Knowledge (XXG)

k-space in magnetic resonance imaging

Source 📝

28: 1155: 692: 1085: 751:, effects of spatially selective excitation, signal detection coil properties, motion etc.) or nonzero phase due to just physical reasons (such as the different chemical shift of fat and water in gradient echo techniques). 322: 250: 1014: 950: 823: 861: 907: 500: 468: 176: 144: 404: 579: 348: 1124: 368: 721: 569:
is prepared to be proportional simply to a contrast-weighted proton density and thus is a real quantity. In such a case, the signal at two opposite locations in
509:-space has the same number of rows and columns as the final image and is filled with raw data during the scan, usually one line per TR (Repetition Time). 1025: 256: 184: 747:). However, these techniques are approximate due to phase errors in the MRI data which can rarely be completely controlled (due to imperfect 743:) or in the FE (Frequency Encode) direction, allowing for lower sampling frequencies and/or shorter echo times (such a technique is known as 69: 1178:
Twieg D (1983). "The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods".
955: 1260: 528: 1153:, Richard S. Likes, "Moving Gradient Zeugmatography", issued 1981-12-22, assigned to General Electric Company 918: 430:
of this encoded signal results in a representation of the spin density distribution in two dimensions. Thus position (
791: 777:
is present in MRI data acquisition, but is absent in NMR data acquisition. As a result of this difference, the NMR
44: 828: 94:-space is full (at the end of the scan) the data are mathematically processed to produce a final image. Thus 731:-space information is somewhat redundant then, and an image can be reconstructed using only one half of the 866: 555:-space; in this way, different contrast images can be acquired without the need of running full scans. 519:
in the sample at a specific time point after an excitation. Conventional qualitative interpretation of
473: 441: 149: 117: 1150: 380: 1187: 687:{\displaystyle S(-k_{\mathrm {FE} },-k_{\mathrm {PE} })=S^{*}(k_{\mathrm {FE} },k_{\mathrm {PE} })\,} 90:, usually a matrix, in which data from digitized MR signals are stored during data acquisition. When 724: 58: 551:-space is acquired, and subsequent scans are performed for acquiring just the central part of the 735:-space, either in the PE (Phase Encode) direction saving scan time (such a technique is known as 540: 411: 512:
An MR image is a complex-valued map of the spatial distribution of the transverse magnetization
1203: 532: 427: 330: 65:
of the image measured. It was introduced in 1979 by Likes and in 1983 by Ljunggren and Twieg.
62: 1109: 1195: 748: 520: 53: 353: 27: 765:
in all aspects, both being used for raw data storage. The only difference between the MRI
700: 1191: 535:
information of the image, whereas high spatial frequencies (outer peripheral regions of
82:, i.e. an accurately timed sequence of radiofrequency and gradient pulses. In practice, 1254: 78: 1080:{\displaystyle \omega _{\mathrm {r} }=\omega _{\mathrm {0} }+{\bar {\gamma }}rG} 317:{\displaystyle k_{\mathrm {PE} }={\bar {\gamma }}n\Delta G_{\mathrm {PE} }\tau } 111: 17: 245:{\displaystyle k_{\mathrm {FE} }={\bar {\gamma }}G_{\mathrm {FE} }m\Delta t} 1207: 76:-space during an MR measurement in a premeditated scheme controlled by a 1199: 1009:{\displaystyle (\omega _{\mathrm {r} }t)/(\omega _{\mathrm {r} }t)} 35:-space is conjugate symmetric: the imaginary component at opposite 1222:
Principles of nuclear magnetic resonance in one and two dimensions
543:. This is the basis for advanced scanning techniques, such as the 26: 759: 350:
is the sampling time (the reciprocal of sampling frequency),
523:
asserts that low spatial frequencies (near the center of
178:
for "frequency encoding" (FE) and "phase encoding" (PE):
1168:
Ljunggren S. Journal of Magnetic Resonance 1983; 54:338.
422:
is the sample number in the PE direction (also known as
1112: 1028: 958: 921: 869: 831: 794: 703: 582: 476: 444: 383: 356: 333: 259: 187: 152: 120: 945:{\displaystyle {\text{Spin-Echo}}=M_{\mathrm {0} }} 1118: 1079: 1008: 944: 901: 855: 817: 715: 686: 494: 462: 398: 362: 342: 316: 244: 170: 138: 539:-space) contain the information determining the 1220:Ernst RR, Bodenhausen G and Wokaun A (1987), 818:{\displaystyle {\text{FID}}=M_{\mathrm {0} }} 418:is the sample number in the FE direction and 8: 785:signal take different mathematical forms: 1111: 1060: 1059: 1049: 1048: 1034: 1033: 1027: 993: 992: 980: 967: 966: 957: 935: 934: 922: 920: 889: 888: 879: 868: 856:{\displaystyle (\omega _{\mathrm {0} }t)} 840: 839: 830: 808: 807: 795: 793: 707: 702: 683: 670: 669: 652: 651: 638: 618: 617: 597: 596: 581: 482: 481: 475: 450: 449: 443: 385: 384: 382: 355: 332: 301: 300: 279: 278: 265: 264: 258: 223: 222: 207: 206: 193: 192: 186: 158: 157: 151: 126: 125: 119: 39:-space coordinates has the opposite sign. 1142: 547:acquisition, in which a first complete 502:) constitute a Fourier transform pair. 902:{\displaystyle (-t/T_{\mathrm {2} })} 7: 1090:Due to the presence of the gradient 31:For a real image, the corresponding 558:A nice symmetry property exists in 1035: 994: 968: 674: 671: 656: 653: 622: 619: 601: 598: 562:-space if the image magnetization 486: 483: 454: 451: 334: 305: 302: 293: 269: 266: 236: 227: 224: 197: 194: 162: 159: 130: 127: 25: 495:{\displaystyle k_{\mathrm {PE} }} 463:{\displaystyle k_{\mathrm {FE} }} 171:{\displaystyle k_{\mathrm {PE} }} 139:{\displaystyle k_{\mathrm {FE} }} 109:It can be formulated by defining 1106:) is encoded onto the frequency 399:{\displaystyle {\bar {\gamma }}} 72:, complex values are sampled in 1103:spatial frequency information k 1065: 1003: 985: 977: 959: 896: 870: 850: 832: 680: 644: 628: 586: 390: 284: 212: 61:) is obtained as the 2D or 3D 1: 1238:MRI, From picture to proton. 1126:, and at the same time the 86:-space often refers to the 1277: 1261:Magnetic resonance imaging 1224:, Oxford University Press. 45:magnetic resonance imaging 438:) and spatial frequency ( 57:(a mathematical space of 343:{\displaystyle \Delta t} 1119:{\displaystyle \omega } 1120: 1081: 1010: 946: 903: 857: 819: 717: 688: 496: 464: 400: 364: 344: 318: 246: 172: 140: 40: 1151:US patent 4307343 1121: 1097:spatial information r 1082: 1011: 947: 904: 858: 820: 718: 689: 497: 465: 401: 365: 363:{\displaystyle \tau } 345: 319: 247: 173: 141: 88:temporary image space 30: 1243:Hashemi Ray, et al. 1236:McRobbie D., et al. 1110: 1026: 956: 919: 867: 829: 792: 716:{\displaystyle ^{*}} 701: 580: 527:-space) contain the 474: 442: 381: 354: 331: 257: 185: 150: 118: 1192:1983MedPh..10..610T 781:signal and the MRI 773:is that a gradient 725:complex conjugation 370:is the duration of 59:spatial frequencies 1116: 1077: 1006: 942: 899: 853: 815: 713: 684: 492: 460: 412:gyromagnetic ratio 396: 360: 340: 314: 242: 168: 136: 41: 1068: 925: 798: 749:static field shim 428:Fourier Transform 393: 287: 215: 63:Fourier transform 16:(Redirected from 1268: 1225: 1218: 1212: 1211: 1200:10.1118/1.595331 1175: 1169: 1166: 1160: 1159: 1158: 1154: 1147: 1125: 1123: 1122: 1117: 1086: 1084: 1083: 1078: 1070: 1069: 1061: 1055: 1054: 1053: 1040: 1039: 1038: 1015: 1013: 1012: 1007: 999: 998: 997: 984: 973: 972: 971: 951: 949: 948: 943: 941: 940: 939: 926: 923: 908: 906: 905: 900: 895: 894: 893: 883: 862: 860: 859: 854: 846: 845: 844: 824: 822: 821: 816: 814: 813: 812: 799: 796: 722: 720: 719: 714: 712: 711: 697:where the star ( 693: 691: 690: 685: 679: 678: 677: 661: 660: 659: 643: 642: 627: 626: 625: 606: 605: 604: 541:image resolution 521:Fourier Analysis 501: 499: 498: 493: 491: 490: 489: 469: 467: 466: 461: 459: 458: 457: 426:). Then, the 2D- 424:partition number 405: 403: 402: 397: 395: 394: 386: 369: 367: 366: 361: 349: 347: 346: 341: 323: 321: 320: 315: 310: 309: 308: 289: 288: 280: 274: 273: 272: 251: 249: 248: 243: 232: 231: 230: 217: 216: 208: 202: 201: 200: 177: 175: 174: 169: 167: 166: 165: 145: 143: 142: 137: 135: 134: 133: 54:reciprocal space 21: 1276: 1275: 1271: 1270: 1269: 1267: 1266: 1265: 1251: 1250: 1245:MRI, The Basics 1233: 1231:Further reading 1228: 1219: 1215: 1180:Medical Physics 1177: 1176: 1172: 1167: 1163: 1156: 1149: 1148: 1144: 1140: 1108: 1107: 1044: 1029: 1024: 1023: 988: 962: 954: 953: 930: 917: 916: 884: 865: 864: 835: 827: 826: 803: 790: 789: 704: 699: 698: 665: 647: 634: 613: 592: 578: 577: 568: 529:signal to noise 518: 477: 472: 471: 445: 440: 439: 379: 378: 376: 352: 351: 329: 328: 296: 260: 255: 254: 218: 188: 183: 182: 153: 148: 147: 121: 116: 115: 23: 22: 15: 12: 11: 5: 1274: 1272: 1264: 1263: 1253: 1252: 1249: 1248: 1241: 1232: 1229: 1227: 1226: 1213: 1170: 1161: 1141: 1139: 1136: 1130:is renamed as 1115: 1088: 1087: 1076: 1073: 1067: 1064: 1058: 1052: 1047: 1043: 1037: 1032: 1017: 1016: 1005: 1002: 996: 991: 987: 983: 979: 976: 970: 965: 961: 938: 933: 929: 910: 909: 898: 892: 887: 882: 878: 875: 872: 852: 849: 843: 838: 834: 811: 806: 802: 758:is related to 710: 706: 695: 694: 682: 676: 673: 668: 664: 658: 655: 650: 646: 641: 637: 633: 630: 624: 621: 616: 612: 609: 603: 600: 595: 591: 588: 585: 566: 516: 488: 485: 480: 456: 453: 448: 392: 389: 374: 359: 339: 336: 325: 324: 313: 307: 304: 299: 295: 292: 286: 283: 277: 271: 268: 263: 252: 241: 238: 235: 229: 226: 221: 214: 211: 205: 199: 196: 191: 164: 161: 156: 132: 129: 124: 104:reconstruction 79:pulse sequence 24: 14: 13: 10: 9: 6: 4: 3: 2: 1273: 1262: 1259: 1258: 1256: 1246: 1242: 1239: 1235: 1234: 1230: 1223: 1217: 1214: 1209: 1205: 1201: 1197: 1193: 1189: 1186:(5): 610–21. 1185: 1181: 1174: 1171: 1165: 1162: 1152: 1146: 1143: 1137: 1135: 1133: 1129: 1113: 1105: 1104: 1099: 1098: 1093: 1074: 1071: 1062: 1056: 1050: 1045: 1041: 1030: 1022: 1021: 1020: 1000: 989: 981: 974: 963: 936: 931: 927: 915: 914: 913: 890: 885: 880: 876: 873: 847: 841: 836: 809: 804: 800: 788: 787: 786: 784: 780: 776: 772: 768: 764: 761: 757: 752: 750: 746: 742: 738: 734: 730: 726: 708: 705: 666: 662: 648: 639: 635: 631: 614: 610: 607: 593: 589: 583: 576: 575: 574: 572: 565: 561: 556: 554: 550: 546: 542: 538: 534: 530: 526: 522: 515: 510: 508: 503: 478: 446: 437: 433: 429: 425: 421: 417: 413: 409: 387: 373: 357: 337: 311: 297: 290: 281: 275: 261: 253: 239: 233: 219: 209: 203: 189: 181: 180: 179: 154: 122: 114: 113: 107: 105: 101: 98:-space holds 97: 93: 89: 85: 81: 80: 75: 71: 66: 64: 60: 56: 55: 50: 46: 38: 34: 29: 19: 18:K-space (MRI) 1244: 1237: 1221: 1216: 1183: 1179: 1173: 1164: 1145: 1131: 1127: 1102: 1101: 1096: 1095: 1091: 1089: 1018: 911: 782: 778: 774: 770: 769:and the NMR 766: 762: 755: 753: 744: 740: 737:half Fourier 736: 732: 728: 696: 570: 563: 559: 557: 552: 548: 544: 536: 524: 513: 511: 506: 504: 435: 431: 423: 419: 415: 407: 371: 326: 112:wave vectors 110: 108: 103: 102:data before 99: 95: 91: 87: 83: 77: 73: 67: 52: 48: 42: 36: 32: 1128:time-domain 771:time domain 763:time-domain 573:-space is: 505:Typically, 70:MRI physics 47:(MRI), the 1247:2ED. 2004. 1138:References 723:) denotes 51:-space or 1114:ω 1100:(not the 1066:¯ 1063:γ 1046:ω 1031:ω 990:ω 964:ω 924:Spin-Echo 874:− 837:ω 783:spin-echo 745:half echo 741:half scan 709:∗ 640:∗ 611:− 590:− 410:) is the 408:gamma bar 391:¯ 388:γ 358:τ 335:Δ 312:τ 294:Δ 285:¯ 282:γ 237:Δ 213:¯ 210:γ 1255:Category 533:contrast 1208:6646065 1188:Bibcode 1132:k-space 767:k-space 756:k-space 727:. Thus 545:keyhole 1206:  1157:  1094:, the 1019:where 327:where 912:and 1240:2003 1204:PMID 754:MRI 531:and 146:and 1196:doi 952:sin 863:exp 825:cos 797:FID 779:FID 760:NMR 739:or 100:raw 68:In 43:In 1257:: 1202:. 1194:. 1184:10 1182:. 1134:. 567:xy 517:xy 470:, 414:, 377:, 375:PE 106:. 1210:. 1198:: 1190:: 1092:G 1075:G 1072:r 1057:+ 1051:0 1042:= 1036:r 1004:) 1001:t 995:r 986:( 982:/ 978:) 975:t 969:r 960:( 937:0 932:M 928:= 897:) 891:2 886:T 881:/ 877:t 871:( 851:) 848:t 842:0 833:( 810:0 805:M 801:= 775:G 733:k 729:k 681:) 675:E 672:P 667:k 663:, 657:E 654:F 649:k 645:( 636:S 632:= 629:) 623:E 620:P 615:k 608:, 602:E 599:F 594:k 587:( 584:S 571:k 564:M 560:k 553:k 549:k 537:k 525:k 514:M 507:k 487:E 484:P 479:k 455:E 452:F 447:k 436:y 434:, 432:x 420:n 416:m 406:( 372:G 338:t 306:E 303:P 298:G 291:n 276:= 270:E 267:P 262:k 240:t 234:m 228:E 225:F 220:G 204:= 198:E 195:F 190:k 163:E 160:P 155:k 131:E 128:F 123:k 96:k 92:k 84:k 74:k 49:k 37:k 33:k 20:)

Index

K-space (MRI)

magnetic resonance imaging
reciprocal space
spatial frequencies
Fourier transform
MRI physics
pulse sequence
wave vectors
gyromagnetic ratio
Fourier Transform
Fourier Analysis
signal to noise
contrast
image resolution
complex conjugation
static field shim
NMR
US patent 4307343
Bibcode
1983MedPh..10..610T
doi
10.1118/1.595331
PMID
6646065
Category
Magnetic resonance imaging

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.