Knowledge (XXG)

Kasha's rule

Source đź“ť

20: 400:
of luminescence is generally independent of the excitation wavelength. This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively. Again there are exceptions: for example
301:. The greater the overlap, the more quickly the molecule can undergo a transition from the higher to the lower level. Overlap between pairs is greatest when the two vibrational levels are close in energy; this tends to be the case when the 309:
is zero) are close. In most molecules, the vibrationless levels of the excited states all lie close together, so molecules in upper states quickly reach the lowest excited state,
162: 585: 454: 282:. Since only one state is expected to yield emission, an equivalent statement of the rule is that the emission wavelength is independent of the excitation wavelength. 192: 51: 132: 105: 78: 134:) or on one of the vibrational sub-levels. Vibrational relaxation then takes place between excited levels, which leads to dissipation of part of the energy ( 164:), taking the form of a transition (internal conversion) towards the lowest excited level. Energy is then dissipated by emission of a photon of energy 434: 630: 611: 528: 503: 331: 518: 286: 640: 493: 393: 218: 635: 337:
Exceptions to Kasha's rule arise when there are large energy gaps between excited states. An example is
602: 290: 137: 568: 305:
levels of the electronic states coupled by the transition (where the vibrational quantum number
592:. Compiled by McNaught, A.D. and Wilkinson, A. Blackwell Scientific Publications, Oxford, 1997. 470: 461:. Compiled by McNaught, A.D. and Wilkinson, A. Blackwell Scientific Publications, Oxford, 1997. 167: 26: 607: 560: 524: 499: 234: 550: 541:
Dunlop, David; Ludvíková, Lucie; Banerjee, Ambar; Ottosson, Henrik; Slanina, Tomáš (2023).
110: 83: 56: 417:, the difference between the absorption and emission frequencies, related to Kasha's rule. 294: 214: 202: 330:
is greater, so here fluorescence occurs, since it is now kinetically competitive with
624: 572: 397: 297:, the Franck–Condon factor expresses the degree of overlap between their vibrational 249: 222: 206: 414: 370: 298: 293:. For a given pair of energy levels that differ in both vibrational and electronic 268: 238: 210: 590:
Kasha–Vavilov rule – Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")
253: 237:
of an excited molecule. Upon absorbing a photon, a molecule in its electronic
543:"Excited-State (Anti)Aromaticity Explains Why Azulene Disobeys Kasha's Rule" 355:
states lie sufficiently far apart that fluorescence is observed mostly from
275:
state) is expected in appreciable yield only from the lowest excited state,
217:) occurs in appreciable yield only from the lowest excited state of a given 564: 459:
Kasha rule – Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")
19: 555: 542: 381: 589: 458: 402: 338: 316:, before they have time to fluoresce. However, the energy gap between 471:"Unusual autofluorescence characteristic of cultured red-rain cells" 362:. In 2023, an explanation was proposed which pointed out that the 256:– be excited to any of a set of higher electronic states (denoted 474: 435:
Characterization of Electronic Transitions in Complex Molecules
495:
Photochemistry of Organic Compounds: From Concepts to Practice
194:, which allows the system to go back to its fundamental state. 523:. Suppan, P. Royal Society of Chemistry, 1994. p.56. 498:. Klán, P. and Wirz, J. Wiley-Blackwell, 2009. p.40. 170: 140: 113: 86: 59: 29: 53:
excites an electron of fundamental level, of energy
186: 156: 126: 99: 72: 45: 209:molecules. The rule states that photon emission ( 23:Scheme of Kasha's rule. A photon with energy 8: 267:>0). However, according to Kasha's rule, 221:. It is named after American spectroscopist 233:The rule is relevant in understanding the 554: 473:. Louis, J. and Kumar, A.S. Presented in 178: 169: 148: 139: 118: 112: 91: 85: 64: 58: 37: 28: 547:Journal of the American Chemical Society 514: 512: 341:: the classical explanation is that the 18: 606:Gispert, J.R. Wiley-VCH, 2008. p. 483. 427: 271:(termed fluorescence in the case of an 489: 487: 485: 483: 80:, up to an excited energy level (e.g. 7: 392:A corollary of Kasha's rule is the 439:Discussions of the Faraday Society 141: 14: 285:The rule can be explained by the 252:) may – depending on the photon 1: 396:rule, which states that the 157:{\displaystyle \Delta E_{d}} 229:Description and explanation 225:, who proposed it in 1950. 657: 477:Conference 7097, Aug 2008. 187:{\displaystyle h\nu _{2}} 46:{\displaystyle h\nu _{1}} 631:Eponymous chemical rules 603:Coordination Chemistry 207:electronically excited 201:is a principle in the 195: 188: 158: 128: 101: 74: 47: 287:Franck–Condon factors 189: 159: 129: 127:{\displaystyle E_{2}} 102: 100:{\displaystyle E_{1}} 75: 73:{\displaystyle E_{0}} 48: 22: 16:Law of photochemistry 556:10.1021/jacs.3c07625 373:character while the 291:vibronic transitions 168: 138: 111: 84: 57: 27: 520:Chemistry and Light 332:internal conversion 369:excited state has 196: 184: 154: 124: 97: 70: 43: 641:Quantum chemistry 380:excited state is 235:emission spectrum 648: 615: 599: 593: 583: 577: 576: 558: 538: 532: 516: 507: 491: 478: 468: 462: 452: 446: 432: 193: 191: 190: 185: 183: 182: 163: 161: 160: 155: 153: 152: 133: 131: 130: 125: 123: 122: 106: 104: 103: 98: 96: 95: 79: 77: 76: 71: 69: 68: 52: 50: 49: 44: 42: 41: 656: 655: 651: 650: 649: 647: 646: 645: 621: 620: 619: 618: 600: 596: 584: 580: 540: 539: 535: 517: 510: 492: 481: 469: 465: 453: 449: 433: 429: 424: 411: 390: 379: 368: 361: 354: 347: 329: 322: 315: 295:quantum numbers 281: 269:photon emission 262: 247: 231: 215:phosphorescence 174: 166: 165: 144: 136: 135: 114: 109: 108: 87: 82: 81: 60: 55: 54: 33: 25: 24: 17: 12: 11: 5: 654: 652: 644: 643: 638: 633: 623: 622: 617: 616: 594: 578: 533: 508: 479: 463: 447: 426: 425: 423: 420: 419: 418: 410: 407: 389: 386: 377: 366: 359: 352: 345: 327: 320: 313: 279: 260: 245: 230: 227: 203:photochemistry 181: 177: 173: 151: 147: 143: 121: 117: 94: 90: 67: 63: 40: 36: 32: 15: 13: 10: 9: 6: 4: 3: 2: 653: 642: 639: 637: 634: 632: 629: 628: 626: 613: 612:3-527-31802-X 609: 605: 604: 598: 595: 591: 587: 582: 579: 574: 570: 566: 562: 557: 552: 548: 544: 537: 534: 530: 529:0-85186-814-2 526: 522: 521: 515: 513: 509: 505: 504:1-4051-6173-6 501: 497: 496: 490: 488: 486: 484: 480: 476: 472: 467: 464: 460: 456: 451: 448: 444: 440: 436: 431: 428: 421: 416: 413: 412: 408: 406: 404: 399: 398:quantum yield 395: 387: 385: 383: 376: 372: 365: 358: 351: 344: 340: 335: 333: 326: 319: 312: 308: 304: 303:vibrationless 300: 299:wavefunctions 296: 292: 288: 283: 278: 274: 270: 266: 259: 255: 251: 250:singlet state 248:, assuming a 244: 240: 236: 228: 226: 224: 223:Michael Kasha 220: 216: 212: 208: 204: 200: 179: 175: 171: 149: 145: 119: 115: 92: 88: 65: 61: 38: 34: 30: 21: 636:Luminescence 601: 597: 581: 546: 536: 519: 494: 466: 450: 442: 438: 437:. Kasha, M. 430: 415:Stokes shift 391: 388:Vavilov rule 374: 371:antiaromatic 363: 356: 349: 342: 336: 324: 317: 310: 306: 302: 284: 276: 272: 264: 257: 242: 239:ground state 232: 219:multiplicity 211:fluorescence 199:Kasha's rule 198: 197: 625:Categories 445:: p.14-19. 422:References 254:wavelength 573:261808767 241:(denoted 176:ν 142:Δ 35:ν 565:37704031 441:, 1950, 409:See also 405:vapour. 382:aromatic 403:benzene 394:Vavilov 339:azulene 610:  571:  563:  527:  502:  334:(IC). 263:where 586:IUPAC 569:S2CID 455:IUPAC 608:ISBN 561:PMID 525:ISBN 500:ISBN 475:SPIE 348:and 323:and 289:for 551:doi 213:or 205:of 107:or 627:: 588:. 567:. 559:. 549:. 545:. 511:^ 482:^ 457:. 384:. 614:. 575:. 553:: 531:. 506:. 443:9 378:2 375:S 367:1 364:S 360:2 357:S 353:2 350:S 346:1 343:S 328:0 325:S 321:1 318:S 314:1 311:S 307:v 280:1 277:S 273:S 265:n 261:n 258:S 246:0 243:S 180:2 172:h 150:d 146:E 120:2 116:E 93:1 89:E 66:0 62:E 39:1 31:h

Index


photochemistry
electronically excited
fluorescence
phosphorescence
multiplicity
Michael Kasha
emission spectrum
ground state
singlet state
wavelength
photon emission
Franck–Condon factors
vibronic transitions
quantum numbers
wavefunctions
internal conversion
azulene
antiaromatic
aromatic
Vavilov
quantum yield
benzene
Stokes shift
Characterization of Electronic Transitions in Complex Molecules
IUPAC
Kasha rule – Compendium of Chemical Terminology, 2nd ed. (the "Gold Book")
"Unusual autofluorescence characteristic of cultured red-rain cells"
SPIE

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑