Knowledge (XXG)

Kuratowski's theorem

Source đź“ť

372: 27: 847:. Every Kuratowski subgraph is a special case of a minor of the same type, and while the reverse is not true, it is not difficult to find a Kuratowski subgraph (of one type or the other) from one of these two forbidden minors; therefore, these two theorems are equivalent. 687:
algorithm to be verified for nonplanar inputs, as it is straightforward to test whether a given subgraph is or is not a Kuratowski subgraph. Usually, non-planar graphs contain a large number of Kuratowski-subgraphs. The extraction of these subgraphs is needed, e.g., in
670:
itself. Therefore, a graph that contains a Kuratowski subgraph cannot be planar. The more difficult direction in proving Kuratowski's theorem is to show that, if a graph is nonplanar, it must contain a Kuratowski subgraph.
845: 746: 620: 513: 361: 273: 142: 891: 812: 587: 480: 328: 240: 101: 668: 648: 557: 533: 453: 433: 297: 213: 172:
in the same plane connecting the points representing their endpoints, such that no two curves intersect except at a common endpoint. Planar graphs are often
20: 1030: 559:. With this notation, Kuratowski's theorem can be expressed succinctly: a graph is planar if and only if it does not have a Kuratowski subgraph. 692:
algorithms for crossing minimization. It is possible to extract a large number of Kuratowski subgraphs in time dependent on their total size.
1054: 1325: 1298: 1264: 1154: 1036: 1001: 57: 863: 851: 300: 1250: 630:. Additionally, subdividing a graph cannot turn a nonplanar graph into a planar graph: if a subdivision of a graph 188: 73: 38: 409: 145: 69: 1032:
Graph Drawing: 15th International Symposium, GD 2007, Sydney, Australia, September 24-26, 2007, Revised Papers
371: 1320: 771:
around 1927. However, as Pontryagin never published his proof, this usage has not spread to other places.
650:
has a planar drawing, the paths of the subdivision form curves that may be used to represent the edges of
108: 1069: 700: 627: 181: 65: 780: 391: 375: 192: 1110: 969: 708: 299:. Equivalently, a finite graph is planar if and only if it does not contain a subgraph that is 1294: 1288: 1280: 1260: 1254: 1218:
Kennedy, John W.; Quintas, Louis V.; Sysło, Maciej M. (1985), "The theorem on planar graphs",
1050: 997: 991: 684: 276: 817: 718: 592: 485: 333: 245: 114: 1227: 1201: 1166: 1088: 1040: 959: 922: 1178: 934: 869: 790: 565: 458: 306: 218: 79: 1174: 1026: 1021:; Schmidt, Jens M. (2007), "Efficient extraction of multiple Kuratowski subdivisions", in 930: 379: 165: 1284: 1246: 1073: 768: 689: 653: 633: 623: 542: 518: 438: 418: 282: 198: 104: 148:
on six vertices, three of which connect to each of the other three, also known as the
1314: 1232: 1205: 1022: 987: 173: 149: 1018: 973: 948:
Williamson, S. G. (September 1984), "Depth-first search and Kuratowski subgraphs",
756: 383: 177: 169: 161: 61: 49: 1045: 1132: 1106: 910: 784: 749: 712: 704: 680: 68:. It states that a finite graph is planar if and only if it does not contain a 926: 683:, as measured by the size of the input graph. This allows the correctness of a 26: 1135:(1930), "Über plättbare Dreiergraphen und Potenzen nichtplättbarer Graphen", 752:
in 1930. Since then, several new proofs of the theorem have been discovered.
1192:
Burstein, Michael (1978), "Kuratowski-Pontrjagin theorem on planar graphs",
1092: 1170: 711:, also in 1930, but their proof was never published. The special case of 964: 1293:, Graduate Texts in Mathematics, vol. 244, Springer, p. 269, 703:
published his theorem in 1930. The theorem was independently proved by
275:, and then possibly add additional edges and vertices, to form a graph 195:
of one or more edges. Kuratowski's theorem states that a finite graph
950: 184:
this makes no difference to their graph-theoretic characterization.
370: 715:
planar graphs (for which the only minimal forbidden subgraph is
164:
is a graph whose vertices can be represented by points in the
866:, that 5-connected nonplanar graphs contain a subdivision of 679:
A Kuratowski subgraph of a nonplanar graph can be found in
191:
of a graph is a graph formed by subdividing its edges into
993:
LEDA: A Platform for Combinatorial and Geometric Computing
215:
is planar if it is not possible to subdivide the edges of
767:, as the theorem was reportedly proved independently by 872: 820: 793: 721: 656: 636: 595: 568: 545: 521: 488: 461: 441: 421: 336: 309: 285: 248: 221: 201: 117: 82: 1074:"Sur le problème des courbes gauches en topologie" 885: 839: 806: 740: 662: 642: 614: 581: 551: 527: 507: 474: 447: 427: 355: 322: 291: 267: 234: 207: 136: 95: 1137:Anzeiger der Akademie der Wissenschaften in Wien 759:, Kuratowski's theorem was known as either the 1039:, vol. 4875, Springer, pp. 159–170, 915:Proceedings of the London Mathematical Society 8: 996:, Cambridge University Press, p. 510, 783:, characterizes the planar graphs by their 622:are nonplanar, as may be shown either by a 44:(9,2), showing that the graph is nonplanar. 787:in terms of the same two forbidden graphs 1231: 1194:Journal of Combinatorial Theory, Series B 1113:(1930), "Irreducible non-planar graphs", 1044: 963: 877: 871: 825: 819: 798: 792: 726: 720: 655: 635: 600: 594: 573: 567: 544: 520: 493: 487: 466: 460: 440: 420: 341: 335: 314: 308: 284: 253: 247: 226: 220: 200: 122: 116: 87: 81: 1259:(5th ed.), CRC Press, p. 237, 168:, and whose edges can be represented by 25: 19:For the point-set topology theorem, see 902: 21:Kuratowski's closure-complement problem 16:On forbidden subgraphs in planar graphs 7: 435:is a graph that contains a subgraph 748:) was also independently proved by 14: 1037:Lecture Notes in Computer Science 180:representing their edges, but by 1157:(1981), "Kuratowski's theorem", 58:forbidden graph characterization 913:(1963), "How to draw a graph", 1: 765:Kuratowski–Pontryagin theorem 761:Pontryagin–Kuratowski theorem 1233:10.1016/0315-0860(85)90045-X 1206:10.1016/0095-8956(78)90024-2 1046:10.1007/978-3-540-77537-9_17 1342: 864:Kelmans–Seymour conjecture 779:A closely related result, 39:generalized Petersen graph 18: 852:Robertson–Seymour theorem 626:or an argument involving 455:that is a subdivision of 1326:Theorems in graph theory 990:; Näher, Stefan (1999), 927:10.1112/plms/s3-13.1.743 675:Algorithmic implications 146:complete bipartite graph 1159:Journal of Graph Theory 1093:10.4064/fm-15-1-271-283 840:{\displaystyle K_{3,3}} 741:{\displaystyle K_{3,3}} 615:{\displaystyle K_{3,3}} 508:{\displaystyle K_{3,3}} 356:{\displaystyle K_{3,3}} 268:{\displaystyle K_{3,3}} 137:{\displaystyle K_{3,3}} 1171:10.1002/jgt.3190050304 887: 841: 808: 742: 664: 644: 616: 583: 553: 529: 509: 476: 449: 429: 412: 357: 324: 293: 269: 236: 209: 138: 97: 45: 1256:Graphs & Digraphs 1070:Kuratowski, Kazimierz 888: 886:{\displaystyle K_{5}} 842: 809: 807:{\displaystyle K_{5}} 743: 665: 645: 617: 584: 582:{\displaystyle K_{5}} 554: 530: 510: 477: 475:{\displaystyle K_{5}} 450: 430: 374: 358: 325: 323:{\displaystyle K_{5}} 294: 270: 237: 235:{\displaystyle K_{5}} 210: 139: 98: 96:{\displaystyle K_{5}} 29: 1220:Historia Mathematica 870: 850:An extension is the 818: 791: 719: 701:Kazimierz Kuratowski 654: 634: 593: 566: 543: 519: 486: 459: 439: 419: 367:Kuratowski subgraphs 334: 307: 283: 246: 219: 199: 115: 80: 66:Kazimierz Kuratowski 54:Kuratowski's theorem 1115:Bulletin of the AMS 1029:; Quan, Wu (eds.), 965:10.1145/1634.322451 537:Kuratowski subgraph 394:and finding either 376:Proof without words 1249:; Lesniak, Linda; 1155:Thomassen, Carsten 883: 837: 804: 738: 660: 640: 612: 579: 549: 525: 505: 472: 445: 425: 413: 353: 320: 289: 265: 232: 205: 134: 93: 56:is a mathematical 46: 1056:978-3-540-77536-2 1017:Chimani, Markus; 685:planarity testing 663:{\displaystyle G} 643:{\displaystyle G} 552:{\displaystyle G} 528:{\displaystyle H} 448:{\displaystyle H} 428:{\displaystyle G} 392:Wagner's theorems 292:{\displaystyle G} 208:{\displaystyle G} 30:A subdivision of 1333: 1305: 1303: 1277: 1271: 1269: 1243: 1237: 1236: 1235: 1215: 1209: 1208: 1189: 1183: 1181: 1151: 1145: 1144: 1129: 1123: 1122: 1103: 1097: 1095: 1078: 1066: 1060: 1059: 1048: 1027:Nishizeki, Takao 1014: 1008: 1006: 984: 978: 976: 967: 945: 939: 937: 917:, Third Series, 907: 892: 890: 889: 884: 882: 881: 846: 844: 843: 838: 836: 835: 813: 811: 810: 805: 803: 802: 781:Wagner's theorem 747: 745: 744: 739: 737: 736: 669: 667: 666: 661: 649: 647: 646: 641: 621: 619: 618: 613: 611: 610: 588: 586: 585: 580: 578: 577: 558: 556: 555: 550: 534: 532: 531: 526: 514: 512: 511: 506: 504: 503: 481: 479: 478: 473: 471: 470: 454: 452: 451: 446: 434: 432: 431: 426: 362: 360: 359: 354: 352: 351: 329: 327: 326: 321: 319: 318: 298: 296: 295: 290: 274: 272: 271: 266: 264: 263: 241: 239: 238: 233: 231: 230: 214: 212: 211: 206: 143: 141: 140: 135: 133: 132: 102: 100: 99: 94: 92: 91: 1341: 1340: 1336: 1335: 1334: 1332: 1331: 1330: 1311: 1310: 1309: 1308: 1301: 1279: 1278: 1274: 1267: 1247:Chartrand, Gary 1245: 1244: 1240: 1217: 1216: 1212: 1191: 1190: 1186: 1153: 1152: 1148: 1131: 1130: 1126: 1105: 1104: 1100: 1076: 1068: 1067: 1063: 1057: 1016: 1015: 1011: 1004: 986: 985: 981: 947: 946: 942: 909: 908: 904: 899: 873: 868: 867: 860: 821: 816: 815: 794: 789: 788: 777: 775:Related results 722: 717: 716: 698: 677: 652: 651: 632: 631: 628:Euler's formula 596: 591: 590: 569: 564: 563: 562:The two graphs 541: 540: 517: 516: 489: 484: 483: 462: 457: 456: 437: 436: 417: 416: 407: 400: 380:hypercube graph 369: 337: 332: 331: 310: 305: 304: 281: 280: 249: 244: 243: 222: 217: 216: 197: 196: 166:Euclidean plane 158: 118: 113: 112: 83: 78: 77: 36: 24: 17: 12: 11: 5: 1339: 1337: 1329: 1328: 1323: 1313: 1312: 1307: 1306: 1299: 1272: 1265: 1238: 1226:(4): 356–368, 1210: 1200:(2): 228–232, 1184: 1165:(3): 225–241, 1146: 1124: 1111:Smith, Paul A. 1098: 1061: 1055: 1023:Hong, Seok-Hee 1009: 1002: 988:Mehlhorn, Kurt 979: 958:(4): 681–693, 940: 901: 900: 898: 895: 894: 893: 880: 876: 859: 856: 834: 831: 828: 824: 801: 797: 776: 773: 769:Lev Pontryagin 735: 732: 729: 725: 697: 694: 690:branch and cut 676: 673: 659: 639: 609: 606: 603: 599: 576: 572: 548: 535:is known as a 524: 502: 499: 496: 492: 469: 465: 444: 424: 405: 398: 368: 365: 350: 347: 344: 340: 317: 313: 288: 262: 259: 256: 252: 229: 225: 204: 182:Fáry's theorem 176:with straight 157: 154: 131: 128: 125: 121: 105:complete graph 90: 86: 64:, named after 34: 15: 13: 10: 9: 6: 4: 3: 2: 1338: 1327: 1324: 1322: 1321:Planar graphs 1319: 1318: 1316: 1302: 1300:9781846289699 1296: 1292: 1291: 1286: 1285:Murty, U.S.R. 1282: 1276: 1273: 1268: 1266:9781439826270 1262: 1258: 1257: 1252: 1248: 1242: 1239: 1234: 1229: 1225: 1221: 1214: 1211: 1207: 1203: 1199: 1195: 1188: 1185: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1150: 1147: 1142: 1138: 1134: 1128: 1125: 1120: 1116: 1112: 1108: 1102: 1099: 1094: 1090: 1086: 1083:(in French), 1082: 1075: 1071: 1065: 1062: 1058: 1052: 1047: 1042: 1038: 1034: 1033: 1028: 1024: 1020: 1019:Mutzel, Petra 1013: 1010: 1005: 1003:9780521563291 999: 995: 994: 989: 983: 980: 975: 971: 966: 961: 957: 953: 952: 944: 941: 936: 932: 928: 924: 920: 916: 912: 906: 903: 896: 878: 874: 865: 862: 861: 857: 855: 853: 848: 832: 829: 826: 822: 799: 795: 786: 782: 774: 772: 770: 766: 762: 758: 753: 751: 733: 730: 727: 723: 714: 710: 706: 702: 695: 693: 691: 686: 682: 674: 672: 657: 637: 629: 625: 624:case analysis 607: 604: 601: 597: 574: 570: 560: 546: 538: 522: 500: 497: 494: 490: 467: 463: 442: 422: 411: 404: 397: 393: 389: 385: 381: 377: 373: 366: 364: 348: 345: 342: 338: 315: 311: 302: 286: 278: 260: 257: 254: 250: 227: 223: 202: 194: 190: 185: 183: 179: 178:line segments 175: 171: 170:simple curves 167: 163: 155: 153: 151: 150:utility graph 147: 129: 126: 123: 119: 110: 106: 88: 84: 75: 71: 67: 63: 62:planar graphs 59: 55: 51: 43: 40: 33: 28: 22: 1290:Graph Theory 1289: 1281:Bondy, J. A. 1275: 1255: 1241: 1223: 1219: 1213: 1197: 1193: 1187: 1162: 1158: 1149: 1140: 1136: 1133:Menger, Karl 1127: 1118: 1114: 1107:Frink, Orrin 1101: 1084: 1080: 1064: 1031: 1012: 992: 982: 955: 949: 943: 918: 914: 911:Tutte, W. T. 905: 849: 778: 764: 760: 757:Soviet Union 754: 699: 678: 561: 536: 414: 402: 395: 388:Kuratowski's 387: 301:homeomorphic 186: 162:planar graph 159: 53: 50:graph theory 47: 41: 31: 1251:Zhang, Ping 1087:: 271–283, 1081:Fund. Math. 921:: 743–767, 750:Karl Menger 705:Orrin Frink 681:linear time 189:subdivision 74:subdivision 1315:Categories 897:References 709:Paul Smith 384:non-planar 277:isomorphic 72:that is a 410:subgraphs 408:(bottom) 401:(top) or 156:Statement 1287:(2008), 1253:(2010), 1072:(1930), 858:See also 111:) or of 109:vertices 107:on five 70:subgraph 1179:0625064 1143:: 85–86 974:8348222 935:0158387 763:or the 755:In the 696:History 515:, then 378:that a 37:in the 1297:  1263:  1177:  1053:  1000:  972:  951:J. ACM 933:  785:minors 386:using 1121:: 214 1077:(PDF) 970:S2CID 713:cubic 193:paths 174:drawn 103:(the 1295:ISBN 1261:ISBN 1051:ISBN 998:ISBN 814:and 707:and 589:and 1228:doi 1202:doi 1167:doi 1089:doi 1041:doi 960:doi 923:doi 539:of 482:or 415:If 406:3,3 390:or 382:is 330:or 303:to 279:to 242:or 152:). 144:(a 76:of 60:of 48:In 35:3,3 1317:: 1283:; 1224:12 1222:, 1198:24 1196:, 1175:MR 1173:, 1161:, 1141:67 1139:, 1119:36 1117:, 1109:; 1085:15 1079:, 1049:, 1035:, 1025:; 968:, 956:31 954:, 931:MR 929:, 919:13 854:. 363:. 187:A 160:A 52:, 1304:. 1270:. 1230:: 1204:: 1182:. 1169:: 1163:5 1096:. 1091:: 1043:: 1007:. 977:. 962:: 938:. 925:: 879:5 875:K 833:3 830:, 827:3 823:K 800:5 796:K 734:3 731:, 728:3 724:K 658:G 638:G 608:3 605:, 602:3 598:K 575:5 571:K 547:G 523:H 501:3 498:, 495:3 491:K 468:5 464:K 443:H 423:G 403:K 399:5 396:K 349:3 346:, 343:3 339:K 316:5 312:K 287:G 261:3 258:, 255:3 251:K 228:5 224:K 203:G 130:3 127:, 124:3 120:K 89:5 85:K 42:G 32:K 23:.

Index

Kuratowski's closure-complement problem

generalized Petersen graph
graph theory
forbidden graph characterization
planar graphs
Kazimierz Kuratowski
subgraph
subdivision
complete graph
vertices
complete bipartite graph
utility graph
planar graph
Euclidean plane
simple curves
drawn
line segments
Fáry's theorem
subdivision
paths
isomorphic
homeomorphic

Proof without words
hypercube graph
non-planar
Kuratowski's
Wagner's theorems
subgraphs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑