Knowledge (XXG)

Franck–Condon principle

Source 📝

2389:. Franck–Condon principles can be applied when the interactions between the chromophore and the surrounding solvent molecules are different in the ground and in the excited electronic state. This change in interaction can originate, for example, due to different dipole moments in these two states. If the chromophore starts in its ground state and is close to equilibrium with the surrounding solvent molecules and then absorbs a photon that takes it to the excited state, its interaction with the solvent will be far from equilibrium in the excited state. This effect is analogous to the original Franck–Condon principle: the electronic transition is very fast compared with the motion of nuclei—the rearrangement of solvent molecules in the case of solvation. We now speak of a vertical transition, but now the horizontal coordinate is solvent-solute interaction space. This coordinate axis is often labeled as "Solvation Coordinate" and represents, somewhat abstractly, all of the relevant dimensions of motion of all of the interacting solvent molecules. 1712: 2420:
equilibrium. The rearrangement of the solvent molecules according to the new potential energy curve is represented by the curved arrows in Figure 7. Note that while the electronic transitions are quantized, the chromophore-solvent interaction energy is treated as a classical continuum due to the large number of molecules involved. Although emission is depicted as taking place from the minimum of the excited state chromophore-solvent interaction potential, significant emission can take place before equilibrium is reached when the viscosity of the solvent is high, or the lifetime of the excited state is short. The energy difference between absorbed and emitted photons depicted in Figure 7 is the solvation contribution to the
1280: 1707:{\displaystyle =\underbrace {\int \psi _{v}'^{*}\psi _{v}\,d\tau _{n}} _{\displaystyle {{\text{Franck–Condon}} \atop {\text{factor}}}}\underbrace {\int \psi _{e}'^{*}{\boldsymbol {\mu }}_{e}\psi _{e}\,d\tau _{e}} _{\displaystyle {{\text{orbital}} \atop {\text{selection rule}}}}\underbrace {\int \psi _{s}'^{*}\psi _{s}\,d\tau _{s}} _{\displaystyle {{\text{spin}} \atop {\text{selection rule}}}}+\underbrace {\int \psi _{e}'^{*}\psi _{e}\,d\tau _{e}} _{\displaystyle 0}\int \psi _{v}'^{*}{\boldsymbol {\mu }}_{N}\psi _{v}\,d\tau _{v}\int \psi _{s}'^{*}\psi _{s}\,d\tau _{s}.} 190:. High-energy photon absorption leads to a transition to a higher electronic state instead of dissociation. In examining how much vibrational energy a molecule could acquire when it is excited to a higher electronic level, and whether this vibrational energy could be enough to immediately break apart the molecule, he drew three diagrams representing the possible changes in binding energy between the lowest electronic state and higher electronic states. 186:
photoproducts in a single step, the absorption of a photon, and without a collision. In order for a molecule to break apart, it must acquire from the photon a vibrational energy exceeding the dissociation energy, that is, the energy to break a chemical bond. However, as was known at the time, molecules will only absorb energy corresponding to allowed quantum transitions, and there are no vibrational levels above the dissociation energy level of the
2346: 1026: 2217: 20: 65: 53: 1274: 132:= 0 vibrational level of the ground electronic state and upon absorbing a photon of the necessary energy, makes a transition to the excited electronic state. The electron configuration of the new state may result in a shift of the equilibrium position of the nuclei constituting the molecule. In Figure 3 this shift in nuclear coordinates between the ground and the first excited state is labeled as 254: 1955: 2213:) and their environment. Franck–Condon metaphors are appropriate because molecules often interact strongly with surrounding molecules, particularly in liquids and solids, and these interactions modify the nuclear coordinates of the chromophore in ways closely analogous to the molecular vibrations considered by the Franck–Condon principle. 778: 538: 2357:
Franck–Condon considerations can also be applied to the electronic transitions of chromophores dissolved in liquids. In this use of the Franck–Condon metaphor, the vibrational levels of the chromophores, as well as interactions of the chromophores with phonons in the liquid, continue to contribute to
2148:
modulates the intensity of transitions, i.e., it contributes with a factor on the order of 1 to the intensity of bands whose order of magnitude is determined by the other selection rules. The table below gives the range of extinction coefficients for the possible combinations of allowed and forbidden
168:
potential of simple harmonic oscillators, in more realistic potentials, such as those shown in Figure 1, energy spacing decreases with increasing vibrational energy. Electronic transitions to and from the lowest vibrational states are often referred to as 0–0 (zero zero) transitions and have the same
2262:
level of the excited state to the zero-phonon level of the ground state or to higher phonon levels of the ground state. Just like in the Franck–Condon principle, the probability of transitions involving phonons is determined by the overlap of the phonon wavefunctions at the initial and final energy
159:
The applicability of the Franck–Condon principle in both absorption and fluorescence, along with Kasha's rule leads to an approximate mirror symmetry shown in Figure 2. The vibrational structure of molecules in a cold, sparse gas is most clearly visible due to the absence of inhomogeneous broadening
144:
proportional to the square of the (vertical) overlap of the vibrational wavefunctions of the original and final state (see Quantum mechanical formulation section below). In the electronic excited state molecules quickly relax to the lowest vibrational level of the lowest electronic excitation state (
98:
Classically, the Franck–Condon principle is the approximation that an electronic transition is most likely to occur without changes in the positions of the nuclei in the molecular entity and its environment. The resulting state is called a Franck–Condon state, and the transition involved, a vertical
59:
Schematic representation of the absorption and fluorescence spectra corresponding to the energy diagram in Figure 1. The symmetry is due to the equal shape of the ground and excited state potential wells. The narrow lines can usually only be observed in the spectra of dilute gases. The darker curves
26:
Franck–Condon principle energy diagram. Since electronic transitions are very fast compared with nuclear motions, the vibrational states to and from which absorption and emission occur are those that correspond to a minimal change in the nuclear coordinates. As a result, both absorption and emission
1032: 241:
article titled "A Theory of Intensity Distribution in Band Systems". Here he formulates the semiclassical formulation in a manner quite similar to its modern form. The first joint reference to both Franck and Condon in regard to the new principle appears in the same 1926 issue of Physical Review in
2257:
vibrations) with the electronic transitions of chromophores embedded as impurities in the lattice. In this situation, transitions to higher electronic levels can take place when the energy of the photon corresponds to the purely electronic transition energy or to the purely electronic transition
1729: 185:
was concerned with the mechanisms of photon-induced chemical reactions. The presumed mechanism was the excitation of a molecule by a photon, followed by a collision with another molecule during the short period of excitation. The question was whether it was possible for a molecule to break into
2392:
In the original Franck–Condon principle, after the electronic transition, the molecules which end up in higher vibrational states immediately begin to relax to the lowest vibrational state. In the case of solvation, the solvent molecules will immediately try to rearrange themselves in order to
2133:
electronic transitions along with the incomplete validity of the factorization of the total wavefunction into nuclear, electronic spatial and spin wavefunctions means that the selection rules, including the Franck–Condon factor, are not strictly observed. For any given transition, the value of
143:
molecule the nuclear coordinates axis refers to the internuclear separation. The vibronic transition is indicated by a vertical arrow due to the assumption of constant nuclear coordinates during the transition. The probability that the molecule can end up in any particular vibrational level is
647: 2419:
function. The solvent-chromophore interaction is drawn as a parabolic potential in both electronic states. Since the electronic transition is essentially instantaneous on the time scale of solvent motion (vertical arrow), the collection of excited state chromophores is immediately far from
2209:
coordinates of the atoms constituting the molecule do not have time to change during the very brief amount of time involved in an electronic transition. However, this physical intuition can be, and is indeed, routinely extended to interactions between light-absorbing or emitting molecules (
2208:
The Franck–Condon principle, in its canonical form, applies only to changes in the vibrational levels of a molecule in the course of a change in electronic levels by either absorption or emission of a photon. The physical intuition of this principle is anchored by the idea that the nuclear
43:
The Franck-Condon Principle describes the intensities of vibronic transitions, or the absorption or emission of a photon. It states that when a molecule is undergoing an electronic transition, such as ionization, the nuclear configuration of the molecule experiences no significant change.
71:
Semiclassical pendulum analogy of the Franck–Condon principle. Vibronic transitions are allowed at the classical turning points because both the momentum and the nuclear coordinates correspond in the two represented energy levels. In this illustration, the 0–2 vibrational transitions are
2414:
is illuminated by light corresponding to the electronic transition energy, some of the chromophores will move to the excited state. Within this group of chromophores there will be a statistical distribution of solvent-chromophore interaction energies, represented in the figure by a
2487: 2352:
Energy diagram illustrating the Franck–Condon principle applied to the solvation of chromophores. The parabolic potential curves symbolize the interaction energy between the chromophores and the solvent. The Gaussian curves represent the distribution of this interaction
1021:{\displaystyle P=\left\langle \psi _{e}'\psi _{v}'\psi _{s}'\right|{\boldsymbol {\mu }}\left|\psi _{e}\psi _{v}\psi _{s}\right\rangle =\int \psi _{e}'^{*}\psi _{v}'^{*}\psi _{s}'^{*}({\boldsymbol {\mu }}_{e}+{\boldsymbol {\mu }}_{N})\psi _{e}\psi _{v}\psi _{s}\,d\tau } 2410:. Immediately after the transition to the ground electronic state, the solvent molecules must also rearrange themselves to accommodate the new electronic configuration of the chromophore. Figure 7 illustrates the Franck–Condon principle applied to solvation. When the 2128:
It should be clear that the quantum mechanical formulation of the Franck–Condon principle is the result of a series of approximations, principally the electrical dipole transition assumption and the Born–Oppenheimer approximation. Weaker magnetic dipole and electric
60:
represent the inhomogeneous broadening of the same transitions as occurs in liquids and solids. Electronic transitions between the lowest vibrational levels of the electronic states (the 0–0 transition) have the same energy in both absorption and fluorescence.
99:
transition. The quantum mechanical formulation of this principle is that the intensity of a vibronic transition is proportional to the square of the overlap integral between the vibrational wavefunctions of the two states that are involved in the transition.
2124:
may lower the probability of a transition or prohibit it altogether. Rotational selection rules have been neglected in the above derivation. Rotational contributions can be observed in the spectra of gases but are strongly suppressed in liquids and solids.
93:
of the vibrational level of the molecule in the originating electronic state. In the semiclassical picture of vibrations (oscillations) of a simple harmonic oscillator, the necessary conditions can occur at the turning points, where the momentum is zero.
2397:
of the solvent. Assuming the solvent relaxation time is short compared with the lifetime of the electronic excited state, emission will be from the lowest solvent energy state of the excited electronic state. For small-molecule solvents such as water or
128:. Figure 1 illustrates the Franck–Condon principle for vibronic transitions in a molecule with Morse-like potential energy functions in both the ground and excited electronic states. In the low temperature approximation, the molecule starts out in the 84:
are relatively instantaneous compared with the time scale of nuclear motions, therefore if the molecule is to move to a new vibrational level during the electronic transition, this new vibrational level must be instantaneously compatible with the
2488:
https://chem.libretexts.org/Courses/Pacific_Union_College/Quantum_Chemistry/13%3A_Molecular_Spectroscopy/13.07%3A_The_Franck-Condon_Principle#:~:text=The%20Franck%2DCondon%20Principle%20describes,molecule%20experiences%20no%20significant%20change
419: 2104:
The first integral after the plus sign is equal to zero because electronic wavefunctions of different states are orthogonal. Remaining is the product of three integrals. The first integral is the vibrational overlap integral, also called the
1269:{\displaystyle =\int \psi _{e}'^{*}\psi _{v}'^{*}\psi _{s}'^{*}{\boldsymbol {\mu }}_{e}\psi _{e}\psi _{v}\psi _{s}\,d\tau +\int \psi _{e}'^{*}\psi _{v}'^{*}\psi _{s}'^{*}{\boldsymbol {\mu }}_{N}\psi _{e}\psi _{v}\psi _{s}\,d\tau } 232:
James Franck recognized that changes in vibrational levels could be a consequence of the instantaneous nature of excitation to higher electronic energy levels and a new equilibrium position for the nuclear interaction potential.
2034: 1950:{\displaystyle \iint \psi _{v}'^{*}\psi _{e}'^{*}{\boldsymbol {\mu }}_{e}\psi _{e}\psi _{v}\,d\tau _{e}d\tau _{n}\approx \int \psi _{v}'^{*}\psi _{v}\,d\tau _{n}\int \psi _{e}'^{*}{\boldsymbol {\mu }}_{e}\psi _{e}\,d\tau _{e}.} 771:
and is the fundamental assumption of the Franck–Condon principle. Combining these equations leads to an expression for the probability amplitude in terms of separate electronic space, spin and vibrational contributions:
556: 2097:) is a function of nuclear coordinates. Since the dependence is usually rather smooth it is neglected (i.e., the assumption that the transition dipole surface is independent of nuclear coordinates, called the 260:
Figure 1 in Edward Condon's first publication on what is now the Franck–Condon principle . Condon chose to superimpose the potential curves to illustrate the method of estimating vibrational transitions.
221:
upwards to the a curves in Diagram I. the particles will have a potential energy greater than D' and will fly apart. In this case we have a very great change in the oscillation energy on excitation by
762: 359: 2324:) is determined by lattice parameters. Because the energy of single phonons is generally quite small, zero- or few-phonon transitions can only be observed at temperatures below about 40 2263:
levels. For the Franck–Condon principle applied to phonon transitions, the label of the horizontal axis of Figure 1 is replaced in Figure 6 with the configurational coordinate for a
701:
of the initial and final state. The overall wavefunctions are the product of the individual vibrational (depending on spatial coordinates of the nuclei) and electronic space and
310: 2322: 2091: 533:{\displaystyle {\boldsymbol {\mu }}={\boldsymbol {\mu }}_{e}+{\boldsymbol {\mu }}_{N}=-e\sum \limits _{i}{\boldsymbol {r}}_{i}+e\sum \limits _{j}Z_{j}{\boldsymbol {R}}_{j}.} 695: 2818: 2061: 2813: 2377:
and is a stabilizing interaction, that is, the solvent molecules can move and rotate until the energy of the interaction is minimized. The interaction itself involves
2292: 670: 2236:
of the lattice. The upwards arrows represent absorption without phonons and with three phonons. The downwards arrows represent the symmetric process in emission.
1963: 209:. Here we have D > D' and D' > D". At the same time the equilibrium position of the nuclei moves with the excitation to greater values of 642:{\displaystyle P=\left\langle \psi '\right|{\boldsymbol {\mu }}\left|\psi \right\rangle =\int {\psi '^{*}}{\boldsymbol {\mu }}\psi \,d\tau ,} 2140:
is determined by all of the selection rules, however spin selection is the largest contributor, followed by electronic selection rules. The
2463: 2333: 2259: 2036:
over the spatial coordinates of the electrons would not depend on the nuclear coordinates. However, in the Born–Oppenheimer approximation
178: 2433: 768: 2912: 2890: 2863: 2844: 2109:. The remaining two integrals contributing to the probability amplitude determine the electronic spatial and spin selection rules. 148:), and from there can decay to the electronic ground state via photon emission. The Franck–Condon principle is applied equally to 2443: 2438: 2732: 2654: 2693: 711: 76:
The Franck–Condon principle has a well-established semiclassical interpretation based on the original contributions of
2778: 2448: 117: 2365:
molecules. These surrounding molecules may interact with the chromophores, particularly if the solvent molecules are
2358:
the structure of the absorption and emission spectra, but these effects are considered separately and independently.
2294:
potential energy in Figure 6 is represented as that of a harmonic oscillator, and the spacing between phonon levels (
2967: 2957: 2588: 2258:
energy plus the energy of one or more lattice phonons. In the low-temperature approximation, emission is from the
2744: 2882: 149: 323: 284: 2962: 2807: 2416: 544: 81: 2297: 362: 2787: 2753: 2712: 2673: 2634: 2605: 2540: 2468: 2411: 2382: 2223:
Energy diagram of an electronic transition with phonon coupling along the configurational coordinate
247: 160:
of the individual transitions. Vibronic transitions are drawn in Figure 2 as narrow, equally spaced
161: 2776:
Coolidge, A. S, James, H. M. and Present, R. D. (1936). "A study of the Franck–Condon Principle".
2836: 2664:
Condon, E. (1928). "Nuclear motions associated with electron transitions in diatomic molecules".
2163: 2066: 2039: 2930: 2908: 2886: 2859: 2840: 2458: 2366: 2254: 113: 2824: 2795: 2761: 2720: 2681: 2642: 2613: 2594:
Condon, E. (1926). "A theory of intensity distribution in band systems (Meeting abstract)".
2579: 2548: 2509: 675: 121: 2270: 655: 2736: 2697: 2658: 2596: 2453: 2345: 2121: 243: 238: 125: 2093:
do depend (parametrically) on the nuclear coordinates, so that the integral (a so-called
145: 2791: 2757: 2716: 2677: 2638: 2609: 2544: 767:
This separation of the electronic and vibrational wavefunctions is an expression of the
194:
Diagram I. shows a great weakening of the binding on a transition from the normal state
2875: 2829: 2386: 702: 410: 187: 86: 64: 32: 2216: 19: 2951: 2378: 234: 28: 2900: 2528: 2421: 698: 213:. If we go from the equilibrium position (the minimum of potential energy) of the 182: 153: 77: 52: 2729: 2651: 2406:
whereas chromophore excited state lifetimes range from a few picoseconds to a few
2770: 2690: 2407: 2402:
at ambient temperature, solvent relaxation time is on the order of some tens of
2264: 2233: 2210: 2167: 2029:{\displaystyle \int \psi _{e}'^{*}{\boldsymbol {\mu }}_{e}\psi _{e}\,d\tau _{e}} 253: 2393:
minimize the interaction energy. The rate of solvent relaxation depends on the
164:
line shapes. Equal spacing between vibrational levels is only the case for the
2403: 2170: 2130: 2765: 2724: 2646: 2552: 2394: 2374: 385: 2742:
Noyes, W. A. (1933). "The correlation of spectroscopy and photochemistry".
2685: 2617: 116:
picture, the vibrational levels and vibrational wavefunctions are those of
2931:"Light absorption and fate of excitation energy: Franck-Condon principle" 2625:
Condon, E. (1926). "A theory of intensity distribution in band systems".
2583: 2513: 2399: 165: 140: 90: 2362: 2325: 2250: 2246: 2799: 2570:
Franck, J. (1926). "Elementary processes of photochemical reactions".
2500:
Franck, J. (1926). "Elementary processes of photochemical reactions".
2370: 270: 2344: 2215: 252: 104: 18: 2935:
Life Sciences at the University of Illinois at Urbana-Champaign
2245:
The closest Franck–Condon analogy is due to the interaction of
2877:
Spectra of Atoms and Molecules (Topics in Physical Chemistry)
2703:
Birge, R. T. (1926). "The band spectra of carbon monoxide".
1719:
The spin-independent part of the initial integral is here
550:
for the transition between these two states is given by
2112:
The Franck–Condon principle is a statement on allowed
237:
extended this insight beyond photoreactions in a 1926
107:
Compendium of Chemical Terminology, 2nd Edition (1997)
2300: 2273: 2069: 2042: 1966: 1732: 1588: 1509: 1433: 1345: 1283: 1035: 781: 714: 678: 658: 559: 422: 326: 287: 16:
Quantum chemistry rule regarding vibronic transitions
2529:"A Theory of Intensity Distribution in Band Systems" 2874: 2831:The spectra and structures of simple free radicals 2828: 2316: 2286: 2085: 2055: 2028: 1960:This factorization would be exact if the integral 1949: 1706: 1268: 1020: 757:{\displaystyle \psi =\psi _{e}\psi _{v}\psi _{s}.} 756: 689: 664: 641: 532: 353: 304: 2854:Harris, Daniel C.; Michael D. Bertolucci (1978). 273:transition from the initial vibrational state ( 192: 96: 35:are shown favoring transitions with changes in 8: 2812:: CS1 maint: multiple names: authors list ( 2120:electronic states; other quantum mechanical 348: 299: 169:energy in both absorption and fluorescence. 120:, or of more complex approximations to the 2308: 2299: 2278: 2272: 2074: 2068: 2047: 2041: 2020: 2012: 2006: 1996: 1991: 1983: 1974: 1965: 1938: 1930: 1924: 1914: 1909: 1901: 1892: 1879: 1871: 1865: 1854: 1845: 1829: 1816: 1808: 1802: 1792: 1782: 1777: 1769: 1760: 1749: 1740: 1731: 1695: 1687: 1681: 1670: 1661: 1648: 1640: 1634: 1624: 1619: 1611: 1602: 1587: 1575: 1567: 1561: 1550: 1541: 1531: 1517: 1512: 1510: 1508: 1496: 1488: 1482: 1471: 1462: 1452: 1441: 1436: 1434: 1432: 1420: 1412: 1406: 1396: 1391: 1383: 1374: 1364: 1353: 1348: 1346: 1344: 1332: 1324: 1318: 1307: 1298: 1288: 1282: 1259: 1253: 1243: 1233: 1223: 1218: 1210: 1201: 1190: 1181: 1170: 1161: 1144: 1138: 1128: 1118: 1108: 1103: 1095: 1086: 1075: 1066: 1055: 1046: 1034: 1011: 1005: 995: 985: 972: 967: 957: 952: 941: 932: 921: 912: 901: 892: 871: 861: 851: 837: 823: 810: 797: 780: 745: 735: 725: 713: 677: 657: 629: 621: 613: 604: 582: 558: 521: 516: 509: 499: 483: 478: 471: 452: 447: 437: 432: 423: 421: 327: 325: 316:′) of an excited electronic state ( 288: 286: 2151: 63: 51: 2480: 2369:. This association between solvent and 2301: 2204:Franck–Condon metaphors in spectroscopy 1992: 1980: 1910: 1898: 1851: 1778: 1766: 1746: 1667: 1620: 1608: 1547: 1468: 1392: 1380: 1304: 1219: 1207: 1187: 1167: 1104: 1092: 1072: 1052: 968: 953: 938: 918: 898: 838: 622: 610: 583: 517: 479: 448: 433: 424: 2805: 2194:Spin forbidden but orbitally allowed 2186:Spin allowed but orbitally forbidden 2154:Intensities of electronic transitions 354:{\displaystyle |\epsilon 'v'\rangle } 7: 2464:Zero-phonon line and phonon sideband 2361:Consider chromophores surrounded by 2341:Franck–Condon principle in solvation 2334:Zero-phonon line and phonon sideband 242:an article on the band structure of 2907:. Oxford: Oxford University Press. 2572:Transactions of the Faraday Society 2502:Transactions of the Faraday Society 2336:for further details and references. 2241:Franck–Condon principle for phonons 496: 468: 305:{\displaystyle |\epsilon v\rangle } 179:Transactions of the Faraday Society 27:produce molecules in vibrationally 2929:Rabinowitch E.; Govindjee (1969). 2305: 2149:spin and orbital selection rules. 1511: 1435: 1347: 277:) of the ground electronic level ( 14: 2317:{\displaystyle \hbar \Omega _{i}} 365:). The molecular dipole operator 177:In a report published in 1926 in 2444:Ultraviolet-visible spectroscopy 2439:Molecular electronic transition 1723:as a product of two integrals: 697:are, respectively, the overall 2434:Born–Oppenheimer approximation 978: 948: 769:Born–Oppenheimer approximation 371:is determined by the charge (− 328: 289: 265:Quantum mechanical formulation 1: 2527:Condon, Edward (1926-12-01). 312:, to some vibrational state ( 173:Development of the principle 139:. In the simplest case of a 118:quantum harmonic oscillators 2905:Molecular Quantum Mechanics 2779:Journal of Chemical Physics 2449:Quantum harmonic oscillator 2178:Spin and orbitally allowed 2984: 2873:Bernath, Peter F. (1995). 2086:{\displaystyle \psi '_{e}} 124:of molecules, such as the 2903:; R. S. Friedman (1999). 2856:Symmetry and spectroscopy 2745:Reviews of Modern Physics 2095:transition dipole surface 2056:{\displaystyle \psi _{e}} 388:as well as the charges (+ 2766:10.1103/RevModPhys.5.280 2116:transitions between two 2883:Oxford University Press 2725:10.1103/PhysRev.28.1157 2647:10.1103/PhysRev.28.1182 2553:10.1103/PhysRev.28.1182 269:Consider an electrical 2686:10.1103/PhysRev.32.858 2618:10.1103/PhysRev.27.637 2354: 2318: 2288: 2237: 2164:extinction coefficient 2087: 2057: 2030: 1951: 1708: 1270: 1022: 758: 691: 690:{\displaystyle \psi '} 666: 643: 534: 355: 306: 261: 230: 198:to the excited states 110: 82:Electronic transitions 73: 61: 40: 2417:Gaussian distribution 2385:and can also include 2348: 2319: 2289: 2287:{\displaystyle q_{i}} 2219: 2088: 2058: 2031: 1952: 1709: 1271: 1023: 759: 692: 667: 665:{\displaystyle \psi } 644: 545:probability amplitude 535: 356: 307: 256: 67: 55: 22: 2584:10.1039/tf9262100536 2514:10.1039/tf9262100536 2469:Sudden approximation 2383:van der Waals forces 2298: 2271: 2142:Franck–Condon factor 2107:Franck–Condon factor 2101:is often allowed). 2099:Condon approximation 2067: 2040: 1964: 1730: 1350:Franck–Condon 1281: 1033: 779: 712: 676: 656: 557: 420: 324: 285: 2858:. New York: Dover. 2792:1936JChPh...4..193C 2758:1933RvMP....5..280N 2717:1926PhRv...28.1157B 2678:1928PhRv...32..858C 2639:1926PhRv...28.1182C 2610:1926PhRv...27..637. 2545:1926PhRv...28.1182C 2267:. The lattice mode 2156: 2082: 1989: 1907: 1860: 1775: 1755: 1676: 1617: 1556: 1477: 1389: 1313: 1216: 1196: 1176: 1101: 1081: 1061: 947: 927: 907: 831: 818: 805: 2735:2011-12-28 at the 2696:2011-12-28 at the 2657:2011-12-28 at the 2373:is referred to as 2355: 2314: 2284: 2238: 2152: 2083: 2070: 2053: 2026: 1970: 1947: 1888: 1841: 1756: 1736: 1704: 1657: 1598: 1594: 1592: 1585: 1537: 1526: 1524: 1506: 1458: 1450: 1448: 1430: 1370: 1362: 1360: 1342: 1294: 1266: 1197: 1177: 1157: 1082: 1062: 1042: 1018: 928: 908: 888: 819: 806: 793: 754: 687: 662: 639: 530: 504: 476: 351: 302: 262: 227:James Franck, 1926 114:quantum mechanical 74: 62: 41: 2968:Molecular physics 2958:Quantum chemistry 2825:Herzberg, Gerhard 2800:10.1063/1.1749818 2459:Vibronic coupling 2201: 2200: 1532: 1530: 1522: 1520: 1515: 1453: 1451: 1446: 1444: 1439: 1365: 1363: 1358: 1356: 1351: 1289: 1287: 495: 467: 400:) and locations ( 375:) and locations ( 2975: 2944: 2942: 2941: 2918: 2896: 2880: 2869: 2850: 2834: 2817: 2811: 2803: 2769: 2728: 2711:(6): 1157–1181. 2689: 2650: 2633:(6): 1182–1201. 2621: 2587: 2557: 2556: 2539:(6): 1182–1201. 2524: 2518: 2517: 2497: 2491: 2485: 2323: 2321: 2320: 2315: 2313: 2312: 2293: 2291: 2290: 2285: 2283: 2282: 2157: 2092: 2090: 2089: 2084: 2078: 2062: 2060: 2059: 2054: 2052: 2051: 2035: 2033: 2032: 2027: 2025: 2024: 2011: 2010: 2001: 2000: 1995: 1988: 1987: 1978: 1956: 1954: 1953: 1948: 1943: 1942: 1929: 1928: 1919: 1918: 1913: 1906: 1905: 1896: 1884: 1883: 1870: 1869: 1859: 1858: 1849: 1834: 1833: 1821: 1820: 1807: 1806: 1797: 1796: 1787: 1786: 1781: 1774: 1773: 1764: 1754: 1753: 1744: 1713: 1711: 1710: 1705: 1700: 1699: 1686: 1685: 1675: 1674: 1665: 1653: 1652: 1639: 1638: 1629: 1628: 1623: 1616: 1615: 1606: 1593: 1586: 1581: 1580: 1579: 1566: 1565: 1555: 1554: 1545: 1525: 1523: 1521: 1518: 1516: 1513: 1507: 1502: 1501: 1500: 1487: 1486: 1476: 1475: 1466: 1449: 1447: 1445: 1442: 1440: 1437: 1431: 1426: 1425: 1424: 1411: 1410: 1401: 1400: 1395: 1388: 1387: 1378: 1361: 1359: 1357: 1354: 1352: 1349: 1343: 1338: 1337: 1336: 1323: 1322: 1312: 1311: 1302: 1275: 1273: 1272: 1267: 1258: 1257: 1248: 1247: 1238: 1237: 1228: 1227: 1222: 1215: 1214: 1205: 1195: 1194: 1185: 1175: 1174: 1165: 1143: 1142: 1133: 1132: 1123: 1122: 1113: 1112: 1107: 1100: 1099: 1090: 1080: 1079: 1070: 1060: 1059: 1050: 1027: 1025: 1024: 1019: 1010: 1009: 1000: 999: 990: 989: 977: 976: 971: 962: 961: 956: 946: 945: 936: 926: 925: 916: 906: 905: 896: 881: 877: 876: 875: 866: 865: 856: 855: 841: 836: 832: 827: 814: 801: 763: 761: 760: 755: 750: 749: 740: 739: 730: 729: 696: 694: 693: 688: 686: 671: 669: 668: 663: 648: 646: 645: 640: 625: 620: 619: 618: 617: 597: 586: 581: 577: 539: 537: 536: 531: 526: 525: 520: 514: 513: 503: 488: 487: 482: 475: 457: 456: 451: 442: 441: 436: 427: 363:bra–ket notation 360: 358: 357: 352: 347: 339: 331: 311: 309: 308: 303: 292: 228: 207: 122:potential energy 108: 2983: 2982: 2978: 2977: 2976: 2974: 2973: 2972: 2948: 2947: 2939: 2937: 2928: 2925: 2915: 2899: 2893: 2872: 2866: 2853: 2847: 2823: 2804: 2775: 2741: 2737:Wayback Machine 2705:Physical Review 2702: 2698:Wayback Machine 2666:Physical Review 2663: 2659:Wayback Machine 2627:Physical Review 2624: 2597:Physical Review 2593: 2569: 2566: 2564:Further reading 2561: 2560: 2533:Physical Review 2526: 2525: 2521: 2499: 2498: 2494: 2486: 2482: 2477: 2454:Morse potential 2430: 2343: 2304: 2296: 2295: 2274: 2269: 2268: 2243: 2231: 2206: 2122:selection rules 2065: 2064: 2043: 2038: 2037: 2016: 2002: 1990: 1979: 1962: 1961: 1934: 1920: 1908: 1897: 1875: 1861: 1850: 1825: 1812: 1798: 1788: 1776: 1765: 1745: 1728: 1727: 1691: 1677: 1666: 1644: 1630: 1618: 1607: 1571: 1557: 1546: 1533: 1492: 1478: 1467: 1454: 1416: 1402: 1390: 1379: 1366: 1328: 1314: 1303: 1290: 1279: 1278: 1249: 1239: 1229: 1217: 1206: 1186: 1166: 1134: 1124: 1114: 1102: 1091: 1071: 1051: 1031: 1030: 1001: 991: 981: 966: 951: 937: 917: 897: 867: 857: 847: 846: 842: 792: 788: 777: 776: 741: 731: 721: 710: 709: 705:wavefunctions: 679: 674: 673: 654: 653: 609: 605: 587: 570: 566: 555: 554: 515: 505: 477: 446: 431: 418: 417: 408: 396: 383: 340: 332: 322: 321: 283: 282: 267: 244:carbon monoxide 239:Physical Review 229: 226: 205: 175: 138: 126:Morse potential 109: 103: 50: 33:potential wells 17: 12: 11: 5: 2981: 2979: 2971: 2970: 2965: 2960: 2950: 2949: 2946: 2945: 2924: 2923:External links 2921: 2920: 2919: 2913: 2897: 2891: 2870: 2864: 2851: 2845: 2821: 2786:(3): 193–211. 2773: 2752:(4): 280–287. 2739: 2700: 2672:(6): 858–872. 2661: 2622: 2591: 2565: 2562: 2559: 2558: 2519: 2492: 2479: 2478: 2476: 2473: 2472: 2471: 2466: 2461: 2456: 2451: 2446: 2441: 2436: 2429: 2426: 2387:hydrogen bonds 2342: 2339: 2338: 2337: 2311: 2307: 2303: 2281: 2277: 2242: 2239: 2227: 2205: 2202: 2199: 2198: 2195: 2191: 2190: 2187: 2183: 2182: 2179: 2175: 2174: 2160: 2081: 2077: 2073: 2050: 2046: 2023: 2019: 2015: 2009: 2005: 1999: 1994: 1986: 1982: 1977: 1973: 1969: 1958: 1957: 1946: 1941: 1937: 1933: 1927: 1923: 1917: 1912: 1904: 1900: 1895: 1891: 1887: 1882: 1878: 1874: 1868: 1864: 1857: 1853: 1848: 1844: 1840: 1837: 1832: 1828: 1824: 1819: 1815: 1811: 1805: 1801: 1795: 1791: 1785: 1780: 1772: 1768: 1763: 1759: 1752: 1748: 1743: 1739: 1735: 1717: 1716: 1715: 1714: 1703: 1698: 1694: 1690: 1684: 1680: 1673: 1669: 1664: 1660: 1656: 1651: 1647: 1643: 1637: 1633: 1627: 1622: 1614: 1610: 1605: 1601: 1597: 1591: 1584: 1578: 1574: 1570: 1564: 1560: 1553: 1549: 1544: 1540: 1536: 1529: 1519:selection rule 1505: 1499: 1495: 1491: 1485: 1481: 1474: 1470: 1465: 1461: 1457: 1443:selection rule 1429: 1423: 1419: 1415: 1409: 1405: 1399: 1394: 1386: 1382: 1377: 1373: 1369: 1341: 1335: 1331: 1327: 1321: 1317: 1310: 1306: 1301: 1297: 1293: 1286: 1276: 1265: 1262: 1256: 1252: 1246: 1242: 1236: 1232: 1226: 1221: 1213: 1209: 1204: 1200: 1193: 1189: 1184: 1180: 1173: 1169: 1164: 1160: 1156: 1153: 1150: 1147: 1141: 1137: 1131: 1127: 1121: 1117: 1111: 1106: 1098: 1094: 1089: 1085: 1078: 1074: 1069: 1065: 1058: 1054: 1049: 1045: 1041: 1038: 1017: 1014: 1008: 1004: 998: 994: 988: 984: 980: 975: 970: 965: 960: 955: 950: 944: 940: 935: 931: 924: 920: 915: 911: 904: 900: 895: 891: 887: 884: 880: 874: 870: 864: 860: 854: 850: 845: 840: 835: 830: 826: 822: 817: 813: 809: 804: 800: 796: 791: 787: 784: 765: 764: 753: 748: 744: 738: 734: 728: 724: 720: 717: 685: 682: 661: 650: 649: 638: 635: 632: 628: 624: 616: 612: 608: 603: 600: 596: 593: 590: 585: 580: 576: 573: 569: 565: 562: 541: 540: 529: 524: 519: 512: 508: 502: 498: 494: 491: 486: 481: 474: 470: 466: 463: 460: 455: 450: 445: 440: 435: 430: 426: 404: 392: 379: 350: 346: 343: 338: 335: 330: 301: 298: 295: 291: 266: 263: 224: 188:potential well 174: 171: 136: 101: 89:positions and 49: 46: 29:excited states 15: 13: 10: 9: 6: 4: 3: 2: 2980: 2969: 2966: 2964: 2961: 2959: 2956: 2955: 2953: 2936: 2932: 2927: 2926: 2922: 2916: 2914:0-19-855947-X 2910: 2906: 2902: 2901:Atkins, P. W. 2898: 2894: 2892:0-19-507598-6 2888: 2884: 2879: 2878: 2871: 2867: 2865:0-486-66144-X 2861: 2857: 2852: 2848: 2846:0-486-65821-X 2842: 2838: 2833: 2832: 2826: 2822: 2820: 2815: 2809: 2801: 2797: 2793: 2789: 2785: 2781: 2780: 2774: 2772: 2767: 2763: 2759: 2755: 2751: 2747: 2746: 2740: 2738: 2734: 2731: 2726: 2722: 2718: 2714: 2710: 2706: 2701: 2699: 2695: 2692: 2687: 2683: 2679: 2675: 2671: 2667: 2662: 2660: 2656: 2653: 2648: 2644: 2640: 2636: 2632: 2628: 2623: 2619: 2615: 2611: 2607: 2603: 2599: 2598: 2592: 2590: 2585: 2581: 2577: 2573: 2568: 2567: 2563: 2554: 2550: 2546: 2542: 2538: 2534: 2530: 2523: 2520: 2515: 2511: 2507: 2503: 2496: 2493: 2489: 2484: 2481: 2474: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2431: 2427: 2425: 2423: 2418: 2413: 2409: 2405: 2401: 2396: 2390: 2388: 2384: 2380: 2379:electrostatic 2376: 2372: 2368: 2364: 2359: 2351: 2347: 2340: 2335: 2331: 2330: 2329: 2327: 2309: 2279: 2275: 2266: 2261: 2256: 2252: 2248: 2240: 2235: 2230: 2226: 2222: 2218: 2214: 2212: 2203: 2196: 2193: 2192: 2188: 2185: 2184: 2180: 2177: 2176: 2172: 2169: 2165: 2161: 2159: 2158: 2155: 2150: 2147: 2143: 2139: 2138: 2132: 2126: 2123: 2119: 2115: 2110: 2108: 2102: 2100: 2096: 2079: 2075: 2071: 2048: 2044: 2021: 2017: 2013: 2007: 2003: 1997: 1984: 1975: 1971: 1967: 1944: 1939: 1935: 1931: 1925: 1921: 1915: 1902: 1893: 1889: 1885: 1880: 1876: 1872: 1866: 1862: 1855: 1846: 1842: 1838: 1835: 1830: 1826: 1822: 1817: 1813: 1809: 1803: 1799: 1793: 1789: 1783: 1770: 1761: 1757: 1750: 1741: 1737: 1733: 1726: 1725: 1724: 1722: 1701: 1696: 1692: 1688: 1682: 1678: 1671: 1662: 1658: 1654: 1649: 1645: 1641: 1635: 1631: 1625: 1612: 1603: 1599: 1595: 1589: 1582: 1576: 1572: 1568: 1562: 1558: 1551: 1542: 1538: 1534: 1527: 1503: 1497: 1493: 1489: 1483: 1479: 1472: 1463: 1459: 1455: 1427: 1421: 1417: 1413: 1407: 1403: 1397: 1384: 1375: 1371: 1367: 1339: 1333: 1329: 1325: 1319: 1315: 1308: 1299: 1295: 1291: 1284: 1277: 1263: 1260: 1254: 1250: 1244: 1240: 1234: 1230: 1224: 1211: 1202: 1198: 1191: 1182: 1178: 1171: 1162: 1158: 1154: 1151: 1148: 1145: 1139: 1135: 1129: 1125: 1119: 1115: 1109: 1096: 1087: 1083: 1076: 1067: 1063: 1056: 1047: 1043: 1039: 1036: 1029: 1028: 1015: 1012: 1006: 1002: 996: 992: 986: 982: 973: 963: 958: 942: 933: 929: 922: 913: 909: 902: 893: 889: 885: 882: 878: 872: 868: 862: 858: 852: 848: 843: 833: 828: 824: 820: 815: 811: 807: 802: 798: 794: 789: 785: 782: 775: 774: 773: 770: 751: 746: 742: 736: 732: 726: 722: 718: 715: 708: 707: 706: 704: 700: 699:wavefunctions 683: 680: 659: 636: 633: 630: 626: 614: 606: 601: 598: 594: 591: 588: 578: 574: 571: 567: 563: 560: 553: 552: 551: 549: 546: 527: 522: 510: 506: 500: 492: 489: 484: 472: 464: 461: 458: 453: 443: 438: 428: 416: 415: 414: 412: 407: 403: 399: 395: 391: 387: 382: 378: 374: 370: 369: 364: 344: 341: 336: 333: 319: 315: 296: 293: 280: 276: 272: 264: 259: 255: 251: 249: 248:Raymond Birge 245: 240: 236: 235:Edward Condon 223: 220: 216: 212: 208: 201: 197: 191: 189: 184: 180: 172: 170: 167: 163: 157: 155: 151: 147: 142: 135: 131: 127: 123: 119: 115: 106: 100: 95: 92: 88: 83: 79: 70: 66: 58: 54: 47: 45: 38: 34: 30: 25: 21: 2963:Spectroscopy 2938:. Retrieved 2934: 2904: 2876: 2855: 2835:. New York: 2830: 2808:cite journal 2783: 2777: 2749: 2743: 2708: 2704: 2669: 2665: 2630: 2626: 2601: 2595: 2575: 2571: 2536: 2532: 2522: 2505: 2501: 2495: 2483: 2422:Stokes shift 2391: 2360: 2356: 2349: 2244: 2228: 2224: 2220: 2211:chromophores 2207: 2166:(ε) values ( 2153: 2145: 2141: 2136: 2135: 2127: 2117: 2113: 2111: 2106: 2103: 2098: 2094: 1959: 1721:approximated 1720: 1718: 766: 651: 547: 542: 405: 401: 397: 393: 389: 380: 376: 372: 367: 366: 317: 313: 278: 274: 268: 257: 231: 218: 214: 210: 203: 199: 195: 193: 183:James Franck 176: 158: 154:fluorescence 146:Kasha's rule 133: 129: 111: 97: 78:James Franck 75: 68: 56: 42: 36: 23: 2578:: 536–542. 2508:: 536–542. 2408:nanoseconds 2404:picoseconds 2265:normal mode 2260:zero-phonon 2234:normal mode 2114:vibrational 2952:Categories 2940:2024-05-18 2881:. Oxford: 2604:(5): 640. 2475:References 2131:quadrupole 320:′), 219:vertically 162:Lorentzian 150:absorption 2395:viscosity 2375:solvation 2350:Figure 7. 2306:Ω 2302:ℏ 2221:Figure 6. 2197:10 to 10 2189:10 to 10 2181:10 to 10 2162:Range of 2118:different 2072:ψ 2045:ψ 2018:τ 2004:ψ 1993:μ 1985:∗ 1972:ψ 1968:∫ 1936:τ 1922:ψ 1911:μ 1903:∗ 1890:ψ 1886:∫ 1877:τ 1863:ψ 1856:∗ 1843:ψ 1839:∫ 1836:≈ 1827:τ 1814:τ 1800:ψ 1790:ψ 1779:μ 1771:∗ 1758:ψ 1751:∗ 1738:ψ 1734:∬ 1693:τ 1679:ψ 1672:∗ 1659:ψ 1655:∫ 1646:τ 1632:ψ 1621:μ 1613:∗ 1600:ψ 1596:∫ 1583:⏟ 1573:τ 1559:ψ 1552:∗ 1539:ψ 1535:∫ 1504:⏟ 1494:τ 1480:ψ 1473:∗ 1460:ψ 1456:∫ 1428:⏟ 1418:τ 1404:ψ 1393:μ 1385:∗ 1372:ψ 1368:∫ 1340:⏟ 1330:τ 1316:ψ 1309:∗ 1296:ψ 1292:∫ 1264:τ 1251:ψ 1241:ψ 1231:ψ 1220:μ 1212:∗ 1199:ψ 1192:∗ 1179:ψ 1172:∗ 1159:ψ 1155:∫ 1149:τ 1136:ψ 1126:ψ 1116:ψ 1105:μ 1097:∗ 1084:ψ 1077:∗ 1064:ψ 1057:∗ 1044:ψ 1040:∫ 1016:τ 1003:ψ 993:ψ 983:ψ 969:μ 954:μ 943:∗ 930:ψ 923:∗ 910:ψ 903:∗ 890:ψ 886:∫ 869:ψ 859:ψ 849:ψ 839:μ 821:ψ 808:ψ 795:ψ 743:ψ 733:ψ 723:ψ 716:ψ 681:ψ 660:ψ 634:τ 627:ψ 623:μ 615:∗ 607:ψ 602:∫ 592:ψ 584:μ 572:ψ 497:∑ 469:∑ 462:− 449:μ 434:μ 425:μ 409:) of the 386:electrons 384:) of the 349:⟩ 334:ϵ 300:⟩ 294:ϵ 258:Figure 5. 166:parabolic 69:Figure 3. 57:Figure 2. 24:Figure 1. 2827:(1971). 2733:Archived 2694:Archived 2655:Archived 2428:See also 2412:solution 2400:methanol 2080:′ 1981:′ 1899:′ 1852:′ 1767:′ 1747:′ 1668:′ 1609:′ 1548:′ 1469:′ 1381:′ 1305:′ 1208:′ 1188:′ 1168:′ 1093:′ 1073:′ 1053:′ 939:′ 919:′ 899:′ 879:⟩ 829:′ 816:′ 803:′ 790:⟨ 684:′ 611:′ 595:⟩ 575:′ 568:⟨ 345:′ 337:′ 225:—  222:light... 141:diatomic 102:—  72:favored. 48:Overview 2788:Bibcode 2754:Bibcode 2713:Bibcode 2674:Bibcode 2635:Bibcode 2606:Bibcode 2541:Bibcode 2363:solvent 2353:energy. 2326:kelvins 2255:lattice 2247:phonons 1438:orbital 152:and to 112:In the 91:momenta 87:nuclear 2911:  2889:  2862:  2843:  2371:solute 2251:quanta 2146:weakly 1355:factor 652:where 411:nuclei 271:dipole 217:curve 31:. The 2837:Dover 2367:polar 2144:only 361:(see 206:' 105:IUPAC 2909:ISBN 2887:ISBN 2860:ISBN 2841:ISBN 2819:Link 2814:link 2771:Link 2730:Link 2691:Link 2652:Link 2589:Link 2381:and 2332:See 2232:, a 2063:and 1514:spin 703:spin 672:and 543:The 202:and 2796:doi 2762:doi 2721:doi 2682:doi 2643:doi 2614:doi 2580:doi 2549:doi 2510:doi 2253:of 2168:mol 281:), 246:by 2954:: 2933:. 2885:. 2839:. 2810:}} 2806:{{ 2794:. 2782:. 2760:. 2748:. 2719:. 2709:28 2707:. 2680:. 2670:32 2668:. 2641:. 2631:28 2629:. 2612:. 2602:27 2600:. 2576:21 2574:. 2547:. 2537:28 2535:. 2531:. 2506:21 2504:. 2424:. 2328:. 2173:) 2171:cm 413:: 250:. 181:, 156:. 137:01 80:. 2943:. 2917:. 2895:. 2868:. 2849:. 2816:) 2802:. 2798:: 2790:: 2784:4 2768:. 2764:: 2756:: 2750:5 2727:. 2723:: 2715:: 2688:. 2684:: 2676:: 2649:. 2645:: 2637:: 2620:. 2616:: 2608:: 2586:. 2582:: 2555:. 2551:: 2543:: 2516:. 2512:: 2490:. 2310:i 2280:i 2276:q 2249:( 2229:i 2225:q 2137:P 2076:e 2049:e 2022:e 2014:d 2008:e 1998:e 1976:e 1945:. 1940:e 1932:d 1926:e 1916:e 1894:e 1881:n 1873:d 1867:v 1847:v 1831:n 1823:d 1818:e 1810:d 1804:v 1794:e 1784:e 1762:e 1742:v 1702:. 1697:s 1689:d 1683:s 1663:s 1650:v 1642:d 1636:v 1626:N 1604:v 1590:0 1577:e 1569:d 1563:e 1543:e 1528:+ 1498:s 1490:d 1484:s 1464:s 1422:e 1414:d 1408:e 1398:e 1376:e 1334:n 1326:d 1320:v 1300:v 1285:= 1261:d 1255:s 1245:v 1235:e 1225:N 1203:s 1183:v 1163:e 1152:+ 1146:d 1140:s 1130:v 1120:e 1110:e 1088:s 1068:v 1048:e 1037:= 1013:d 1007:s 997:v 987:e 979:) 974:N 964:+ 959:e 949:( 934:s 914:v 894:e 883:= 873:s 863:v 853:e 844:| 834:| 825:s 812:v 799:e 786:= 783:P 752:. 747:s 737:v 727:e 719:= 637:, 631:d 599:= 589:| 579:| 564:= 561:P 548:P 528:. 523:j 518:R 511:j 507:Z 501:j 493:e 490:+ 485:i 480:r 473:i 465:e 459:= 454:N 444:+ 439:e 429:= 406:j 402:R 398:e 394:j 390:Z 381:i 377:r 373:e 368:μ 342:v 329:| 318:ε 314:υ 297:v 290:| 279:ε 275:υ 215:n 211:r 204:a 200:a 196:n 134:q 130:v 39:. 37:ν

Index


excited states
potential wells


James Franck
Electronic transitions
nuclear
momenta
IUPAC
quantum mechanical
quantum harmonic oscillators
potential energy
Morse potential
diatomic
Kasha's rule
absorption
fluorescence
Lorentzian
parabolic
Transactions of the Faraday Society
James Franck
potential well
Edward Condon
Physical Review
carbon monoxide
Raymond Birge

dipole
bra–ket notation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.