Knowledge

Jordan–Schur theorem

Source 📝

319:
Die Theorie der Gruppen von endlicher Ordnung, mit Anwendungen auf algebraische Zahlen und Gleichungen sowie auf die Krystallographie, von Andreas Speiser
240: 365: 228: 224: 36: 236: 272: 82: 54: 295: 69: 341: 232: 189: 111: 157: 79: 32: 359: 299: 101: 231:
who replaced the 12 with a 6. Unpublished work on the finite case was also done by
259:
is at least 71, and gave near complete descriptions of the behavior for smaller
149: 20: 332:
Collins, Michael J. (2007). "On Jordan's theorem for complex linear groups".
345: 47: 304:
Representation Theory of Finite Groups and Associative Algebras
321:. New York: Dover Publications. pp. 216–220. 243:, showed that in the finite case, one can take 152:proved a more general result that applies when 16:A mathematical theorem on finite linear groups 8: 306:. John Wiley & Sons. pp. 258–262. 35:. In that form, it states that there is a 31:is a theorem in its original form due to 290: 288: 29:Jordan's theorem on finite linear groups 284: 241:classification of finite simple groups 156:is not assumed to be finite, but just 227:. This was subsequently improved by 7: 14: 93:with the following properties: 1: 192:, who showed that as long as 176:) + 1) − ((8 46:) such that given a finite 382: 188: ≥ 3) is due to 317:Speiser, Andreas (1945). 229:Hans Frederick Blichfeldt 196:is finite, one can take 366:Theorems in group theory 334:Journal of Group Theory 225:prime-counting function 168:) may be taken to be 85:, there is a subgroup 184:A tighter bound (for 346:10.1515/JGT.2007.032 160:. Schur showed that 25:Jordan–Schur theorem 273:Burnside's problem 373: 350: 349: 329: 323: 322: 314: 308: 307: 292: 235:. Subsequently, 233:Boris Weisfeiler 67: 381: 380: 376: 375: 374: 372: 371: 370: 356: 355: 354: 353: 331: 330: 326: 316: 315: 311: 296:Curtis, Charles 294: 293: 286: 281: 269: 251:) = ( 237:Michael Collins 112:normal subgroup 57: 17: 12: 11: 5: 379: 377: 369: 368: 358: 357: 352: 351: 340:(4): 411–423. 324: 309: 300:Reiner, Irving 283: 282: 280: 277: 276: 275: 268: 265: 213: 212: 207:) =  182: 181: 147: 146: 137:) ≤  119: 105: 33:Camille Jordan 27:also known as 15: 13: 10: 9: 6: 4: 3: 2: 378: 367: 364: 363: 361: 347: 343: 339: 335: 328: 325: 320: 313: 310: 305: 301: 297: 291: 289: 285: 278: 274: 271: 270: 266: 264: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 210: 206: 202: 199: 198: 197: 195: 191: 187: 179: 175: 171: 170: 169: 167: 163: 159: 155: 151: 144: 140: 136: 132: 128: 124: 121:The index of 120: 117: 113: 109: 106: 103: 99: 96: 95: 94: 92: 88: 84: 81: 78: 74: 71: 65: 61: 56: 52: 49: 45: 41: 38: 34: 30: 26: 22: 337: 333: 327: 318: 312: 303: 260: 256: 252: 248: 244: 239:, using the 220: 216: 214: 208: 204: 200: 193: 185: 183: 180:) − 1). 177: 173: 165: 161: 153: 148: 142: 138: 134: 130: 126: 122: 115: 107: 97: 90: 86: 76: 72: 63: 59: 50: 43: 39: 28: 24: 18: 255:+ 1)! when 129:satisfies ( 21:mathematics 279:References 70:invertible 223:) is the 360:Category 302:(1962). 267:See also 158:periodic 133: : 83:matrices 48:subgroup 37:function 190:Speiser 102:abelian 80:complex 53:of the 215:where 23:, the 150:Schur 110:is a 55:group 211:! 12 75:-by- 342:doi 172:((8 125:in 114:of 100:is 89:of 68:of 58:GL( 19:In 362:: 338:10 336:. 298:; 287:^ 263:. 145:). 62:, 348:. 344:: 261:n 257:n 253:n 249:n 247:( 245:ƒ 221:n 219:( 217:π 209:n 205:n 203:( 201:ƒ 194:G 186:n 178:n 174:n 166:n 164:( 162:ƒ 154:G 143:n 141:( 139:ƒ 135:H 131:G 127:G 123:H 118:. 116:G 108:H 104:. 98:H 91:G 87:H 77:n 73:n 66:) 64:C 60:n 51:G 44:n 42:( 40:ƒ

Index

mathematics
Camille Jordan
function
subgroup
group
invertible
complex
matrices
abelian
normal subgroup
Schur
periodic
Speiser
prime-counting function
Hans Frederick Blichfeldt
Boris Weisfeiler
Michael Collins
classification of finite simple groups
Burnside's problem


Curtis, Charles
Reiner, Irving
doi
10.1515/JGT.2007.032
Category
Theorems in group theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.