 1724: 1720: 1664: 1663: 1659: 1627: 1626: 1622: 1592: 1591: 1587: 1529: 1528: 1524: 1477: 1476: 1472: 1420: 1419: 1415: 1369: 1368: 1364: 1310: 1309: 1305: 1281:10.1.1.484.5117 1256: 1255: 1248: 1198: 1197: 1193: 1178: 1177: 1173: 1117: 1116: 1109: 1100: 1098: 1090: 1089: 1085: 1040: 1039: 1035: 1020: 1007: 1006: 1002: 956: 955: 951: 908:Physics-Uspekhi 905: 904: 897: 859: 858: 854: 837: 786: 785: 781: 772: 768: 755: 744: 739: 691: 685: 600: 558: 547: 534: 514: 504: 495: 490: 458: 446: 440: 431: 415:magnetic fields 403: 387:Photoionization 372: 356: 336: 330: 269:escape velocity 243: 209: 204: 203: 184: 183: 164: 163: 136: 131: 130: 107:Sir James Jeans 99: 78: 46:escape velocity 33:is the loss of 28: 23: 22: 15: 12: 11: 5: 2250: 2248: 2240: 2239: 2234: 2224: 2223: 2220: 2219: 2201:(9): 657–663. 2188: 2149: 2126: 2109: 2106: 2103: 2102: 2042: 1983: 1909: 1839: 1777: 1718: 1657: 1638:(2): 476–489. 1620: 1585: 1522: 1470: 1413: 1362: 1303: 1246: 1191: 1171: 1126:(1): 525–555. 1107: 1083: 1033: 1018: 1000: 949: 914:(3): 217–246. 895: 889:10.1086/383347 852: 779: 766: 741: 740: 738: 735: 703:carbon dioxide 684: 681: 599: 596: 575:kinetic energy 560:Saturn's moon 557: 554: 545: 533: 530: 513: 510: 502: 494: 491: 489: 486: 457: 456:Impact erosion 454: 442:Main article: 439: 436: 430: 427: 402: 399: 371: 368: 360:photochemistry 355: 352: 329: 326: 305:carbon dioxide 277:mean free path 250: 246: 242: 237: 234: 229: 223: 220: 217: 212: 191: 171: 149: 146: 143: 139: 113:, the average 98: 95: 82:thermal energy 77: 74: 54:kinetic energy 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2249: 2238: 2235: 2233: 2230: 2229: 2227: 2216: 2212: 2208: 2204: 2200: 2196: 2195: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2156: 2150: 2147: 2143: 2139: 2138:9781400848232 2135: 2131: 2127: 2123: 2122: 2117: 2112: 2111: 2107: 2098: 2094: 2089: 2084: 2080: 2076: 2071: 2066: 2062: 2058: 2054: 2046: 2043: 2038: 2034: 2029: 2024: 2020: 2016: 2011: 2006: 2002: 1998: 1994: 1987: 1984: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1938: 1933: 1929: 1925: 1921: 1913: 1910: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1864: 1859: 1855: 1851: 1843: 1840: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1802: 1797: 1793: 1789: 1781: 1778: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1719: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1681: 1676: 1672: 1668: 1661: 1658: 1653: 1649: 1645: 1641: 1637: 1633: 1632: 1624: 1621: 1616: 1612: 1608: 1604: 1600: 1596: 1589: 1586: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1526: 1523: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1474: 1471: 1466: 1462: 1458: 1454: 1449: 1444: 1440: 1436: 1432: 1428: 1424: 1417: 1414: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1366: 1363: 1358: 1354: 1349: 1344: 1339: 1334: 1330: 1326: 1322: 1318: 1314: 1307: 1304: 1299: 1295: 1291: 1287: 1282: 1277: 1273: 1269: 1265: 1261: 1253: 1251: 1247: 1242: 1238: 1233: 1228: 1224: 1220: 1215: 1210: 1207:(1): 155–63, 1206: 1202: 1195: 1192: 1187: 1186: 1181: 1175: 1172: 1167: 1163: 1159: 1155: 1150: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1114: 1112: 1108: 1097: 1093: 1087: 1084: 1079: 1075: 1071: 1067: 1062: 1057: 1053: 1049: 1045: 1037: 1034: 1029: 1025: 1021: 1015: 1011: 1004: 1001: 996: 992: 988: 984: 980: 976: 972: 968: 964: 960: 953: 950: 945: 941: 937: 933: 929: 925: 921: 917: 913: 909: 902: 900: 896: 890: 885: 880: 875: 871: 867: 863: 856: 853: 848: 842: 834: 830: 826: 822: 818: 814: 810: 806: 802: 798: 794: 790: 783: 780: 776: 770: 767: 763: 759: 753: 751: 749: 747: 743: 736: 734: 732: 728: 724: 720: 716: 712: 708: 704: 700: 696: 690: 682: 680: 678: 674: 670: 669:mini-Neptunes 666: 662: 658: 654: 650: 646: 645:spectrographs 642: 638: 633: 631: 628: 624: 620: 617: 613: 609: 605: 597: 595: 593: 589: 585: 581: 576: 572: 567: 563: 555: 553: 549: 543: 539: 531: 529: 527: 523: 522:Venus Express 519: 511: 509: 508: 507:oceans dry up 499: 492: 487: 485: 483: 478: 476: 472: 462: 455: 453: 451: 445: 437: 435: 428: 422: 418: 416: 412: 408: 400: 398: 396: 392: 391:magnetosphere 388: 384: 380: 377: 369: 367: 365: 361: 353: 351: 349: 346: 341: 335: 327: 320: 316: 314: 310: 306: 302: 296: 294: 290: 286: 282: 278: 274: 270: 266: 248: 244: 240: 235: 232: 227: 210: 189: 169: 147: 144: 141: 137: 128: 124: 120: 116: 112: 108: 104: 103:Jeans escape, 96: 89: 85: 83: 75: 73: 71: 67: 63: 59: 55: 51: 47: 43: 39: 36: 32: 19: 2198: 2192: 2159: 2153: 2129: 2119: 2060: 2056: 2045: 2000: 1996: 1986: 1927: 1923: 1912: 1853: 1849: 1842: 1791: 1787: 1780: 1731: 1727: 1721: 1673:(1): 67–90. 1670: 1666: 1660: 1635: 1629: 1623: 1598: 1594: 1588: 1539: 1535: 1525: 1484: 1480: 1473: 1430: 1426: 1416: 1375: 1371: 1365: 1320: 1316: 1306: 1263: 1259: 1204: 1200: 1194: 1183: 1174: 1123: 1119: 1099:. Retrieved 1095: 1086: 1051: 1047: 1036: 1009: 1003: 962: 958: 952: 911: 907: 869: 865: 855: 841:cite journal 795:(5): 36–43. 792: 788: 782: 774: 769: 761: 692: 634: 616:hot Jupiters 601: 559: 556:Titan and Io 550: 535: 515: 500: 496: 482:scale height 479: 468: 447: 432: 404: 373: 357: 337: 297: 293:thermosphere 291:through the 275:, where the 102: 100: 97:Jeans escape 79: 70:habitability 30: 29: 18:Jeans Escape 1487:: 146–157. 1323:(A9): n/a. 872:: L69–L72. 707:sequestered 699:glacial ice 649:ultraviolet 627:Hot Neptune 473:of a large 393:or undergo 376:ultraviolet 345:hot Jupiter 323:atmosphere. 287:, which is 123:temperature 117:of any one 42:outer space 38:atmospheric 2237:Atmosphere 2226:Categories 2070:2106.05273 2010:2207.13099 1937:1805.01298 1863:1506.07541 1680:1807.07609 1348:2381/20747 1101:2019-05-28 1061:2003.03231 1019:0750303255 737:References 727:adsorption 687:See also: 677:HD 63433 c 671:, such as 665:HD 189733b 612:absorption 450:polar wind 444:Polar wind 411:sputtering 407:solar wind 348:HD 209458b 332:See also: 92:molecules. 66:exoplanets 56:overcomes 2184:178360068 2146:855906548 2097:0004-6256 2063:(2): 68. 2037:251104690 2003:(2): 62. 1978:256768682 1962:0028-0836 1888:0028-0836 1826:0004-6361 1801:1003.2206 1756:0028-0836 1713:119333247 1705:0084-6597 1580:245012567 1564:0036-8075 1517:125410604 1509:0019-1035 1457:0036-8075 1357:2156-2202 1298:123628031 1276:CiteSeerX 1214:0801.4031 1185:Space.com 1166:130017139 1158:0084-6597 1078:2169-9380 995:122016496 987:0038-6308 944:125191082 936:1063-7869 817:0036-8733 695:condenses 673:TOI-560 b 657:WASP-107b 623:HD189733b 619:HD209458b 571:bow shock 475:meteoroid 309:gas giant 273:exosphere 265:high tail 162:), mass ( 40:gases to 35:planetary 1970:29720632 1896:26108854 1834:53408874 1764:12634780 1572:34882460 1465:28360326 1400:11536608 1241:10073988 1096:phys.org 1028:33079555 833:19438047 825:26001341 731:regolith 715:oxidized 301:hydrogen 119:molecule 115:velocity 62:molecule 2203:Bibcode 2164:Bibcode 2155:Science 2075:Bibcode 2015:Bibcode 1942:Bibcode 1904:4388969 1868:Bibcode 1806:Bibcode 1794:: A72. 1772:4431311 1736:Bibcode 1685:Bibcode 1640:Bibcode 1603:Bibcode 1544:Bibcode 1536:Science 1489:Bibcode 1435:Bibcode 1427:Science 1408:4285528 1380:Bibcode 1325:Bibcode 1268:Bibcode 1219:Bibcode 1128:Bibcode 967:Bibcode 916:Bibcode 797:Bibcode 701:, when 661:WASP-69 608:transit 379:photons 285:exobase 2182:  2144:  2136:  2095:  2035:  1976:  1968:  1960:  1924:Nature 1902:  1894:  1886:  1850:Nature 1832:  1824:  1770:  1762:  1754:  1728:Nature 1711:  1703:  1631:Icarus 1578:  1570:  1562:  1515:  1507:  1481:Icarus 1463:  1455:  1406:  1398:  1372:Nature 1355:  1296:  1278:  1239:  1164:  1156:  1076:  1026:  1016:  993:  985:  942:  934:  831:  823:  815:  723:ferric 663:b and 641:Helium 630:GJ436b 592:banana 588:sodium 584:plasma 471:impact 465:line). 48:, its 2180:S2CID 2065:arXiv 2033:S2CID 2005:arXiv 1974:S2CID 1932:arXiv 1900:S2CID 1858:arXiv 1830:S2CID 1796:arXiv 1768:S2CID 1709:S2CID 1675:arXiv 1576:S2CID 1513:S2CID 1404:S2CID 1294:S2CID 1237:S2CID 1209:arXiv 1162:S2CID 1056:arXiv 1054:(8). 991:S2CID 940:S2CID 874:arXiv 821:JSTOR 580:torus 562:Titan 538:MAVEN 518:Venus 512:Venus 493:Earth 2142:OCLC 2134:ISBN 2093:ISSN 1966:PMID 1958:ISSN 1892:PMID 1884:ISSN 1822:ISSN 1760:PMID 1752:ISSN 1701:ISSN 1568:PMID 1560:ISSN 1505:ISSN 1461:PMID 1453:ISSN 1396:PMID 1353:ISSN 1154:ISSN 1074:ISSN 1024:OCLC 1014:ISBN 983:ISSN 932:ISSN 847:link 829:PMID 813:ISSN 675:and 625:and 621:and 532:Mars 469:The 2211:doi 2172:doi 2160:259 2083:doi 2061:163 2023:doi 2001:165 1950:doi 1928:557 1876:doi 1854:522 1814:doi 1792:514 1744:doi 1732:422 1693:doi 1648:doi 1636:157 1611:doi 1552:doi 1540:374 1497:doi 1485:315 1443:doi 1431:355 1388:doi 1376:338 1343:hdl 1333:doi 1321:116 1286:doi 1227:doi 1205:386 1144:hdl 1136:doi 1066:doi 1052:125 975:doi 963:129 924:doi 884:doi 870:604 805:doi 793:300 721:of 705:is 364:ion 111:gas 2228:: 2209:. 2199:41 2197:. 2178:. 2170:. 2158:. 2140:. 2118:. 2091:. 2081:. 2073:. 2059:. 2055:. 2031:. 2021:. 2013:. 1999:. 1995:. 1972:. 1964:. 1956:. 1948:. 1940:. 1926:. 1922:. 1898:. 1890:. 1882:. 1874:. 1866:. 1852:. 1828:. 1820:. 1812:. 1804:. 1790:. 1766:. 1758:. 1750:. 1742:. 1730:. 1707:. 1699:. 1691:. 1683:. 1671:47 1669:. 1646:. 1634:. 1609:. 1599:46 1597:. 1574:. 1566:. 1558:. 1550:. 1538:. 1534:. 1511:. 1503:. 1495:. 1483:. 1459:. 1451:. 1441:. 1429:. 1425:. 1402:. 1394:. 1386:. 1374:. 1351:. 1341:. 1331:. 1319:. 1315:. 1292:. 1284:. 1274:. 1264:54 1262:. 1249:^ 1235:, 1225:, 1217:, 1203:, 1182:. 1160:. 1152:. 1142:. 1134:. 1124:21 1122:. 1110:^ 1094:. 1072:. 1064:. 1050:. 1046:. 1022:. 989:. 981:. 973:. 961:. 938:. 930:. 922:. 912:61 910:. 898:^ 882:. 868:. 864:. 843:}} 839:{{ 827:. 819:. 803:. 791:. 760:, 745:^ 679:. 659:, 566:Io 542:Ar 350:. 295:. 2217:. 2213:: 2205:: 2186:. 2174:: 2166:: 2148:. 2124:. 2099:. 2085:: 2077:: 2067:: 2039:. 2025:: 2017:: 2007:: 1980:. 1952:: 1944:: 1934:: 1906:. 1878:: 1870:: 1860:: 1836:. 1816:: 1808:: 1798:: 1774:. 1746:: 1738:: 1715:. 1695:: 1687:: 1677:: 1654:. 1650:: 1642:: 1617:. 1613:: 1605:: 1582:. 1554:: 1546:: 1519:. 1499:: 1491:: 1467:. 1445:: 1437:: 1410:. 1390:: 1382:: 1359:. 1345:: 1335:: 1327:: 1300:. 1288:: 1270:: 1243:. 1229:: 1221:: 1211:: 1168:. 1146:: 1138:: 1130:: 1104:. 1080:. 1068:: 1058:: 1030:. 997:. 977:: 969:: 946:. 926:: 918:: 892:. 886:: 876:: 849:) 835:. 807:: 799:: 546:2 503:2 249:2 245:v 241:m 236:2 233:1 228:= 222:n 219:i 216:k 211:E 190:v 170:m 148:n 145:i 142:k 138:E 20:)

Index

Jeans Escape
planetary
atmospheric
outer space
escape velocity
atmosphere composition
kinetic energy
gravitational energy
molecule
exoplanets
habitability
thermal energy

Sir James Jeans
gas
velocity
molecule
temperature
Maxwell distribution
high tail
escape velocity
exosphere
mean free path
pressure scale height
exobase
limited by diffusion
thermosphere
hydrogen
carbon dioxide
gas giant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.